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Abstract

Many machine learning applications that involve rela-
tional databases incorporate first-order logic and probability.
Markov Logic Networks (MLNs) are a prominent statistical
relational model that consist of weighted first order clauses.
Many of the current state-of-the-art algorithms for learning
MLNs have focused on relatively small datasets with few de-
scriptive attributes, where predicates are mostly binary and
the main task is usually prediction of links between entities.
This paper addresses what is in a sense a complementary
problem: learning the structure of an MLN that models the
distribution of discrete descriptive attributes on medium to
large datasets, given the links between entities in a relational
database. Descriptive attributes are usually nonbinary and
can be very informative, but they increase the search space of
possible candidate clauses. We present an efficient new algo-
rithm for learning a directed relational model (parametrized
Bayes net), which produces an MLN structure via a stan-
dard moralization procedure for converting directed models
to undirected models. Learning MLN structure in this way
is 200-1000 times faster and scores substantially higher in
predictive accuracy than benchmark algorithms on three rela-
tional databases.

Introduction
The field of statistical-relational learning (SRL) has de-
veloped a number of new statistical models for relational
databases (Getoor and Tasker 2007). Markov Logic Net-
works (MLNs) form one of the most prominent SRL model
classes; they generalize both first-order logic and Markov
network models (Domingos and Richardson 2007). MLNs
have achieved impressive performance on a variety of SRL
tasks. Because they are based on undirected graphical mod-
els, they avoid the difficulties with cycles that arise in di-
rected SRL models (Neville and Jensen 2007; Domingos
and Richardson 2007; Taskar, Abbeel, and Koller 2002). An
open-source benchmark system for MLNs is the Alchemy
package (Kok et al. 2009). This paper addresses structure
learning for MLNs in relational schemas that feature a sig-
nificant number of descriptive attributes, compared to the
number of relationships.
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Our approach is to learn a (parametrized) Bayes net (BN)
that defines connections between predicates or functions
(Poole 2003). Associations between predicates constitute a
smaller model space than clauses that can be searched more
efficiently (cf. (Kersting and de Raedt 2007, 10.7)). Our
algorithm learns a model of the joint distribution of descrip-
tive attributes given the links between entities in a database,
which is in a sense the complementary problem to link pre-
diction. Applying a standard moralization technique to the
BN produces an MLN that we refer to as a moralized Bayes
net (MBN).

The main technical contribution of the paper is a new al-
gorithm for learning the structure of a parametrized BN. The
algorithm upgrades a single table BN learner, which can be
chosen by the user, by decomposing the learning problem for
the entire database into learning problems for smaller tables.
The basic idea is to apply the BN learner repeatedly to tables
and join tables from the database, and combine the resulting
graphs into a single graphical model for the entire database.
As the computational cost of the merge step is negligible, the
run-time of this learn-and-join algorithm is essentially deter-
mined by the cost of applying the BN learner to each (join)
table separately. Thus our algorithm leverages the scalability
of single-table BN learning to achieve scalability for MLN
structure learning.

We evaluated the MBN structures using one synthetic
dataset and two public domain datasets (MovieLens and
Mutagenesis). The learn-and-join algorithm constructs an
MLN in reasonable time in cases where Alchemy produces
no result. When both methods terminate, we observe a
speedup factor of 200-1000. Using standard prediction met-
rics for MLNs, we found in empirical tests that the pre-
dictive accuracy of the moralized BN structures was sub-
stantially greater than that of the MLNs found by Alchemy.
The difficulties we observed for current MLN methods are
not surprising as it has been noted that these methods are
not suitable for clauses that include function terms (Mi-
halkova and Mooney 2007, Sec.8), which are the most natu-
ral representation for descriptive attributes. Our code and
datasets are available for anonymous ftp download from
ftp://ftp.fas.sfu.ca/pub/cs/oschulte/aaai2010.

Paper Organization. We review related work, then
parametrized BNs and MLNs. Then we present the learn-



and-join algorithm for parametrized BNs. We compare the
moralized Bayes net approach to standard MLN structure
learning methods implemented in the Alchemy system, both
in terms of processing speed and in terms of model accuracy.

Related Work
Nonrelational structure learning methods. Schmidt et al.
(2008) compare and contrast structure learning algorithms
in directed and undirected graphical methods for nonrela-
tional data, and evaluate them for learning classifiers. Till-
man et al. (2008) provide the ION algorithm for merging
graph structures learned on different datasets with overlap-
ping variables into a single partially oriented graph. It is
similar to the learn-and-join algorithm in that it extends a
generic single-table BN learner to produce a BN model for
a set of data tables. One difference is that the ION algorithm
is not tailored towards relational structures. Another is that
the learn-and-join algorithm does not analyze different data
tables completely independently and merge the result after-
wards. Rather, it recursively constrains the BN search ap-
plied to join tables with the adjacencies found in BN search
applied to the respective joined tables.

MLN structure learning methods. Current methods (Kok
and Domingos 2009; Mihalkova and Mooney 2007; Huynh
and Mooney 2008; Biba, Ferilli, and Esposito 2008) suc-
cessfully learn MLN models for binary predicates (e.g., link
prediction), but do not scale well to larger datasets with de-
scriptive attributes that are numerous and/or have a large
domain of values. One reason for this is that the main ap-
proaches so far have been derived from Inductive Logic Pro-
gramming techniques that search the space of clauses, which
define connections between atoms. Descriptive attributes in-
troduce a high number of atoms, one for each combination
of attribute and value, and therefore define a large search
space of clauses. We utilize BN learning methods that search
the space of links between predicates/functions, rather than
atoms.

Mihalkova and Mooney (2007) distinguish between top-
down approaches, that follow a generate-and-test strategy
of evaluating clauses against the data, and bottom-up ap-
proaches that use the training data and relational pathfinding
to construct candidate conjunctions for clauses. Kok and
Domingos (2009) add constant clustering and hypergraph
lifting to refine relational path-finding. Biba et al. (2008)
propose stochastic local search methods for the space of can-
didate clauses. Our approach applies a single BN learner as
a subroutine. In principle, the BN learning module may fol-
low a top-down or a bottom-up approach; in practice, most
BN learners use a top-down approach. The BUSL algo-
rithm (Mihalkova and Mooney 2007) employs a single-table
Markov network learner as a subroutine. The Markov net-
work learner is applied once after a candidate set of conjunc-
tions and a data matrix has been constructed. In contrast, we
apply the single-table BN learner repeatedly, where results
from earlier applications constrain results of later applica-
tions.

Directed graphical models for SRL. The syntax of other
directed SRL models, such as Probabilistic Relational Mod-
els (PRMs) (Getoor et al. 2007) and Bayes Logic Programs

(BLPs) (Kersting and de Raedt 2007), is similar to that of
Parametrized Bayes Nets (Poole 2003). Two key issues for
directed SRL models are the following.

(1) The directed model represents generic statistical re-
lationships found in the database. In the terminology of
Halpern (1990) and Bacchus (1990), the model represents
type 1 probabilities or domain frequencies. For instance, a
PBN may encode the probability that a student is highly in-
telligent given the properties of a single course they haven
taken. But the database may contain information about
many courses the student has taken, which needs to be com-
bined; we may refer to this as the combining problem. To
address the combining problem, one needs to use an aggre-
gate function, as in PRMs, or a combining rule as in BLPs,
or the log-linear formula of MLNs, as we do in this paper. In
PRMs and BLPs, the aggregate functions respectively com-
bining rules add complexity to structure learning.

(2) Directed SRL models face the cyclicity problem: there
may be cyclic dependencies between the properties of in-
dividual entities. For example, if there is generally a cor-
relation between the smoking habits of friends, then we
may have a situation where the smoking of Jane predicts
the smoking of Jack, which predicts the smoking of Ce-
cile, which predicts the smoking of Jane, where Jack, Jane,
and Cecile are all friends with each other. In the presence
of such cycles, neither aggregate functions nor combining
rules lead to well-defined probabilistic predictions. The dif-
ficulty of the cyclicity problem has led Neville and Jensen to
conclude that “the acyclicity constraints of directed models
severely limit their applicability to relational data” (2007,
p.241) (see also (Domingos and Richardson 2007; Taskar,
Abbeel, and Koller 2002)). Converting the Bayes net to an
undirected model avoids the cyclicity problem. Thus the ap-
proach of this paper combines advantages of both directed
and undirected SRL models: Efficiency and interpretability
from directed models, with the solutions to the combining
and cyclicity problems from undirected models.

Background and Notation
Parametrized Bayes nets are a basic SRL model; we fol-
low the original presentation of Poole (2003). A popula-
tion is a set of individuals, corresponding to a domain or
type in logic. A parametrized random variable is of the form
f(t1, . . . , tk) where f is a functor (either a function symbol
or a predicate symbol) and each ti is a first-order variable
or a constant. Each functor has a set of values (constants)
called the range of the functor. An assignment of the form
f(t1, . . . , tk) = a, where a is a constant in the range of f
is an atom; if all terms ti are constants, the assignment is a
ground atom. A parametrized Bayes net structure con-
sists of

(1) a directed acyclic graph (DAG) whose nodes are
parametrized random variables.

(2) a population for each first-order variable.
(3) an assignment of a range to each functor.
The functor syntax is rich enough to represent an entity-

relation schema (Ullman 1982) via the following translation:
Entity sets correspond to populations, descriptive attributes



Student(student id, intelligence , ranking)
Course(course id , difficulty , rating)
Professor (professor id, teaching ability, popularity)
Registered (student id, course id , grade, satisfaction)
RA (student id, prof id, salary, capability)

Table 1: A relational schema for a university domain. Key
fields are underlined.

to function symbols, relationship tables to predicate sym-
bols, and foreign key constraints to type constraints on the
first-order variables. Table 1 shows a university relational
schema and Figure 1 a parametrized Bayes net structure for
this schema. A table join of two or more tables contains the
rows in the Cartesian products of the tables whose values
match on common fields.

Figure 1: A parametrized BN graph for the relational
schema of Table 1.

Markov Logic Networks are presented in detail by
Domingos and Richardson (2007). The set of first-order for-
mulas is defined by closing the set of atoms under Boolean
combinations and quantification. A grounding of a formula
p is a substitution of each variable X in p with a constant
from the population of X . A database instance D deter-
mines the truth value of each ground formula. The ratio of
the number of groundings that satisfy p, over the number of
possible groundings, is called the database frequency of p.

The qualitative component or structure of an MLN is a
finite set of formulas or clauses {pi}, and its quantitative
component is a set of weights {wi}, one for each formula.
Given an MLN and a database D, let ni be the number of
groundings that satisfy pi in D. An MLN assigns a log-
likelihood to a database according to the equation

ln(P (D)) =
∑

i

wini − ln(Z) (1)

where Z is a normalization constant.
Bayes net DAGs can be converted into MLN structures

through the standard moralization method (Domingos and
Richardson 2007, 12.5.3): connect all spouses that share a

common child, and make all edges in the resulting graph
undirected. In the moralized BN, a child forms a clique with
its parents. For each assignment of values to a child and its
parents, add a formula to the MLN.

The Learn-And-Join Method for PBN
Structure Learning

We describe our learning algorithm for parametrized Bayes
net structures that takes as input a databaseD. The algorithm
is based on a general schema for upgrading a propositional
BN learner to a statistical relational learner. By “upgrading”
we mean that the propositional learner is used as a function
call or module in the body of our algorithm. We require
that the propositional learner takes as input, in addition to a
single table of cases, also a set of edge constraints that spec-
ify required and forbidden directed edges. Our approach is
to “learn and join”: we apply the BN learner to single ta-
bles and combine the results successively into larger graphs
corresponding to larger table joins. Algorithm 1 gives pseu-
docode.

We assume that a parametrized BN contains a default set
of nodes as follows: (1) one node for each descriptive at-
tribute, of both entities and relationships, (2) one Boolean
node for each relationship table. For each type of entity, we
introduce one first-order variable. There are data patterns
that require more than one variable per entity type to express,
notably relational autocorrelation, where the value of an at-
tribute may depend on other related instances of the same
attribute. For instance, there may be a correlation between
the smoking of a person and that of her friends. We model
such cases by introducing an additional entity variable for
the entity type with corresponding functors for the descrip-
tive attributes, with the following constraints. (1) One of the
entity variables is selected as the main variable; the others
are auxilliary variables. (2) A functor whose argument is an
auxilliary variable has no edges pointing into it. Thus the
auxilliary variable serves only to model recursive relation-
ships. For instance the smoking example can be modelled
with a JBN structure

Friend(X ,Y )→ Smokes(X )← Smokes(Y )

where X is the main variable of type person and Y is an
auxilliary variable.

We list the phases of the algorithm, including two final
phases to convert the BN into an MLN. Figure 2 illustrates
the increasingly large joins built up in Phases 1–3.

(1) Analyze single tables. Learn a BN structure for the
descriptive attributes of each entity table E of the database
separately (with primary keys removed).

(2) Analyze single join tables. Each relationship table R
is considered. The input table for the BN learner is the join
of R with the entity tables linked by a foreign key con-
straint (with primary keys removed). Edges between at-
tributes from the same entity table E are constrained to agree
with the structure learned for E in phase (1).

3) Analyze double join tables. The input tables from the
second phase are joined in pairs (if they share a common for-
eign key) to form the input tables for the BN learner. Edges



between variables considered in phases (1) and (2) are con-
strained to agree with the structures previously learned.

(4) Satisfy slot chain constraints. For each link A→ B in
G, where A and B are functors that correspond to attributes
from different tables, arrows from Boolean relationship vari-
ables into B are added if required to satisfy the following
constraints: (1) A and B share a variable among their argu-
ments, or (2) the parents of B contain a chain of foreign key
links connecting A and B.

(5) Moralize to obtain an MLN structure.
(6) Parameter estimation. Apply an MLN weight learning

procedure.
In phases (2) and (3), if there is more than one first-

order variable for a given entity type (autocorrelation), then
the single-table BN learner is constrained such that func-
tor nodes whose arguments are auxilliary variables have no
edges pointing into them.

Figure 2: To illustrate the learn-and-join algorithm. A given
BN learner is applied to each table and join tables. The pres-
ence or absence of edges at lower levels is inherited at higher
levels.

Discussion. For fast computation, Algorithm 1 considers
foreign key chains of length up to 2. In principle, it can
process longer chains. As the algorithm does not assume a
bound on the degree of the BN graph, it may produce MLN
clauses that are arbitrarily long.

An iterative deepening approach that prioritizes depen-
dencies among attributes from more closely related tables
is a common design in SRL. The new feature of the learn-
and-join algorithm is the constraint that a BN for a table join
must respect the links found for the joined tables. This edge-
inheritance constraint reduces the search complexity consid-
erably. For instance, suppose that two entity tables contain
k descriptive attributes each. Then in an unconstrained join
with a relationship table, the search space of possible adja-
cencies has size

(
2k
2

)
, whereas with the constraint, the search

space size is k2/2, which is smaller than
(
2k
2

)
because the

quadratic k2 factor has a smaller coefficient. For example,
with k = 6, we have

(
2k
2

)
= 66 and k2/2 = 18. For the

learn-and-join algorithm, the main computational challenge
in scaling to larger table joins is therefore not the increas-
ing number of columns (attributes) in the join, but only the
increasing number of rows (tuples).

Algorithm 1 Pseudocode for MBN structure learning
Input: Database D with E1, ..Ee entity tables, R1, ...Rr Rela-
tionship tables,
Output: MLN for D
Calls: PBN: Any propositional Bayes net learner that accepts
edge constraints and a single table of cases as input. WL: Weight
learner in MLN
Notation: PBN(T, Econstraints) denotes the output DAG of
PBN. Get-Constraints(G) specifies a new set of edge con-
straints, namely that all edges in G are required, and edges miss-
ing between variables in G are forbidden.

1: Add descriptive attributes of all entity and relationship tables
as variables to G. Add a boolean indicator for each relation-
ship table to G.

2: Econstraints = ∅ [Required and Forbidden edges]
3: for m=1 to e do
4: Econstraints += Get-Constraints(PBN(Em , ∅))
5: end for
6: for m=1 to r do
7: Nm := join of Rm and entity tables linked to Rm

8: Econstraints += Get-Constraints(PBN(Nm, Econstraints))
9: end for

10: for all Ni and Nj with a foreign key in common do
11: Kij := join of Ni and Nj

12: Econstraints += Get-Constraints(PBN(Kij , Econstraints))
13: end for
14: for all possible combination of values of a node and its parents

do
15: Add a clause with predicates to MLN input file
16: end for
17: Run WL on the MLN file

In addition to efficiency, a statistical motivation for the
edge-inheritance constraint is that the marginal distribu-
tion of descriptive attributes may be different in an en-
tity table than in a relationship table. For instance, if a
highly intelligent student s has taken 10 courses, there will
be at least ten satisfying groundings of the conjunction
Registered(S ,C ), intelligence(S ) = hi . If highly intel-
ligent students tend to take more courses than less intelli-
gent ones, then in the Registered table, the frequency of
tuples with intelligent students is higher than in the gen-
eral student population. In terms of the Halpern-Bacchus
database domain frequencies, the distribution of database
frequencies conditional on a relationship being true may be
different from its unconditional distribution (Halpern 1990;
Bacchus 1990). The fact that marginal statistics about an en-
tity type E may differ between the entity table for E and a
relationship table (or a join table) is another reason why the
learn-and-join algorithm constrains edges between attributes
of E to be determined only by the result of applying the BN
learner to the E table. This ensures that the subgraph of the
final parametrized Bayes net whose nodes correspond to the
attributes of the E table is exactly the same as the graph that
the single-table BN learner constructs for the E table.

After moralization the log-linear formalism of MLNs can
be used to derive predictions about the properties of indi-
vidual entities from a parametrized Bayes net. The next
section evaluates the accuracy of these predictions on three



Dataset #tuples #Ground atoms
University 171 513
Movielens 82623 170143
MovieLens1 (subsample) 1468 3485
MovieLens2 (subsample) 12714 27134
Mutagenesis 15218 35973
Mutagenesis1 (subsample) 3375 5868
Mutagenesis2 (subsample) 5675 9058

Table 2: Size of datasets in total number of table tuples and
ground atoms. Each descriptive attribute is represented as a
separate function, so the number of ground atoms is larger
than that of tuples.

databases.

Evaluation
All experiments were done on a QUAD CPU Q6700
with a 2.66GHz CPU and 8GB of RAM. For single ta-
ble BN search we used GES search (Chickering 2003)
with the BDeu score as implemented in version 4.3.9-
0 of CMU’s Tetrad package (structure prior uniform,
ESS=10; (The Tetrad Group 2008)). Our code and
datasets are available for anonymous ftp download from
ftp://ftp.fas.sfu.ca/pub/cs/oschulte/aaai2010.

Datasets
We used one synthetic and two benchmark real-world
datasets. Because the Alchemy systems returned no result
on the real-world datasets, we formed two subdatabases for
each by randomly selecting entities for each dataset. We re-
stricted the relationship tuples in each subdatabase to those
that involve only the selected entities. Table 2 lists the re-
sulting databases and their sizes in terms of total number of
tuples and number of ground atoms, which is the input for-
mat for Alchemy.

University Database. We manually created a small
dataset, based on the schema given in Table 1. The entity ta-
bles contain 38 students, 10 courses, and 6 Professors. The
Registered table has 92 rows and the RA table has 25 rows.

MovieLens Database. The second dataset is the Movie-
Lens dataset from the UC Irvine machine learning repos-
itory. It contains two entity tables: User with 941 tu-
ples and Item with 1,682 tuples, and one relationship table
Rated with 80,000 ratings. The User table has 3 descrip-
tive attributes age, gender , occupation . We discretized the
attribute age into three bins with equal frequency. The ta-
ble Item represents information about the movies. It has 17
Boolean attributes that indicate the genres of a given movie.
We performed a preliminary data analysis and omitted gen-
res that have only weak correlations with the rating or user
attributes, leaving a total of three genres.

Mutagenesis Database. This dataset is widely used in
ILP research (Srinivasan et al. 1996). Mutagenesis has
two entity tables, Atom with 3 descriptive attributes, and
Mole , with 5 descriptive attributes, including two attributes
that are discretized into ten values each (logp and lumo).

It features two relationships MoleAtom indicating which
atoms are parts of which molecules, and Bond which re-
lates two atoms and has 1 descriptive attribute. Represent-
ing a relationship between entities from the same table in a
parametrized BN requires using two or more variables asso-
ciated with the same population (e.g., Bond(A1 ,A2 )). We
also tested our method on the Financial dataset with similar
results, but omit a discussion due to space constraints.

Comparison Systems and Performance Metrics
We refer to the output of our method—Algorithm 1—as
MBNs. Weight learning is carried out with Alchemy’s de-
fault procedure, which currently uses the method of Kok and
Domingos (2005). We compared MBN learning with 4 pre-
vious MLN structure learning methods implemented in dif-
ferent versions of Alchemy.

1. MSL is the structure learning method described by Kok
and Domingos (2005).

2. MSLC is the MSL algorithm applied to a reformated in-
put file that adds a predicate for each constant of each
descriptive attribute to the .db input file.

3. LHL is the state-of-the-art lifted hypergraph learning al-
gorithm of Kok and Domingos (2009).

4. LHLC is the LHL algorithm applied to the reformated
input file.

Data reformatting was used by Kok and Domingos (2007).
To illustrate, for instance the predicate Salary with val-
ues(high, medium, low), is represented with a single bi-
nary predicate Salary(Student ,Salary Type) in the stan-
dard Alchemy input format. The reformatted file con-
tains instead three unary predicates Salaryhigh(Student),
Salarymed(Student), Salary low (Student). The effect is
that the arguments to all predicates are primary keys, which
tends to yield better results with Alchemy. To evaluate pre-
dictions, the MLNs learned with the reformatted data were
converted to the format of the original database.

We use 4 main performance metrics: Runtime, Accu-
racy(ACC), Conditional log likelihood(CLL), and Area un-
der Curve(AUC). ACC is the percentage of the descriptive
attribute values that are correctly predicted by the MLN.
The conditional log-likelihood (CLL) of a ground atom in
a database D given an MLN is its log-probability given
the MLN and D. The CLL directly measures how pre-
cise the estimated probabilities are. The AUC curves were
computed by changing the CLL threshold above which a
ground atom is predicted true (10 tresholds were used). The
AUC is insensitive to a large number of true negatives. For
ACC and CLL the values we report are averages over all
predicates. For AUC, it is the average over all predicates
that correspond to descriptive attributes with binary values
(e.g. gender). CLL and AUC have been used in previ-
ous studies of MLN learning (Mihalkova and Mooney 2007;
Kok and Domingos 2009). As in previous studies, we
used the MC-SAT inference algorithm (Poon and Domingos
2006) to compute a probability estimate for each possible
value of a descriptive attribute for a given object or tuple of
objects.



Dataset MBN MSL MSLC LHL LHLC
University 0.03 + 0.032 5.02 11.44 3.54 19.29
MovieLens 1.2 +120 NT NT NT NT
MovieLens1 0.05 + 0.33 44 121.5 34.52 126.16
MovieLens2 0.12 + 5.10 2760 1286 3349 NT
Mutagenesis 0.5 +NT NT NT NT NT
Mutagenesis1 0.1 + 5 3360 900 3960 1233
Mutagenesis2 0.2 +12 NT 3120 NT NT

Table 3: Runtime to produce a parametrized MLN, in min-
utes. The MBN column shows structure learning time +
weight learning time.

Runtime Comparison
Table 3 shows the time taken in minutes for learning in each
dataset. The Alchemy times include both structure and pa-
rameter learning. For the MBN approach, we report both
the BN structure learning time and the time required for the
subsequent parameter learning carried out by Alchemy.

Structure Learning. The learn-and-join algorithm returns
an MLN structure very quickly (under 2 minutes). This in-
cludes single-table BN parameter estimation as a subroutine.

Structure and Weight Learning. The total runtime for
the MBN approach is dominated by the time required by
Alchemy to find a parametrization for the moralized BN. On
the smaller databases, this takes between 5-12 minutes. On
MovieLens, parametrization takes two hours, and on Muta-
genesis, it does not terminate. While finding optimal param-
eters for the MBN structures remains challenging, the com-
bined structure+weight learning system is much faster than
the overall structure + weight learning time of the Alchemy
methods: They do not scale to the complete datasets, and
for the subdatabases, the MBN approach is faster by a factor
ranging from 200 to 1000. As reported by Kok and Domin-
gos (2009), the runtimes reported on other smaller databases
for other MLN learners are also much larger (e.g., BUSL
takes about 13 hr on the UW-CSE dataset with 2,112 ground
atoms). These results are strong evidence that the MBN
approach leverages the scalability of Bayes net learning to
achieve scalable MLN learning on databases of realistic size.

Predictive Accuracy and Data Fit
Previous work on MLN evaluation has used a “leave-one-
out” approach that learns MLNs for a number of sub-
databases with a small subset omitted (Mihalkova and
Mooney 2007). This is not feasible in our setting because
even on a training set of size about 15% of the original,
finding an MLN structure using Alchemy is barely possi-
ble. Given these computational constraints, we investigated
the predictive performance by learning an MLN on one ran-
domly selected 2/3 of the subdatabases as a training set,
testing predictions on the remaining 1/3. While this does
not provide strong evidence about the generalization perfor-
mance in absolute terms, it gives information about the rela-
tive performance of the methods. Table 4 reports the average
ACC, CLL, and AUC of each dataset. Higher numbers in-
dicate better performance and NT indicates that the system
was not able to return an MLN for the dataset, either crash-
ing or timing out after 4 days of running. MBN achieved

substantially better predictions on all test sets, in the range
of 10-20% for accuracy.

Where the learning methods return a result on a database,
we also measured the predictions of the different MLN mod-
els for the facts in the training database. This indicates how
well the MLN summarizes the statistical patterns in the data.
These measurements test the power of using the log-linear
equation (1) to derive instance-level type 2 predictions from
a BN model of generic type 1 frequencies. While a small im-
provement in predictive accuracy may be due to overfitting,
the very large improvements we observe are evidence that
the MLN models produced by the Alchemy methods under-
fit and fail to represent statistically significant dependencies
in the data. The ground atom predictions of the MBNs are
always better, e.g. by at least 20% for accuracy.

Conclusion and Future Work
This paper considered the task of building a statistical-
relational model for databases with many descriptive at-
tributes. We combined Bayes net learning, one of the most
successful machine learning techniques, with Markov Logic
networks, one of the most successful statistical-relational
formalisms. The main algorithmic contribution is an effi-
cient new structure learning algorithm for a parametrized
Bayes net that models the joint frequency distribution over
attributes in the database, given the links between entities.
Moralizing the BN leads to an MLN structure. Our evalua-
tion on two benchmark databases with descriptive attributes
shows that compared to current MLN structure learning
methods, the approach using moralization improves the scal-
ability and run-time performance by orders of magnitude.
With standard parameter estimation algorithms and predic-
tion metrics, the moralized MLN structures make substan-
tially more accurate predictions.

An important direction for future work are pruning meth-
ods that take advantage of local independencies. Each CP-
table row in the parametrized Bayes net becomes a formula
in the moralized Bayes net. Often there are local indepen-
dencies that allow CP tables to be represented more com-
pactly. SRL research has used decision trees as an effec-
tive compact representation for CP-tables (Getoor, Taskar,
and Koller 2001). This suggests that combining decision
trees with parametrized Bayes nets will lead to more par-
simonious MLN structures. Another possibility is to use
MLN weight estimation procedures to prune uninforma-
tive clauses. Huynh and Mooney (2008) show that L1-
regularization can be an effective method for pruning a large
set of MLN clauses.
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