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Abstract. Markov Logic Networks (MLNs) are a prominent statistical relational
model that have been proposed as a unifying framework for statistical relational
learning. As part of this unification, their authors proposed methods for convert-
ing other statistical relational learners into MLNs. For converting a first order
Bayes net into an MLN, it was suggested to moralize the Bayes net to obtain
the structure of the MLN and then use the log of the conditional probability table
entries to calculate the weight of the clauses. This conversion is exact for convert-
ing propositional Markov networks to propositional Bayes nets however, it fails
to perform well for the relational case. We theoretically analyze this conversion
and introduce new methods of converting a Bayes net into an MLN. An extended
imperial evaluation on five datasets indicates that our conversion method outper-
forms previous methods.

1 Introduction

The field of statistical relational learning (SRL) has developed a number of new sta-
tistical models for the induction of probabilistic knowledge that supports accurate pre-
dictions for multi-relational structured data [1]. Markov Logic Networks (MLNs) form
one of the most prominent SRL model classes; they generalize both first-order logic and
Markov network models [2]. Essentially, an MLN is a set of weighted first-order for-
mulas that compactly defines a Markov network comprising ground instances of logical
predicates. The formulas are the structure or qualitative component of the Markov net-
work; they represent associations among ground facts. The weights are the parameters
or quantitative component; they assign a likelihood to a given relational database by us-
ing the log-linear formalism of Markov networks. An open-source benchmark system
for MLNs is the Alchemy package [3].

MLNs were proposed as a unifying framework for SRL since they are general enough
that many of the other well known SRL models can easily be converted into them.
Schulte et al show that it is desirable to use models where learning is performed on
First-order Bayes nets and inference is performed on MLNs [4, 5, 6]. Their model
combines the scalability and efficiency of model searches in directed models with the
inference power and theoretical foundations of undirected models. For converting a first
order Bayes net into an MLN, the suggested method has been to moralize the Bayes net
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to obtain the structure of the MLN and then use the log of the conditional probability
table entries to calculate the weight of the clauses [2].

In propositional data using the log of the conditional probability table entries of a
Bayes net to obtain weights in a corresponding Markov random field, results in two
predictively equivalent graphical models. Although there is no corresponding result for
the case of relational data, Richardson and Domingos propose using the same method
which is a plausible candidate [2]. In this paper, we examine this conversion theoreti-
cally and experimentally for the first time, and provide rationale for why it fails in the
relational case. We propose another conversion method for converting weights from a
Bayes net to an MLN that is theoretically justifiable and out-performs the current pro-
posed method.

1.1 Related Work

Most of the work on parameter learning in MLNs is based on ideas developed for
Markov networks (undirected graphical models) in the propositional case. Special is-
sues that arise with relational data are discussed by Lowd and Domingos [7]. Most
recent methods aim to maximize the regularized weighted pseudo log-likelihood [2, 8],
and/or perform a scaled conjugate gradient descent using second-order derivative infor-
mation [7].

We focus on parameter estimation algorithms to convert already calculated weights
from directed models to MLNs, so our method can only be applied to a restricted class
of MLN structures that are learned from, or can be converted into a Bayes net. The
main motivation for converting the directed model into an undirected model and per-
forming inference with an undirected model is that they do not suffer from the problem
of cyclic dependencies in relational data [2, 9, 10]. Early work on this topic required
ground graphs to be acyclic [11, 12]. For example, Probabilistic Relational Models al-
low dependencies that are cyclic at the predicate level as long as the user guarantees
acyclicity at the ground level [12]. A recursive dependency of an attribute on itself is
shown as a self loop in the model graph. If there is a natural ordering of the ground
atoms in the domain (e.g., temporal), there may not be cycles in the ground graph; but
this assumption is restrictive in general. The generalized order-search of Ramon et al.
[13] instead resolves cycles by learning an ordering of ground atoms which compli-
cates the learning procedure. The learn-and-join algorithm of Schulte et al. utilizes a
pseudo-loglikelihood that measures the fit of a Bayes net to a relational database which
is well-defined even in the presence of recursive dependencies [5].

1.2 Background

A Bayes net structure [14] is a directed acyclic graph (DAG) G, whose nodes comprise
a set of random variables denoted by V . In this paper we consider only discrete finite
random variables. When discussing a Bayes net, we refer interchangeably to its nodes
or its variables. A Bayes net is a pair 〈G, θG〉 where θG is a set of parameter values that
specify the probability distributions of children conditional on assignments of values
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to their parents. We use as our basic model class Functor Bayes Nets (FBN)[15]1, a
relatively straightforward generalization of Bayes nets, for relational data. Our methods
also apply to other directed graphical formalisms.

A functor is a function symbol or a predicate symbol. Each functor has a set of
values (constants) called the range of the functor. A population is a set of individuals,
corresponding to a domain or type in logic. A functor whose range is {T ,F} is a
predicate, usually written with uppercase letters like P,R. A functor random variable
is of the form f(t1, . . . , tk) where f is a functor (either a function symbol or a predicate
symbol) and each ti is a first-order variable or a constant. Each functor has a set of
values (constants) called the range of the functor. The structure of a Functor Bayes Net
consists of: (1) A directed acyclic graph (DAG) whose nodes are parametrized random
variables, (2) a population for each first-order variable, and (3) an assignment of a range
to each functor. Figure 1 is an example of an FBN.
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Fig. 1. A Functor Bayes Net which shows that ranking of a student correlates with his
intelligence, grades, and popularity of the professors that he is a research assistant for

Moralization is a technique used to convert a directed acyclic graph (DAG) into
undirected models or MLN formulas. To convert a Bayes net into an MLN using mor-
alization, add a formula to the MLN for each assignment of values to a child and its
parents [2](Sec. 12.5.3). Thus, an MLN obtained from a BN contains a formula for
each CP-table entry. Figure 2 shows an arbitrary conditional probability table and its
corresponding clauses for the ranking node in Figure 1.

While the moralization approach produces graph structures that represent the de-
pendencies among predicates well, converting each row of each conditional probability
table to an MLN clause leads to a large number of MLN clauses and hence MLN pa-
rameters. Local or context-sensitive independencies are a well-known phenomenon
that can be exploited to reduce the number of parameters required in a Bayes net. A
decision tree can compactly represent conditional probabilities [16]. The nodes in a
decision tree for a functor random variable c are themselves functor random variables.
An edge that originates in f(t1, . . . , tk) is labeled with one of the possible values in the
range of f . The leaves are labeled with probabilities for the different possible values
of the c variable. Khosravi et al combine decision tree learning algorithms with Bayes
nets to learn a compact set of clauses for relational data [17]. In their experiments, using

1 Functor Bayes nets were called Parametrized Bayes Nets by Poole. The term “Parametrized”
referred to the their semantics, and does not mean that parameters have been assigned for the
structure. We modified the name to overcome this confusion.
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Fig. 2. A conditional probability table for node ranking. Assuming that the range of
popularity , intelligence, ranking = {1 , 2 , 3} and the range of RA = {True ,False}. A tabu-
lar representation requires a total of 3× 3× 2× 3 = 54 conditional probability parameters. The
figure on the right shows the corresponding MLN clauses for this conditional probability table.

the decision tree representation instead of “flat” conditional probability tables, reduced
the number of MLN clauses by a factor of 5-25. Figure 3 shows a decision tree and its
corresponding MLN clauses for the ranking node in 1.

2 Conversion of Parameters from Functor Bayes Nets to Markov
Logic Networks

In this section we focus on the problem of converting the parameters of an FBN with a
fixed structure and parameters to an MLN. In the following discussion, fix an FBN B
and a child node v with k possible values v1, . . . , vk and an assignment π of values to its
parents. Then the conditional probability p(vi|π) is defined in the CP-table or decision
tree leafs of v in B. The corresponding MLN contains a formula pj that expresses that
a child node takes on the value vi and the parents take on the values π. The weight of
the formula pj is denoted as wj . As a running example, we are interested in predicting
the ranking of a student Jack given that we have about the five courses he has taken, and
the one professor that he is a research assistant for. We also know that Jack is highly
intelligent.

In order to convert the conditional probabilities from a Bayes net into weights for
MLNs, the use of the logarithm of the conditional probabilities was suggested by Domin-
gos and Richardson [2]. We refer to this method as LOGPROB. The LOGPROB method
sets the weights using the following formula:

wj := log(p(vi|π)).
In the propositional case, combining moralization with the log-conditional probabilities
as in the LOGPROB method leads to an undirected graphical model that is predictively
equivalent to the original directed graphical model [14]. Theoretical support for the
LOGPROB method is provided by considering the log-likelihood function for an MLN
structure obtained from a Bayes net. The standard log-likelihood for an MLN M [2] is
given by

LM (D) =
∑

j

wjnj(D) + ln(Z),
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Fig. 3. A decision tree that specifies conditional probabilities for the Ranking(S) node of Fig-
ure 1 and the corresponding MLN clauses generated from the decision tree. The number of the
clauses has been reduced to 18.

where nj(D) denotes the number of instances of formula j in database D and Z is a
normalization constant. Omitting the normalization term ln(Z), this is the sum over
all child-parent configurations of the corresponding Bayes net in log scale multiplied
by nj,π(D), which is the number of instances of the child-parent configuration in the
database:

LM (D) =
∑

i

∑

π

log(p(vi|π))ni,π(D).

This unnormalized log-likelihood is maximized by using the observed conditional fre-
quencies in the data table. While the normalization constant is required for defining a
valid probabilistic inference, it arguably does not contribute to measuring the fit of a pa-
rameter setting and hence can be ignored in model selection; the constraint that weights
are derived from normalized conditional probabilities in a Bayes net already bounds
their range.

Although there is no corresponding result for the case of relational data, the propo-
sitional conversion result makes the log-probabilities a plausible candidate for weights
in an MLN structure obtained from a 1st-order Bayes net. We analyze the proposed
method on both FBNs with and without parameter reduction, and introduce our own
conversion method for converting weights from a Bayes net to an MLN. This conver-
sion method is theoretically justifiable and out-performs the current proposed method.

2.1 Conversion in Functor Bayes Nets Without Parameter Reduction

The complication which is introduced by relational data is the existence of different
objects and relations which leads to having a diverse number of groundings for different
clauses. Using the moralization technique to obtain an MLN from a Bayesian network
introduces two types of clauses for each functor f(t1, . . . , tk) :

– Clauses that are produced from the conditional probability table of f(t1, . . . , tk).
– Clauses that are produced from the conditional probability table of other functors

where f(t1, . . . , tk) is in the set of their parents.
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Fig. 4. Clauses that the ranking node participates in. P , S, and C are first order variables for
professors, students, and courses. POP , INT , RA, RANK, GRADE are constant values in
the range of their corresponding functors.

Figure 4 shows the two types of clauses that the ranking node participates in when the
FBN of Figure 1 is moralized.

The two main factors that directly influence the inference procedure of a functor are
the weights and the number of groundings of the clauses where the functor node is
present. This means that clauses with more groundings will have a higher impact on the
final predicated value however, the number of groundings of a clause usually correlate
with the number of free variables in it which does not always reflect its importance. In
fact longer clauses with a diverse set of functors for different objects tend to have many
groundings with limited predictive information, but a short clause with only functors
related to the object may carry more predictive information but has fewer number of
groundings. For example, Jack is a research assistant for only one professor but has
taken 5 courses, so there are five times more groundings for the second clause compared
to the first one however, it may be the case that the first clause is a better predictor for
the ranking node.

The other factor, as discussed, is the weight of the clauses. The LOGPROB method as-
signs negative weights to all the clauses. A weight distribution that punishes all clauses
performs well in the propositional cases because all of the clauses have the same number
of groundings however, it fails to achieve good predictive performance on the relational
case.

It may seem trivial that normalizing the weight of the clauses with their number
of groundings may overcome the problem (i.e. divide the weight of the clause by its
number of groundings) but this is not possible as the weight of the clauses are fixed
during the learning phase and the number of groundings for each model is determined
during the inference phase. Schulte et al propose a new log-linear inference method
that uses the geometric mean rather than the arithmetic mean to use this idea.

We propose using a weight conversion, referred to as LOG-LINEAR, that has mean-
ingful interpretation for the weights of the clauses. The LOG-LINEAR method uses the
following formula to assign weight to clauses:

wj := log(p(vi|π))− log(1/k).

Weights set using this method are measuring the information gain provided by the par-
ent information π relative to the uniform probability baseline. These weights can be
interpreted as usual in a linear model: a positive weight indicates that a predictive factor
increases the baseline probability, a negative weight indicates a decreased probability
relative to the baseline. A zero weight indicates a condition that is irrelevant in the
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sense of not changing the baseline probability. With the LOG-LINEAR transformation
some of the formulas receive positive and some negative weights so a clause with many
groundings can have a small impact if the weight of the clause is close to zero. Figure 5
shows the two conversion functions.
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Fig. 5. Comparison of LOGPROB and LOG-LINEAR for a functor with a range of two values.
Conditional probabilities smaller than 0.5 have negative weights and conditional probabilities
larger than 0.5 have positive weights.

2.2 Conversion in Functor Bayes Nets with Parameter Reduction

The LOGPROB method has short-comings with conversion in FBNs without parameter
reduction but still performs reasonably well. In this section we explain why this method
performs very poorly when parameter reduction techniques are used on Bayes nets.

Focusing on the inference procedure in MLNs using our running example, the MLN
inference model evaluates the likelihood for all possible ranking values, so likelihood
of Ranking(Jack, 1), Ranking(Jack, 2), and Ranking(Jack, 3) are calculated and the
most likely one will be picked as the ranking for Jack. With the tabular conditional
probabilities that have no parameter reduction, all possible combinations of values are
converted into MLN clauses. For instance, clauses with weights w4 -w12 are all the
different combinations of values assigned to the first clause in Figure 4. The same is also
true for the second clause in Figure 4. This is not the case when parameter reduction
techniques are used. Figure 6 shows the decision tree for grade, and Figure 7 shows
the two types of clauses that are used for the ranking node when parameter reduction
techniques are used.

Based on these clauses, the likelihood of Ranking(Jack, 2) and Ranking(Jack, 3)
will be calculated using one grounding on the first clause, and the likelihood of
Ranking(Jack, 1) will be calculated using the grounding on the first clause plus
the five groundings on the second clause. Log-probabilities are negative, so us-
ing the LOGPROB method means that frequently many negative weights will be
added up in evaluating Ranking(Jack, 1) compared to Ranking(Jack, 2) and
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Fig. 6. The decision tree used to store the parameters of grade. Ranking node only contributes
in this decision tree with value 1, so values 2 and 3 are independent of grade
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Fig. 7. Clauses that the ranking node participates in. P , S, and C are first order variables for
professors, students, and courses. POP , INT , RA, RANK, GRADE are constant values in
the range of their corresponding functors. RANK1 in the second clause indicates that this clause
can only be instantiated when Ranking=1.

Ranking(Jack, 3). Thus, LOGPROB induces a bias against values that satisfy formulas
with more groundings.

With the LOG-LINEAR transformation, some of the formulas receive positive and
some negative weights, so there is no bias against values that are involved in formu-
las with more groundings. That is, the influences of the different groundings are more
balanced against each other.

3 Experimental Design

The main objective of this evaluation is to show that our proposed conversion func-
tion performs better than the previously proposed method. The second objective is
to show that Moralization methods are very fast and competitive with state-of-the-art
MLN learners. We first introduce the datasets used, then the systems compared, and
finally the comparison metrics.

3.1 Datasets

We used five benchmark real-world datasets. Table 1 lists the resulting databases and
their sizes in terms of total number of tuples and number of ground atoms, which is
the input format for Alchemy. Each descriptive attribute is represented as a separate
function, so the number of ground atoms is larger than that of tuples.
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MovieLens Database. The first dataset is the MovieLens dataset from the UC Irvine
machine learning repository [10].

Mutagenesis Database. This dataset is widely used in ILP research [18]. It contains
information on Atoms, Molecules, and Bonds among them.

Hepatitis Database. This data is a modified version of the PKDD02 Discovery Chal-
lenge database, following [19]. The database contains information on the laboratory
examinations of hepatitis B and C infected patients.

Mondial Database. This dataset contains data from multiple geographical web data
sources. We follow the modification of [20], and use a subset of the tables and features.
Our dataset includes a self-relationship table Borders that relates two countries.

UW-CSE Database. This dataset lists facts about the Department of Computer Sci-
ence and Engineering at the University of Washington (UW-CSE) (e.g., Student, Pro-
fessor) and their relationships (i.e. AdvisedBy, Publication). The dataset was obtained
by crawling pages on the department’s Website (www.cs.washington.edu).

Table 1. Size of datasets in total number of table tuples and ground atoms

Dataset #tuples #Ground atoms
Movielens 82623 170143
Mutagenesis 15218 35973
Hepatitis 12447 71597
Mondial 814 3366
UW-CSE 2099 3380

3.2 Comparison Systems and Performance Metrics

Structure learning. We fix the structure for all the methods to evaluate just the parame-
ters. We use two different structure learning methods to evaluate the parameter learning
methods both with and without parameter reduction. We used the MBN [10] to get
tabular representation without parameter reduction and MBN-DT [17] to get a sparse
structure with decision trees. Both methods use GES search [21] and the BDeu score
as implemented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform,
ESS=10; [22]).

Our experiments compare the two conversion functions as well as state-of-the-art
MLN learning methods.

LOGPROB. Weight learning is carried out using log-probabilities as suggested by
Richardson and Domingos. Parameters are given by Tetrad’s maximum likelihood esti-
mation method and the LOGPROB conversion.

LOG-LINEAR. weight learning is the same as the LOGPROB method but we use our
proposed conversion method.

MLN. Weight learning is carried out using the procedure of Lowd and Domingos
[7, 23] , implemented in Alchemy.
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LSM. Learning Structural Motifs [8] uses random walks to identify densely con-
nected objects in the data, and groups them and their associated relations into a motif.
We input the structure of the learn-and-join algorithms to LSM. Running LSM’s struc-
ture learning algorithm tries to prune the structure.

We report measurements on runtime, accuracy, and conditional log-likelihood (CLL).
To define accuracy, we apply MLN inference to predict the probability of an attribute
value, and score the prediction as correct if the most probable value is the true one.
For example, to predict the gender of person Bob, we apply MLN inference to the
atoms gender(Bob, male) and gender(Bob, female). The result is correct if the pre-
dicted probability of gender(Bob, male) is greater than that of gender(Bob, female).
The conditional log-likelihood (CLL) of a ground atom in a database D given an MLN
is its log-probability given the MLN and D [2]. The CLL directly measures how pre-
cise the estimated probabilities are.The values we report are averages over all attribute
predicates.

Infernce. We use the MC-SAT inference algorithm [24] implemented in Alchemy
to compute a probability estimate for each possible value of a descriptive attribute for a
given object or tuple of objects.

We also compare our model with discriminative learning methods from Inductive
Logic Programming.

4 Evaluation Results

In the following section we discuss the run time and then the accuracy of the models.
We investigate the predictive performance by doing five-fold cross validation on the
given datasets. All experiments were done on a QUAD CPU Q6700 with a 2.66GHz
CPU and 8GB of RAM.

4.1 Run Times

Table 2 shows the time taken in seconds for learning the parameters for Markov Logic
Networks using the structures generated by MBN and MBN-DT. The time for the con-
version methods is basically the same, namely the time required to compute the database
statistics for the entries. For the purposes of discussing runtime, we group LOGPROB

Table 2. The time taken in seconds for parameter learning. we group LOGPROB and
LOG-LINEAR methods and call it Log/Lin in this table.

Structure Learning MBN MBN-DT
Parameter Learning Log/Lin MLN LSM Log/Lin MLN LSM

UW-CSE 2 5 80 3 3 8
Mondial 3 90 260 3 15 26

MovieLens 8 10800 14300 9 1800 2100
Mutagenesis 3 9000 58000 4 600 1200

Hepatitis 3 23000 34200 5 4000 5000
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and LOG-LINEAR methods and call it Log/Lin in this table. The runtime improve-
ments are orders of magnitude faster than previous methods. Results from extending
the moralization approach to parameter learning, provide strong evidence that the mor-
alization approach leverages the scalability of relational databases for data management
and Bayes nets learning to achieve scalable MLN learning on databases of realistic size
for both structure and parameter learning.

4.2 Accuracy

Tables 3 and 4 show the accuracy results using the MBN and MBN-DT respectively.
Higher numbers indicate better performance. For the MBN structure, LSM clearly per-
forms worse. The LOGPROB method performs reasonably well and the results are ac-
ceptable.The LOG-LINEAR and MLN methods are competitive and out-perform the
other two methods. We will call LOG-LINEAR superior to MLN since learning in
LOG-LINEAR is approximately two orders of magnitude faster

For the MBN-DT structure, the LOGPROB method performs very poorly as dis-
cussed previously. Since the prediction is mainly based on the number of groundings
for clauses, the performance is similar to randomly assigning values for predicates. The
LOG-LINEAR and MLN methods are competitive, but MLN tends to do slightly better.

4.3 Conditional Log-Likelihood

Tables 5 and 6 show the predicted average log-likelihood of each fact in the database
for the MBN and MBN-DT structure. This measure is especially sensitive to the quality
of the parameter estimates. Smaller negative numbers indicate better performance.

The performance on CLL is very similar to accuracy. LOG-LINEAR method does
much better than LOGPROB on both MBN and MBN-DT structure. Both MLN and
LSM method minimizes CLL in their learning procedure which explains their great
performance.

4.4 Comparison with Inductive Logic Programming on Mutagenesis

Table 3 and 4 show results on generative learning where averages over all predicates are
reported. In this section we compare the performance of the LOGPROB and LOG-LINEAR

algorithm for a classification task, discriminative learning, to predict the mutagenicity
of chemical compounds. The class attribute is the mutagenicity. Compounds recorded
as having positive mutagenicity are labeled active (positive examples) and compounds
recoreded as having 0 or negative mutagenicity are labeled inactive (negative examples).
The database contains a total of 188 compounds.

This problem has been extensively studied in Inductive Logic Programming (ILP).
The purpose of this comparison is to benchmark the predictive performance of the
moralization approach, using generative learning, against discriminative learning by
methods that are different from Markov Logic Network learners. Table 7 presents the
results of Lodhi and Muggleton [25]. For the STILL system, we followed the creators’
evaluation methodology of using a randomly chosen training and test set. The other
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Table 3. The 5-fold cross-validation estimate using MBN structure learning for the accuracy
of predicting the true values of descriptive attributes, averaged over all descriptive attribute in-
stances. Observed standard deviations are shown.

LOGPROB LOG-LINEAR MLN LSM
UW-CSE 0.72 ± 0.083 0.76 ± 0.022 0.75 ± 0.028 0.64 ± 0.086
Mondial 0.40 ± 0.060 0.41 ± 0.045 0.44 ± 0.050 0.32 ± 0.042

Movielens 0.64 ± 0.006 0.64 ± 0.006 0.60 ± 0.029 0.57 ± 0.016
Mutagenesis 0.55 ± 0.139 0.64 ± 0.025 0.61 ± 0.022 0.64 ± 0.029

Hepatitis 0.49 ± 0.033 0.50 ± 0.037 0.51 ± 0.025 0.30 ± 0.028

Table 4. The 5-fold cross-validation estimate using MBN-DT structure learning for the accu-
racy of predicting the true values of descriptive attributes, averaged over all descriptive attribute
instances. Observed standard deviations are shown.

LOGPROB LOG-LINEAR MLN LSM
UW-CSE 0.06 ± 0.088 0.73 ± 0.166 0.75 ± 0.086 0.65 ± 0.076
Mondial 0.18 ± 0.036 0.43 ± 0.027 0.44 ± 0.033 0.31 ± 0.024

Movielens 0.26 ± 0.017 0.62 ± 0.026 0.62 ± 0.023 0.59 ± 0.051
Mutagenesis 0.21 ± 0.021 0.61 ± 0.023 0.60 ± 0.027 0.61 ± 0.025

Hepatitis 0.19 ± 0.024 0.48 ± 0.032 0.50 ± 0.021 0.40 ± 0.032

Table 5. The 5-fold cross-validation estimate using MBN for the conditional log-likelihood as-
signed to the true values of descriptive attributes, averaged over all descriptive attribute instances.
Observed standard deviations are shown.

LOGPROB LOG-LINEAR MLN LSM
UW-CSE -0.45 ± 0.122 -0.37 ± 0.090 -0.40 ± 0.151 -0.42 ± 0.058
Mondial -2.01 ± 0.721 -1.53 ± 0.287 -1.28 ± 0.149 -1.30 ± 0.055

Movielens -2.10 ± 0.205 -2.10 ± 0.205 -0.79 ± 0.338 -0.76 ± 0.124
Mutagenesis -0.87 ± 0.040 -0.83 ± 0.047 -0.92 ± 0.125 -0.92 ± 0.039

Hepatitis -2.11 ± 1.335 -2.03 ± 1.401 -1.31 ± 0.053 -1.26 ± 0.215

Table 6. The 5-fold cross-validation estimate using MBN-DT for the conditional log-likelihood
assigned to the true values of descriptive attributes, averaged over all descriptive attribute in-
stances. Observed standard deviations are shown.

LOGPROB LOG-LINEAR MLN LSM
UW-CSE -1.24 ± 0.035 -0.76 ± 0.124 -0.46 ± 0.104 -0.54 ± 0.046
Mondial -1.43 ± 0.071 -1.19 ± 0.101 -1.24 ± 0.083 -1.29 ± 0.071

Movielens -2.63 ± 0.027 -1.27 ± 0.096 -0.85 ± 0.030 -0.93 ± 0.071
Mutagenesis -1.26 ± 0.098 -0.95 ± 0.046 -0.93 ± 0.050 -0.92 ± 0.130

Hepatitis -1.55 ± 0.547 -1.50 ± 0.039 -1.13 ± 0.052 -1.20 ± 0.048
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Table 7. A comparison of the LOG-LINEAR method with standard Inductive Logic Program-
ming systems trained to predict mutagenicity. Although Bayes net learning produces a generative
model, its performance is competitive with discriminative learners.

Method Evaluation Accuracy Reference
MBN-LOG-LINEAR 10-fold 0.87
MBNDT-LOG-LINEAR 10-fold 0.87
P-progol 10-fold 0.88 [18]
FOIL 10-fold 0.867 [26]
STILL 90%train-10%test 0.936 [27]
MBN-LOG-LINEAR 90%train-10%test 0.944
MBNDTLOG-LINEAR 90%train-10%test 0.944

systems are evaluated using 10-fold cross-validation. The table shows that the classi-
fication performance of the generative Moralized Bayes net model matches that of the
discriminative Inductive Logic Programming models.

5 Conclusion and Future Work

The moralization approach combines Bayes net learning, one of the most successful
machine learning techniques, with Markov Logic networks, one of the most success-
ful statistical-relational formalisms. Previous work applied the moralization method to
learning MLN structure; in this paper we extended it to learning MLN parameters.
We motivated and empirically investigated a new method for converting Bayes net pa-
rameters to MLN weights. For converting a first order Bayes net into an MLN, it was
suggested to moralize the Bayes net to obtain the structure of the MLN and then use
the log of the conditional probability table entries to calculate the weight of the clauses.
This conversion is exact for converting propositional Markov networks to propositional
Bayes Nets; however, it fails to perform well for the relational case. We theoretically
analyze this conversion and introduce new methods of converting a Bayes net into an
MLN.

Our evaluation on five medium-size benchmark databases with descriptive attributes
indicates that compared to previous MLN learning methods, the moralization parameter
learning approach improves the scalability and run-time performance by at least two
orders of magnitude. Predictive accuracy is competitive or even superior.

References

[1] Getoor, L., Tasker, B.: Introduction to statistical relational learning. MIT Press (2007)
[2] Domingos, P., Richardson, M.: Markov logic: A unifying framework for statistical relational

learning. In: [1]
[3] Kok, S., Summer, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domin-

gos, P.: The Alchemy system for statistical relational AI. Technical report, University of
Washington, Version 30 (2009)

[4] Schulte, O., Khosravi, H.: Learning graphical models for relational data via lattice search.
Machine Learning, 41 pages (2012) (to appear)



Fast Parameter Learning for Markov Logic Networks Using Bayes Nets 115

[5] Schulte, O., Khosravi, H.: Learning directed relational models with recursive dependencies.
Machine Learning (2012) (Forthcoming. Extended Abstract)

[6] Khosravi, H., Schulte, O., Hu, J., Gao, T.: Learning compact markov logic networks with
decision trees. Machine Learning (2012) (Forthcoming. Extended Abstract. Acceptance
Rate?)

[7] Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In:
Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A.
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