The University of British Columbia

Computer Science 304

Midterm Examination

January 30, 2012

Time: 50 minutes
Total marks: 40

Instructor: Rachel Pottinger

Name \qquad Student No (PRINT) (Last) (First)

Signature \qquad

This examination has $\mathbf{3}$ double-sided pages.

Check that you have a complete paper.
This is a closed book, closed notes exam. No books or other material may be used.

Answer all the questions on this paper.
Give very short but precise answers.
State any assumptions you make
Work fast and do the easy questions first. Leave some time to review your exam at the end.

Good Luck

Question	Mark	Out of
1		10
2		8
3		4
4		10
5		40
Total		

1. $\{10$ marks $\}$

a.	All constraints on the following ER diagram can be translated into the relational model with what we know now	TRUE

2. $\{8$ marks $\}$ Consider the schema $\mathrm{S}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})$ together with the functional dependencies:
```
ABC}->\textrm{E
ABC}->\textrm{D
D}->\textrm{A
A}->\textrm{E
E}->\textrm{F
```

Is S in BCNF? Why or why not? If not, decompose into BCNF using the method shown in class and in the book; circle the answers in your final decomposition. If so, explain why it is in BCNF.
3. $\{4$ marks $\}$ Consider $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ with functional dependencies $\mathrm{C} \rightarrow \mathrm{D}$
$\mathrm{DE} \rightarrow \mathrm{B}$
$\mathrm{AB} \rightarrow \mathrm{C}$
is R in 3 NF ? Why or why not? (Note: I have NOT asked you to decompose if R is not in 3 NF .)
4. $\{8$ marks $\}$

For each part below, annotate the related diagram so that it provides the additional requested functionality - do not add any additional constraints beyond what is required. If nothing needs to be done to the diagram or it is impossible to add that constraint in our version of ER diagram, state why. State any assumptions.
a. Each entity in A participates in exactly one R relationship

b. Each entity in C can participate in many S relationships

c. The key of E is e1 and e2

d. The key of U is u 1

5. $\{10$ marks $\}$

Suppose that we have a ternary relationship S between entity sets D, E, and F such that D has a key constraint and E has a key constraint and total participation; these are the only constraints. D has attributes d 1 and d 2 , with d 1 being the key; E has attributes e1 and e2, with e1 being the key; and F has attributes fl and f 2 , with fl being the key. S has no descriptive attributes. All attributes are integers. Write SQL statements that create tables corresponding to this information so as to capture as many of the constraints as possible. If you cannot capture some constraint, explain why.

