CPSC 304 Winter2, 2006-2007

Tutorial 3-BCNF \& 3NF
Partial Solutions

Feb.1, 2007

A1

(1) a. 3 candidate keys for R : $\quad(A, B),(B, C),(B, D)$
b. R is in $3 N F$, but not in BCNF.
(2) a. 4 candidate keys for S: A, B, C, D
b. S is in BCNF
(3) i. B is the candidate key and R is not in 3NF
ii. $\quad(A, B, C),(B, C, D)$ are candidate keys and R is in $3 N F$, but not in BCNF
iii. $\quad(A, B)$ is the key and R is not in $3 N F$

1) $a 1, a 2$-> $a 3, a 4, a 5$
a3, a4 -> a1, a2, a5
2) Yes, $r 1$ is in BCNF because both $\{a 1, a 2\}$ and $\{a 3, a 4\}$ are the only non-trivial FDs, and both of them are superkeys.
3) Yes, $r 1$ is in $3 N F$ because if a relation is in BCNF, it is automatically in $3 N F$.

A3

(a) Minimum cover: $A_{1} \rightarrow A_{3}, A_{3} \rightarrow A_{4}, A_{3} \rightarrow A_{6}, A_{3} A_{5} \rightarrow A_{1}, A_{3} A_{5} \rightarrow A_{2}, A_{5} A_{6} \rightarrow A_{3}$.
(b) Only one: $A_{3} A_{5}$. Every candidate key must contain $A_{3} A_{5}$ (which don't appear in RHS of FDs), and $A_{3} A_{5}$ is a key.
(c) FD1, FD2 and FD4 violate BCNF.

- Start decomposing using FD4. We obtain R1 = $\left(A_{1} A_{2}, \mathrm{FD} 4\right)$, and $\mathrm{R} 2=\left(A_{1} A_{3} A_{4} A_{5} A_{6},\{\mathrm{FD} 1, \mathrm{FD} 2, \mathrm{FD} 3\}\right) . \mathrm{R} 1$ is in BCNF, and R 2 is not in BCNF.
- For R2, FD1 and FD2 violate BCNF. Continue decomposing R2, using FD2. We obtain R3 = $\left(A_{1} A_{5}, \mathrm{FD} 2\right)$ and $\mathrm{R} 4=\left(A_{3} A_{4} A_{5} A_{6},\{\mathrm{FD} 1, \mathrm{FD} 3\}\right.$. R 3 is in BCNF, and R 4 is not in BCNF.
- For R4, FD1 violates BCNF. Continue decomposing R4, using FD1. We obtain $\mathrm{R} 5=\left(A_{3} A_{6}, \mathrm{FD} 1\right)$, and R6 $=\left(A_{3} A_{4} A_{5}, \mathrm{FD} 3\right)$. Both R5 and R6 are in BCNF.

Thus, we obtained a dependency preserving BCNF decomposition because FD1 - FD4 have all of their attributes appearing in one of the relations ($R 1-R 6$).

A4

1) I will focus only on the "Orders" relation and leave the other two relations for your practice.

- order_no -> isbn, cid, card_no, qty, order_date, ship_date
- cid -> card_no
- isbn, cid, order_date -> order_no (let us assume that a customer only orders the same book at most once on any particular date)

2) Normalization for "Orders" relation. Again, I will leave the other two relations for your practice.

Orders (order_no, isbn, cid, qty, order_date, ship_date)
Card (cid, card_no)

It is easy to verify that Card is in BCNF. "Orders" is in BCNF because the two functional determinants are both candidate keys.

