Exploratory Analysis
of Co-Change Graphs for Code Refactoring

Hassan Khosravi and Recep Colak

School of Computing Science, Simon Fraser University Vancouver, Canada

Abstract. Version Control Systems (VCS) have always played an es-
sential role for developing reliable software. Recently, many new ways
of utilizing the information hidden in VCS have been discovered. Clus-
tering layouts of software systems using VCS is one of them. It reveals
groups of related artifacts of the software system, which can be visualized
for easier exploration. In this paper we use an Expectation Maximization
(EM) based probabilistic clustering algorithm and visualize the clustered
modules using a compound node layout algorithm. Our experiments with
repositories of two medium size software tools give promising results in-
dicating improvements over many previous approaches.

Key words: Clustering, Software artifacts, Expectation Maximization,

1 Introduction

VCS are used to manage the multiple revisions of the same source of information
and are vital for developing reliable software. They are mainly used in medium
to large size projects so that many developers can simultaneously alter different
parts of the code without interfering with each other’s work. VCS repositories
keep many versions of the code and has the ability to resolve conflicts on parts
of the code that several people have changed simultaneously. On top of their reg-
ular operational duties, VCS contain very useful hidden information, which can
be used to reverse engineer and refactor the codes. The underlying idea behind
such methods is the fact that dependent software artifacts, which are usually
elements of a submodule, co-occur in VCS transactions. Although this is the in-
tended behavior, quality of code usually decays over time. In such cases, software
artifacts of unrelated modules start to co-occur or co-change together. This is a
strong indication of quality decay, which must be monitored and treated. Several
approaches, most notably from the pattern mining community, have been intro-
duced to attack this problem. Clustering is among the most famous approaches
used.

The main contribution of this paper is using a probabilistic clustering algo-
rithm on VCS repositories. Existing VCS repository mining algorithms mostly
use hard clustering techniques, whereas we propose using a probabilistic soft clus-
tering algorithm followed by a powerful compound graph based layout method
to help the end user to easily comprehend the results

2 Method

In this paper we use the concept of co-change graphs as introduced in [2]. A
co-change graph is an artificial graph constructed from VCS repository that ab-
stracts the information in the repository. Let G = (V, E) be a graph in which V
is the set of software artifacts. An undirected edge (v1,v2) € F exists, if and only

2 Exploratory Analysis of Co-Change Graphs for Code Refactoring

if artifacts v1 and vy co-occur in at least a predefined number of commit trans-
actions. This graph is the input of the probabilistic graph clustering algorithm.

The exploited clustering algorithm which is based on Expectation Maximiza-
tion (EM) framework, has only recently been applied to graph clustering. The
intuition behind Expectation maximization is very similar to K-means, the most
famous clustering technique [4]. Both EM and K-means algorithms have two
steps; an expectation step followed by a maximization step. The first step is
with respect to the unknown underlying model parameters using the current
estimate of the parameters. The maximization step then provides a new esti-
mate of the parameters. Each step assumes that the other step has been solved.
Knowing the assignment of each data points, we can estimate the parameters of
the cluster and the parameters of the distributions, assign each point to a clus-
ter. Unlike kmeans, expectation maximization can use soft clustering in which
variable are assigned to each cluster with a probability equal to the relative
likelihood of that variable belonging to the class.

We first define the algorithm as a black box. It takes an adjacency graph
A;j of a graph G and the number of clusters ¢ as input. The algorithm outputs
the posterior probabilities g;;- denoting the probability of node v; belonging to
cluster r. Finally, assignment of nodes to clusters is done using these posterior
probabilities.

Let II, denote the fraction of vertices in cluster . We initialize the probabil-
ity of each 7, with (n/c+mnoise), as recommended by authors. Let 6,; denote the
probability that an edge from a particular node in group r connects to node i.
This matrix shows how nodes in a certain cluster are connected to all the nodes
of the graph. The aim of the algorithm is to represent a group of nodes for each
cluster that all have similar patterns of connection to others. The parameters .
, 0,; and g, satisfy the normalization conditions:

Zﬂ-r: Zerz‘: ZQWZI (1)
r=1 i=1 r=1

In the expectation (E) step of the algorithm the model parameter g;, is updated
assuming all the other model parameters is fixed.

A s
__mlLoy
> I 0557

In the Maximization (M) step of the algorithm, model parameters 7, and
and 6,; are updated assuming fixed posterior probabilities. The EM framework
guarantees that the algorithm converges. The convergence happens when the
log likelihood ceases to increase. Equations 2 and 3 show how the two steps are
dependent on each other. To find the variable assignments we need to know the
values of the model’s parameters, and to update the parameters of the model
the variable assignments are required.

(2)

Qir

1 Z Ai’qir
r= irs 97" = . 3
" n ZZ: ¢ ! Zl kzqzr ()

EM based clustering algorithm requires the number of cluster ¢ to be given
as input. This is a challenging problem. A practical solution is the Bayesian In-
formation Criterion (BIC) which suits well with model based approaches Given

Exploratory Analysis of Co-Change Graphs for Code Refactoring 3

any two estimated models, the model with the lower value of BIC is preferred.
In our problem definition, n is the number of software artifacts. The free param-
eters are 6 and 7. Formula 4 is used to compute the BIC score. By changing the
value of ¢, different models and different scores are achieved. we select the ¢ that
gives the minimum BIC score.

BIC = —92 Z[ln(ﬂ'gi) + ZA” lngg”.] + (c+cxn)n

i=1

(4)

Jj=1

Finally, we use the compound layout algorithm as defined in [3] to visualize
the result. We generate a compound node for every cluster and add all nodes to
it as member nodes. Then we run the compound graph layout algorithm, which
is an improved force directed layout algorithm tailored for nested graphs, using
the Chisio ! tool. We remove the compound nodes from the visualization Thus,
compound nodes serves only for better layout and they are never shown to the
end user.

3 Evaluation

We evaluate our clustering method by applying it to the VCS repositories of two
software systems and comparing the results to authoritative decompositions.
The clustering results are presented using compound node layouts that show
software artifacts and their dependencies at class level. The two softwares have
different sizes and different number of clusters. Because the evaluation requires
the knowledge of authoritative decompositions, we chose systems that we are
familiar with. We use Crocopat2.1 and Rabbit 2.1 as our examples and Figure
1 right presents some information about them

Crocopat 2.1 is an interpreter for the language RML(relational manipulation
language). It takes as input an RML program and relations, and outputs result-
ing relations. We have experimented different number of clusters 100 time each.
Figure 1 shows the average results. The results indicates 4 clusters must be used
confirming the authoritative decomposition. According to the authoritative de-
composition, Crocopat has four major subsystems. The output of the probabilis-
tic graph clustering algorithm clustering for Crocopat is shown in Figure 2 left.

81C Score

7500
L

Crocopat (100 Runs)

Rabbit (100 Runs)

8500 9000 9500
L L L

8000
L

BIC Score

10500 11000 11500
L L L

10000
L

Project

CrocoPat 2.1

Rabbit 2.1

Line

14000

317000

Files

60

740

Changes

800

6300

Commits

140

1200

Users

1

9

Months

8

52

Number of Clusters

Number of Clusters

Fig. 1. BIC is used on Crocopat and Rabit in order to find the appropriate number of
clusters to be fed to the EM algorithm. The table on the right presents some information
about the Crocopat and Rabbit.

! Chisio: Compound or Hierarchical Graph Visualization Tool

4 Exploratory Analysis of Co-Change Graphs for Code Refactoring

Rabbit 2.1 is a model checking tool for modular timed automata. It is a
command line program which takes a model and a specification file as input
and writes out verification results. Figure 1 represents the average score for each
number of clusters. Authoritative decomposition indicates that the number of
clusters should be 6 whereas BIC score designate that 6 is the second best score
and the best score is given by 8 clusters. We clustered the software using 6 clus-
ters and the result achieved is illustrated in Figure 2. The clusters have been
labeled on the Figure.

The result for clustering of both softwares were approved by the developers of
both tools and have been found to be as good as, if not better than the existing
approaches. Detailed analysis is omitted due to space considerations.

[1| Pat Files
Bl l |
-1 |

Header Files

E% RML Files

E

E Matrix Rp;wewumm Syniw for
Fig. 2. Artifacts of Crocopat (one the right) and Rabbit(on the left) clustered using
probabilistic fuzzy algorithm and visualized using compound nodes

4 Conclusion

In this work, we proposed a probabilistic clustering approach followed by a com-
pound graph visualizing in order to reverse engineer a software project. The
algorithm is independent of the platforms, languages and tools the project was
built on. It relies only on VCS files and it has internal tools for estimating best
number of components of the system . We have shown that our approach gives
useful results in finding components and the relations between them, which can
be used for quality monitoring and code refactoring.

Acknowledgments. This article is the result of a student project in the
software-engineering course CMPT 745 in fall 2008 at Simon Fraser University,
and we thank Dirk Beyer for interesting discussions.

References

1. M.Newman and E. Leicht, Mizture models and exploratory analysis in networks,
PNAS 2007

2. Beyer D, Noack A. Clustering Software Artifacts Based on Frequent Common
Changes. IWPC 2005.

3. Dogrusoz U, Giral E, Cetintas A, Civril A, Demir E. A Compound Graph Layout
Algorithm for Biological Pathways, Lecture Notes in Computer Science, vol. 3383,
pp. 442-447, 2005.

4. R.Dubes and A Jain, Algorithms for Clustering Data Prentice Hall 1998

