Using a Debugger
Arrays

Lecture 21

Borrowing from slides by Alan Hu, Kurt Eiselt, Paul Carter, and Tamara Munzner
News

- Assignment 2
 - Due this Friday, Oct 30

- Midterm 2 coming up next week
 - Wednesday, Nov 4, 6:30-7:30
 - Note: the rooms will be different
 - Material: conditionals, loops
 - Arrays will NOT be on the midterm
Reading Assignments

- Reading for this week: arrays
 - Edition 3: Ch. 7.1, 7.5-7.7
 - Edition 2: Ch. 8.1, 8.5-8.7
Objectives for Today

- Learn different strategies for debugging code
- Gain an initial understanding of arrays
Example from Last Time

- Modify the following code to compute the correct payment for paying off a loan in a given term

```java
double balance = initBalance;
int years = 0;
while (years < term) {
    intAccrued = balance*intRate/100;
    balance += (intAccrued - payment);
    years++;
}
```
Loan Amortization

- How do we compute the right payment amount to pay off a loan after some number of years?

- Use “Nested Intervals” approach:
 - Have two guesses: tooLow and tooHigh
 - Try a guess halfway in between.
 - Compute the loan balance using guess.
 - If guess was too high, then tooHigh = guess else tooLow = guess.
 - Repeat
Finding Bugs

- How can we find the bugs that we encountered last time
 - Stare at the code until we “get it”
 - Manually trace the code, keeping track of the variables
 - ???
 - ???
Finding Bugs

- How can we find the bugs that we encountered last time
 - Stare at the code until we “get it”
 - Manually trace the code, keeping track of the variables
 - Print variable contents at various key places in the program
 - Use a debugger (special program for tracking down errors)
Loan Amortization

- How do we know that our program will terminate?
 - Inner Loop: \textit{years} starts at 0 and counts up to \textit{term}. Will always execute exactly \textit{term} times.
 - Outer Loop: The gap between \textit{tooLow} and \textit{tooHigh} gets cut in half each iteration.

- These are termination arguments (aka ranking functions). You should always know why your loops will terminate.
Loan Amortization

- How do we know that our program will compute the correct result?
 - Inner Loop: At each iteration, balance is always the correct value after years years.
 - Outer Loop: At each iteration, tooLow is always less than the correct value, and tooHigh is always greater than the correct value.

- These are called “loop invariants”. Very helpful to understand loops. (Great to put in comments!)
Arrays
Arrays

- Arrays let you create a bunch of variables (all of the same type), that you refer to by array name and number (called the index).

Example:

 int[] x = new int[10];

instead of

 int x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
Declaring Arrays

- Must declare, just like any other variable.
- Declarations look like creating objects:
  ```java
  Scanner s = new Scanner(System.in);
  int[] x = new int[10];
  ```
Declaring Arrays

- Must declare, just like any other variable.
- Declarations look like creating objects:
  ```java
  Scanner s = new Scanner(System.in);
  int[] x = new int[10];
  ```

Type of the variable
Declaring Arrays

- Must declare, just like any other variable.
- Declarations look like creating objects:
  ```java
  Scanner s = new Scanner(System.in);
  int[] x = new int[10];
  ```

 The variable name. In both cases, these are *reference* variables.
Declaring Arrays

- Must declare, just like any other variable.
- Declarations look like creating objects:

  ```java
  Scanner s = new Scanner(System.in);
  int[] x = new int[10];
  ```

 The keyword `new` to allocate memory
Declaring Arrays

- Must declare, just like any other variable.
- Declarations look like creating objects:
  ```java
  Scanner s = new Scanner(System.in);
  int[] x = new int[10];
  ```

The constructor for the object or array
Declaring Arrays

- Syntax:

 \[
 \text{type}[] \ variableName = \text{new type[size]};
 \]

- Examples:

 double[] dataSet = new double[30];
 int[] quizScores = new int[5];
 String[] args;
Using Arrays

- Syntax:
 \[\text{variableName}[\text{index-expression}] \]

- If var is an array (reference) variable of type type[], then var[expr] is a variable of type type.

- Examples:
  ```
  double[] dataSet = new double[30];
  dataSet[0] = dataSet[1]/2;
  ```
Array Length

- Syntax: (note no parentheses)

 \texttt{variableName.length}

- If \texttt{var} is an array (reference) variable, then \texttt{var.length} is an \texttt{int} containing number of entries in array.

- Examples:

 \begin{verbatim}
 double[] dataSet = new double[30];
 dataSet.length == 30
 \end{verbatim}

- Note that indices go 0..dataSet.length-1!
Using Arrays

```java
int[] x = new int[10];
x[0] = 5;
x[1] = 7;
x[9] = x[0] + x[1];
```
Array Initializers

- Array creation and initialization can be combined:
 - `int[] x = {1,2,3};`
 - `String[] colors = {"red", "green", "blue"};`
In 1993, Mattel introduced Teen Talk Barbie™, a doll programmed to speak random phrases. Each doll had a random selection of 4 phrases from a list that included:
- You can never have enough clothes.
- Let’s go shopping!
- Math class is tough.
- (Talking GI Joe doll said “Vengeance is mine!” and “Dead men tell no lies.”)
Customizable Talking Doll

- Imagine a customizable doll instead.
- When first turned on, parents put in five phrases.
- After that, each time activates doll, it randomly says one of the phrases.

- How would you program this?
 - For simplicity, let’s just use strings.