Preconditioned GMRES Revisited

Roland Herzog

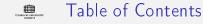
Kirk Soodhalter

TECHNISCHE UNIVERSITÄT CHEMNITZ

RICAM Linz

Preconditioning Conference 2017 Vancouver

August 01, 2017



GMRES from First Principles (and a Hilbert Space Perspective)

Quoting Saad and Schultz (1986):

We present an iterative method for solving linear systems, which has the property of minimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an ℓ_2 -orthogonal basis of Krylov subspaces.

Quoting Wikipedia:

In mathematics, the generalized minimal residual method (usually abbreviated GMRES) is an iterative method for the numerical solution of a nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

Some References (Very Incomplete)

contributing to the understanding of GMRES in various situations:

- Starke (1997)
- Chan, Chow, Saad and Yeung (1998)
- Chen, Kincaid and Young (1999)
- Klawonn (1998)
- Ernst (2000); Eiermann and Ernst (2001)
- Sarkis and Szyld (2007)
- Pestana and Wathen (2013)

Some References (Very Incomplete)

contributing to the understanding of GMRES in various situations:

- Starke (1997)
- Chan, Chow, Saad and Yeung (1998)
- Chen, Kincaid and Young (1999)
- Klawonn (1998)
- Ernst (2000); Eiermann and Ernst (2001)
- Sarkis and Szyld (2007)
- Pestana and Wathen (2013)

Some References (Very Incomplete)

contributing to the understanding of GMRES in various situations:

- Starke (1997)
- Chan, Chow, Saad and Yeung (1998)
- Chen, Kincaid and Young (1999)
- Klawonn (1998)
- Ernst (2000); Eiermann and Ernst (2001)
- Sarkis and Szyld (2007)
- Pestana and Wathen (2013)
- and in Hilbert space (but with $A \in \mathcal{L}(X)$) in particular:
 - Campbell, Ipsen, Kelley and Meyer (1996)
 - Moret (1997)
 - Calvetti, Lewis and Reichel (2002)
 - Gasparo, Papini and Pasquali (2008)

5

- re-derive GMRES with natural algorithmic ingredients
- draw inspirations from a Hilbert space setting (PDE problems)
- obtain 'canonical GMRES'
- locate GMRES variants in the literature in this framework
- to sort out my own personal lack of knowledge/confusion about these variants
- Hilbert space analysis matters
 - $(\rightarrow$ recall talk by W. Zulehner for instance)
- even though in this talk everything is finite dimensional

Ax = b in \mathbb{R}^n $A \in \mathbb{R}^{n \times n}$ (non-singular) $egin{aligned} Ax &= b ext{ in } X^* \ A \in \mathcal{L}(X,X^*) ext{ (non-singular)} \ X ext{ Hilbert space} \ ext{inner product } (\cdot,\cdot)_M \end{aligned}$

 $Ax = b \text{ in } \mathbb{R}^{n}$ $A \in \mathbb{R}^{n \times n} \text{ (non-singular)}$ $\mathbb{R}^{n} \text{ also a Hilbert space}$ $\text{inner product } (\cdot, \cdot)_{M}$ $(u, v)_{M} = u^{\top} M v$

A x = b in X^* $A \in \mathcal{L}(X, X^*)$ (non-singular) X Hilbert space inner product $(\cdot, \cdot)_M$

 $Ax = b \text{ in } \mathbb{R}^{n}$ $A \in \mathbb{R}^{n \times n} \text{ (non-singular)}$ $\mathbb{R}^{n} \text{ also a Hilbert space}$ $\text{inner product } (\cdot, \cdot)_{M}$ $(u, v)_{M} = u^{\top} M v$

$$\begin{array}{c} (X; \|\cdot\|_M) \xleftarrow{M^{-1}}{M} (X^*; \|\cdot\|_{M^{-1}}) \\ M \in \mathcal{L}(X, X^*) \text{ Riesz isomorphism} \end{array}$$

$$A x = b$$
 in \mathbb{R}^n
 $A \in \mathbb{R}^{n \times n}$ (non-singular)
 \mathbb{R}^n also a Hilbert space
inner product $(\cdot, \cdot)_M$
 $(u, v)_M = u^\top M v$

$$(\mathbb{R}^{n}; \|\cdot\|_{M}) \xleftarrow{M^{-1}}_{M} (\mathbb{R}^{n}; \|\cdot\|_{M^{-1}}) \quad (X; \|\cdot\|_{M}) \xleftarrow{M^{-1}}_{M} (X^{*}; \|\cdot\|_{M^{-1}})$$
$$M \in \mathcal{L}(X, X^{*}) \text{ Riesz isomorphism}$$

$$A x = b \text{ in } \mathbb{R}^{n}$$

$$A \in \mathbb{R}^{n \times n} \text{ (non-singular)}$$

$$\mathbb{R}^{n} \text{ also a Hilbert space}$$

$$\text{inner product } (\cdot, \cdot)_{M}$$

$$(u, v)_{M} = u^{\top} M v$$

$$\left(\mathbb{R}^{n}; \|\cdot\|_{M}\right) \xrightarrow{M^{-1}} \left(\mathbb{R}^{n}; \|\cdot\|_{M^{-1}}\right) \quad \left(X; \|\cdot\|_{M}\right) \xrightarrow{M^{-1}} \left(X^{*}; \|\cdot\|_{M^{-1}}\right)$$

The inner product
$$(\cdot, \cdot)_M$$
 in X ,
the inner product $(\cdot, \cdot)_{M^{-1}}$ in X^* ,
the Riesz map $M \in \mathcal{L}(X, X^*)$,
and its inverse $M^{-1} \in \mathcal{L}(X^*, X)$

Problem Setting

m

(primal) quantities in X — iterates, errors (dual) quantities in X^* — rhs, residuals

 $A = b \text{ in } \mathbb{R}^{n}$ $A \in \mathbb{R}^{n \times n} \text{ (non-singular)}$ $\mathbb{R}^{n} \text{ also a Hilbert space}$ $\text{inner product } (\cdot, \cdot)_{M}$ $(u, v)_{M} = u^{\top} M v$

$$\left(\mathbb{R}^{n}; \|\cdot\|_{M}\right) \xrightarrow{M^{-1}} \left(\mathbb{R}^{n}; \|\cdot\|_{M^{-1}}\right) \quad \left(X; \|\cdot\|_{M}\right) \xrightarrow{M^{-1}} \left(X^{*}; \|\cdot\|_{M^{-1}}\right)$$

The inner product
$$(\cdot, \cdot)_M$$
 in X ,
the inner product $(\cdot, \cdot)_{M^{-1}}$ in X^* ,
the Riesz map $M \in \mathcal{L}(X, X^*)$,
and its inverse $M^{-1} \in \mathcal{L}(X^*, X)$

$$\begin{bmatrix} A & B^* \\ B & 0 \end{bmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ 0 \end{pmatrix} \in Q^*$$

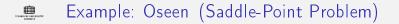
 $V = H_0^1(\Omega; \mathbb{R}^3), \ Q = L_0^2(\Omega)$

$$A \boldsymbol{u} = \boldsymbol{a}(\boldsymbol{u}, \cdot) \in V^*$$

$$B \mathbf{u} = b(\mathbf{u}, \cdot) \in Q^*$$
$$B^* \mathbf{p} = b(\cdot, \mathbf{p}) \in V^*$$

$$\underbrace{\int_{\Omega} \mu \, \nabla \boldsymbol{u} : \nabla \boldsymbol{v} \, \mathrm{d} \boldsymbol{x}}_{\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v})}$$

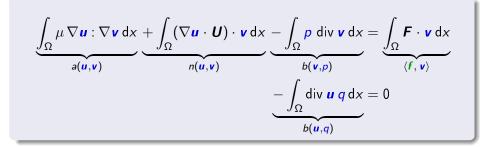
$$\underbrace{-\int_{\Omega} p \operatorname{div} \mathbf{v} dx}_{b(\mathbf{v},p)} = \underbrace{\int_{\Omega} \mathbf{F} \cdot \mathbf{v} dx}_{\langle f, \mathbf{v} \rangle}$$
$$\underbrace{-\int_{\Omega} \operatorname{div} \mathbf{u} q dx}_{b(\mathbf{u},q)} = 0$$

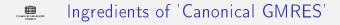


$$\begin{bmatrix} A+N & B^* \\ B & 0 \end{bmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{p} \end{pmatrix} = \begin{pmatrix} \boldsymbol{f} \\ 0 \end{pmatrix} \in Q^*$$

 $V = H_0^1(\Omega; \mathbb{R}^3), \ Q = L_0^2(\Omega)$

$$A \mathbf{u} = \mathbf{a}(\mathbf{u}, \cdot) \in V^*$$
$$N \mathbf{u} = n(\mathbf{u}, \cdot) \in V^*$$
$$B \mathbf{u} = b(\mathbf{u}, \cdot) \in Q^*$$
$$B^* p = b(\cdot, p) \in V^*$$

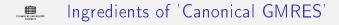




Krylov subspaces

Due to $A \in \mathcal{L}(X, X^*)$ we cannot form

$$\mathcal{K}_k(A ; r) := \operatorname{span} \{r, Ar , A^2r , \ldots, A^{k-1}r \}$$



Krylov subspaces

Due to $A \in \mathcal{L}(X, X^*)$ we have to use

$$K_k(AP^{-1};r) := \operatorname{span}\{r, AP^{-1}r, (AP^{-1})^2r, \ldots, (AP^{-1})^{k-1}r\} \subset X^*$$

where $P \in \mathcal{L}(X, X^*)$ non-singular is a 'preconditioner' (required!).

Krylov subspaces

Due to $A \in \mathcal{L}(X, X^*)$ we have to use

$$K_k(AP^{-1};r) := \operatorname{span}\{r, AP^{-1}r, (AP^{-1})^2r, \ldots, (AP^{-1})^{k-1}r\} \subset X^*$$

where $P \in \mathcal{L}(X, X^*)$ non-singular is a 'preconditioner' (required!).

Inner product (·, ·)_W in X for Arnoldi Since K_k(AP⁻¹; r) ⊂ X* holds, orthonormality is defined w.r.t. W⁻¹.

Krylov subspaces

Due to $A \in \mathcal{L}(X, X^*)$ we have to use

 $K_k(AP^{-1}; r) := \operatorname{span}\{r, AP^{-1}r, (AP^{-1})^2r, \ldots, (AP^{-1})^{k-1}r\} \subset X^*$

where $P \in \mathcal{L}(X, X^*)$ non-singular is a 'preconditioner' (required!).

- Inner product (·, ·)_W in X for Arnoldi
 Since K_k(AP⁻¹; r) ⊂ X* holds, orthonormality is defined w.r.t. W⁻¹.
- Inner product (·, ·)_M in X for residual minimization Since r ∈ X* holds, $||r||_{M^{-1}}$ will be the quantity minimized.

The Arnoldi process (here displayed with modified GS) generates an orthonormal basis of the Krylov subspace $\mathcal{K}_k(A ; r_0)$: **Input:** Matrix A (or matrix-vector products), initial vector r_0 ONB v_1, v_2, \ldots with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(A ; r_0)$ Output: $v_1 := \frac{r_0}{\langle r_0, r_0 \rangle^{1/2}}$ 1: Set 2: for k = 1, 2, ... do 3: Set $v_{k+1} := A v_k$ // new Krylov vector for j = 1, 2, ..., k do 4: Set $h_{i,k} := (v_{k+1}, v_i)$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: $h_{k+1,k} := (v_{k+1}, v_{k+1})^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ Set 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ $v_1 := \frac{r_0}{\langle r_0, r_0 \rangle^{1/2}}$ 1: Set 2: for k = 1, 2, ... do Set $v_{k+1} := A v_k$ 3. // new Krylov vector for j = 1, 2, ..., k do 4: Set $h_{i,k} := (v_{k+1}, v_i)$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: $h_{k+1,k} := (v_{k+1}, v_{k+1})^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ Set 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1-k}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do // new Krylov vector 3: Set $v_{k+1} := A v_k$ for i = 1, 2, ..., k do 4: Set $h_{i,k} := (v_{k+1}, v_i)$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: $h_{k+1,k} := (v_{k+1}, v_{k+1})^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ Set 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do 3: Set $v_{k+1} := AP^{-1}v_k$ // new Krylov vector for j = 1, 2, ..., k do 4: Set $h_{i,k} := (v_{k+1}, v_i)$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: $h_{k+1,k} := (v_{k+1}, v_{k+1})^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ Set 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do 3: Set $v_{k+1} := AP^{-1}v_k$ // new Krylov vector for i = 1, 2, ..., k do 4: Set $h_{i,k} := \langle v_{k+1}, z_i \rangle$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: $h_{k+1,k} := (v_{k+1}, v_{k+1})^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ Set 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do 3: Set $v_{k+1} := AP^{-1}v_k$ // new Krylov vector for i = 1, 2, ..., k do 4: Set $h_{i,k} := \langle v_{k+1}, z_i \rangle$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: $h_{k+1,k} := (v_{k+1}, v_{k+1})^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ Set 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do Set $v_{k+1} := AP^{-1}v_k$ 3: // new Krylov vector for j = 1, 2, ..., k do 4: Set $h_{i,k} := \langle v_{k+1}, z_i \rangle$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: Set $z_{k+1} := W^{-1}v_{k+1}$ and $h_{k+1,k} := \langle v_{k+1}, z_{k+1} \rangle^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ 9: 10: end for

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do Set $v_{k+1} := AP^{-1}v_k$ 3: // new Krylov vector for j = 1, 2, ..., k do 4: Set $h_{i,k} := \langle v_{k+1}, z_i \rangle$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ end for 7: Set $z_{k+1} := W^{-1}v_{k+1}$ and $h_{k+1,k} := \langle v_{k+1}, z_{k+1} \rangle^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ and $z_{k+1} := \frac{z_{k+1}}{h_{k+1,k}}$ 9: 10: end for

$$h_{2,1} \quad \begin{bmatrix} | \\ v_2 \\ | \end{bmatrix} = AP^{-1} \begin{bmatrix} | \\ v_1 \\ | \end{bmatrix} - \begin{bmatrix} | \\ v_1 \\ | \end{bmatrix} h_{1,1}$$

$$H = \begin{bmatrix} (v_1, AP^{-1}v_1)_{W^{-1}} & (v_1, AP^{-1}v_2)_{W^{-1}} & \cdots \\ (v_2, AP^{-1}v_1)_{W^{-1}} & (v_2, AP^{-1}v_2)_{W^{-1}} & \cdots \\ 0 & (v_3, AP^{-1}v_2)_{W^{-1}} & \cdots \\ \vdots & 0 \\ \vdots & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{(k+1) \times k}.$$

$$h_{3,2} \quad \begin{bmatrix} | & | & | \\ 0 & v_3 & | \\ | & | & | \end{bmatrix} = AP^{-1} \begin{bmatrix} | & | & | \\ v_1 & v_2 & | \\ | & | & | \end{bmatrix} - \begin{bmatrix} | & | & | \\ v_1 & v_2 & | \\ | & | & | \end{bmatrix} H_{2,2}$$

$$H = \begin{bmatrix} (v_1, AP^{-1}v_1)_{W^{-1}} & (v_1, AP^{-1}v_2)_{W^{-1}} & \cdots \\ (v_2, AP^{-1}v_1)_{W^{-1}} & (v_2, AP^{-1}v_2)_{W^{-1}} & \cdots \\ 0 & (v_3, AP^{-1}v_2)_{W^{-1}} & \cdots \\ \vdots & 0 \\ \vdots & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{(k+1) \times k}.$$

$$h_{k+1,k} \begin{bmatrix} | & & | \\ 0 & \cdots & v_{k+1} \\ | & & | \end{bmatrix} = AP^{-1} \begin{bmatrix} | & & | \\ v_1 & \cdots & v_k \\ | & & | \end{bmatrix} - \begin{bmatrix} | & & | \\ v_1 & \cdots & v_k \\ | & & | \end{bmatrix} H_{k,k}$$

$$H = \begin{bmatrix} (v_1, AP^{-1}v_1)_{W^{-1}} & (v_1, AP^{-1}v_2)_{W^{-1}} & \cdots \\ (v_2, AP^{-1}v_1)_{W^{-1}} & (v_2, AP^{-1}v_2)_{W^{-1}} & \cdots \\ 0 & (v_3, AP^{-1}v_2)_{W^{-1}} & \cdots \\ \vdots & 0 \\ \vdots & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{(k+1) \times k}.$$

$$h_{k+1,k} \begin{bmatrix} | & | \\ 0 & \cdots & v_{k+1} \\ | & | \end{bmatrix} = AP^{-1} \begin{bmatrix} | & | \\ v_1 & \cdots & v_k \\ | & | \end{bmatrix} - \begin{bmatrix} | & | \\ v_1 & \cdots & v_k \\ | & | \end{bmatrix} H_{k,k}$$

or $V_{k+1}H = AP^{-1}V_k$

$$H = \begin{bmatrix} (v_1, AP^{-1}v_1)_{W^{-1}} & (v_1, AP^{-1}v_2)_{W^{-1}} & \cdots \\ (v_2, AP^{-1}v_1)_{W^{-1}} & (v_2, AP^{-1}v_2)_{W^{-1}} & \cdots \\ 0 & (v_3, AP^{-1}v_2)_{W^{-1}} & \cdots \\ \vdots & 0 & \vdots & \vdots & \end{bmatrix} \in \mathbb{R}^{(k+1) \times k}.$$

By design,
$$x_k - x_0 \in P^{-1} \mathcal{K}_k(AP^{-1}; r_0)$$

and therefore $r_k - r_0 \in AP^{-1} \mathcal{K}_k(AP^{-1}; r_0) = \operatorname{range} AP^{-1} V_k$.

Hence

$$\begin{aligned} \|r_{k}\|_{M^{-1}}^{2} &= \left\|r_{0} - AP^{-1}V_{k}\vec{y}\right\|_{M^{-1}}^{2} & \vec{y} \in \mathbb{R}^{k} \\ &= \left\|r_{0} - V_{k+1}H\vec{y}\right\|_{M^{-1}}^{2} & \text{due to } AP^{-1}V_{k} = V_{k+1}H \\ &= \left\|\|r_{0}\|_{W^{-1}}v_{1} - V_{k+1}H\vec{y}\right\|_{M^{-1}}^{2} & \text{since } v_{1} = r_{0}/\|r_{0}\|_{W^{-1}} \\ &= \left\|V_{k+1}\left(\|r_{0}\|_{W^{-1}}\vec{e_{1}} - H\vec{y}\right)\right\|_{M^{-1}}^{2} \end{aligned}$$

By design,
$$x_k - x_0 \in P^{-1}K_k(AP^{-1}; r_0)$$

and therefore $r_k - r_0 \in AP^{-1}K_k(AP^{-1}; r_0) = \operatorname{range} AP^{-1}V_k$.

Hence

$$\begin{aligned} \|r_k\|_{M^{-1}}^2 &= \|r_0 - AP^{-1}V_k \vec{y}\|_{M^{-1}}^2 & \vec{y} \in \mathbb{R}^k \\ &= \|r_0 - V_{k+1}H \vec{y}\|_{M^{-1}}^2 & \text{due to } AP^{-1}V_k = V_{k+1}H \\ &= \|\|r_0\|_{W^{-1}}v_1 - V_{k+1}H \vec{y}\|_{M^{-1}}^2 & \text{since } v_1 = r_0/\|r_0\|_{W^{-1}} \\ &= \|V_{k+1}(\|r_0\|_{W^{-1}}\vec{e_1} - H \vec{y})\|_{M^{-1}}^2 \end{aligned}$$

The Arnoldi-inner product W^{-1} is mathematically irrelevant and can be chosen for algorithmic convenience. Here we are led to choose W := M, which from now on we assume.

By design,
$$x_k - x_0 \in P^{-1}K_k(AP^{-1}; r_0)$$

and therefore $r_k - r_0 \in AP^{-1}K_k(AP^{-1}; r_0) =$ range $AP^{-1}V_k$.

Hence

$$\begin{aligned} \|r_{k}\|_{M^{-1}}^{2} &= \|r_{0} - AP^{-1}V_{k}\vec{y}\|_{M^{-1}}^{2} & \vec{y} \in \mathbb{R}^{k} \\ &= \|r_{0} - V_{k+1}H\vec{y}\|_{M^{-1}}^{2} & \text{due to } AP^{-1}V_{k} = V_{k+1}H \\ &= \|\|r_{0}\|_{M^{-1}} v_{1} - V_{k+1}H\vec{y}\|_{M^{-1}}^{2} & \text{since } v_{1} = r_{0}/\|r_{0}\|_{M^{-1}} \\ &= \|V_{k+1}(\|r_{0}\|_{M^{-1}}\vec{e_{1}} - H\vec{y})\|_{M^{-1}}^{2} \\ &= \|\|r_{0}\|_{M^{-1}}\vec{e_{1}} - H\vec{y}\|_{2}^{2} & \text{by } M^{-1}\text{-orthonormality.} \end{aligned}$$

The Arnoldi-inner product W^{-1} is mathematically irrelevant and can be chosen for algorithmic convenience. Here we are led to choose W := M, which from now on we assume.

Short recurrences occur when

$$H_{k,k} = \begin{bmatrix} (v_1, AP^{-1}v_1)_{M^{-1}} & (v_1, AP^{-1}v_2)_{M^{-1}} & \cdots \\ (v_2, AP^{-1}v_1)_{M^{-1}} & (v_2, AP^{-1}v_2)_{M^{-1}} & \cdots \\ 0 & (v_3, AP^{-1}v_2)_{M^{-1}} & \cdots \\ \vdots & 0 & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{k \times k}$$

is symmetric, i.e., when

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

This means that $AP^{-1} \in \mathcal{L}(X^*)$ is $(X^*, \|\cdot\|_{M^{-1}})$ -Hilbert space self-adjoint.

Short recurrences occur when

$$H_{k,k} = \begin{bmatrix} (v_1, AP^{-1}v_1)_{M^{-1}} & (v_1, AP^{-1}v_2)_{M^{-1}} & \cdots \\ (v_2, AP^{-1}v_1)_{M^{-1}} & (v_2, AP^{-1}v_2)_{M^{-1}} & \cdots \\ 0 & (v_3, AP^{-1}v_2)_{M^{-1}} & \cdots \\ \vdots & 0 & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{k \times k}$$

is symmetric, i.e., when

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

This means that $AP^{-1} \in \mathcal{L}(X^*)$ is $(X^*, \|\cdot\|_{M^{-1}})$ -Hilbert space self-adjoint. Should we call the method MINRES then?

(SRC) and the Normal Equations

We are going to refer to GMRES as just described by GMRES $(A, P^{-1}, M^{-1}, b, x_0)$.

Recall

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

Given A and M, (SRC) always holds for the choice $P^{-1} := H^{-1}A^{\top}M^{-1}$, where $H = H^{\top}$ is non-singular.

(SRC) and the Normal Equations

We are going to refer to GMRES as just described by

GMRES
$$(A, P^{-1}, M^{-1}, b, x_0)$$
.

Recall

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

Given A and M, (SRC) always holds for the choice $P^{-1} := H^{-1}A^{\top}M^{-1}$, where $H = H^{\top}$ is non-singular. This is mathematically equivalent to running GMRES on the normal equations (modified problem)

$$A^{\top}M^{-1}Ax = A^{\top}M^{-1}b$$

with preconditioner *H*. In other words,

$$\mathsf{GMRES}(A, \ \mathbf{H}^{-1}A^{\top}M^{-1}, \ \mathbf{M}^{-1}, \ b, \ x_0)$$

$$\Leftrightarrow \quad \mathsf{GMRES}(A^{\top}M^{-1}A, \ \mathbf{H}^{-1}, \ A^{-1}MA^{-\top}, \ A^{\top}M^{-1}b, \ x_0)$$

(SRC) and the Normal Equations

We are going to refer to GMRES as just described by

$$GMRES(A, P^{-1}, M^{-1}, b, x_0).$$

Recall

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

Given A and M, (SRC) always holds for the choice $P^{-1} := H^{-1}A^{\top}M^{-1}$, where $H = H^{\top}$ is spd. This is mathematically equivalent to running GMRES on the normal equations (modified problem)

$$A^{\top}M^{-1}Ax = A^{\top}M^{-1}b$$

with preconditioner *H*. In other words,

$$\mathsf{GMRES}(A, \ \mathbf{H}^{-1}A^{\top}M^{-1}, \ \mathbf{M}^{-1}, \ b, \ x_0) \\ \Leftrightarrow \quad \mathsf{GMRES}(A^{\top}M^{-1}A, \ \mathbf{H}^{-1}, \ A^{-1}MA^{-\top}, \ A^{\top}M^{-1}b, \ x_0) \\ \Leftrightarrow \quad \mathsf{CG}(A^{\top}M^{-1}A, \ \mathbf{H}^{-1}, \ A^{\top}M^{-1}b, \ x_0).$$

In the absence of any particular properties of (A, P, M) we can use the Jordan decomposition (with $U, J \in \mathbb{C}^{n \times n}$)

$$M^{-1/2}AP^{-1}M^{1/2} = U J U^{-1}.$$

Then for any polynomial p,

$$p(AP^{-1}) = M^{1/2} U p(J) U^{-1} M^{-1/2}$$

holds and thus

$$\begin{aligned} \left\| p(AP^{-1}) r_0 \right\|_{M^{-1}}^2 &= \left\| U p(J) U^{-1} M^{-1/2} r_0 \right\|_2^2 \\ &\leq \sigma_{\max}^2 \left(U p(J) U^{-1} \right) \| r_0 \|_{M^{-1}}^2 \\ &= \lambda_{\max} \left(p(AP^{-1})^\top M^{-1} p(AP^{-1}); M^{-1} \right) \| r_0 \|_{M^{-1}}^2. \end{aligned}$$

In the absence of any particular properties of (A, P, M) we can use the Jordan decomposition (with $U, J \in \mathbb{C}^{n \times n}$)

$$M^{-1/2}AP^{-1}M^{1/2} = U J U^{-1}.$$

Then for any polynomial p,

$$p(AP^{-1}) = M^{1/2} U p(J) U^{-1} M^{-1/2}$$

holds and thus

$$\begin{split} \left\| p(AP^{-1}) r_{0} \right\|_{M^{-1}}^{2} &= \left\| U p(J) U^{-1} M^{-1/2} r_{0} \right\|_{2}^{2} \\ &\leq \sigma_{\max}^{2} \left(U p(J) U^{-1} \right) \| r_{0} \|_{M^{-1}}^{2} \\ &= \lambda_{\max} \left(p(AP^{-1})^{\top} M^{-1} p(AP^{-1}); M^{-1} \right) \| r_{0} \|_{M^{-1}}^{2}. \end{split}$$

Alternatively, using the Schur decomposition $M^{-1/2}AP^{-1}M^{1/2} = URU^H$ (with $U, R \in \mathbb{C}^{n \times n}$) we arrive at

$$\begin{aligned} \left\| p(AP^{-1}) \, r_0 \right\|_{M^{-1}}^2 &\leq \sigma_{\max}^2 (p(R)) \, \|r_0\|_{M^{-1}}^2 \\ &= \lambda_{\max} \big(p(AP^{-1})^\top M^{-1} p(AP^{-1}); M^{-1} \big) \, \|r_0\|_{M^{-1}}^2. \end{aligned}$$

In the absence of any particular properties of (A, P, M) we can use the Jordan decomposition (with $U, J \in \mathbb{C}^{n \times n}$)

$$M^{-1/2}AP^{-1}M^{1/2} = U J U^{-1}.$$

Then for any polynomial p,

$$p(AP^{-1}) = M^{1/2} U p(J) U^{-1} M^{-1/2}$$

holds and thus

$$\begin{aligned} \left\| p(AP^{-1}) r_{0} \right\|_{M^{-1}}^{2} &= \left\| U p(J) U^{-1} M^{-1/2} r_{0} \right\|_{2}^{2} \\ &\leq \sigma_{\max}^{2} \left(U p(J) U^{-1} \right) \| r_{0} \|_{M^{-1}}^{2} \\ &= \lambda_{\max} \left(p(AP^{-1})^{\top} M^{-1} p(AP^{-1}); M^{-1} \right) \| r_{0} \|_{M^{-1}}^{2}. \end{aligned}$$

This convergence estimate depends on the complete triplet (A, P, M).

For $AP^{-1} \in \mathcal{L}(X^*)$, $(AP^{-1})^\top \in \mathcal{L}(X)$ is its adjoint and $(AP^{-1})^\circ = M (AP^{-1})^\top M^{-1}$

is its Hilbert space adjoint w.r.t. $(X^*, \|\cdot\|_{M^{-1}})$.

For $AP^{-1} \in \mathcal{L}(X^*)$, $(AP^{-1})^ op \in \mathcal{L}(X)$ is its adjoint and $(AP^{-1})^\circ = M \, (AP^{-1})^ op M^{-1}$

is its Hilbert space adjoint w.r.t. $(X^*, \|\cdot\|_{M^{-1}})$.

We have already encountered the (Hilbert space) self-adjointness condition $AP^{-1} = (AP^{-1})^{\circ}$, responsible for short recursions:

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

For $AP^{-1}\in \mathcal{L}(X^*)$, $(AP^{-1})^{ op}\in \mathcal{L}(X)$ is its adjoint and $(AP^{-1})^\circ=M\,(AP^{-1})^{ op}M^{-1}$

is its Hilbert space adjoint w.r.t. $(X^*, \|\cdot\|_{M^{-1}})$.

We have already encountered the (Hilbert space) self-adjointness condition $AP^{-1} = (AP^{-1})^{\circ}$, responsible for short recursions:

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}.$$
 (SRC)

The normality condition $AP^{-1}(AP^{-1})^{\circ} = (AP^{-1})^{\circ}AP^{-1}$ reads

$$AP^{-1}M(AP^{-1})^{\top}M^{-1} = M(AP^{-1})^{\top}M^{-1}AP^{-1}$$
(NC)

or $B B^{\top} = B^{\top}B$ with $B = M^{-1/2}AP^{-1}M^{1/2}$.

Convergence Analysis Under Normality

Suppose that (NC) holds. Then with $U, D \in \mathbb{C}^{n \times n}$ unitary/diagonal,

$$B = M^{-1/2} A P^{-1} M^{1/2} = U D U^{H}$$

and for any polynomial p,

$$p(AP^{-1}) = M^{1/2} U p(D) U^H M^{-1/2}$$

holds and thus

$$\begin{aligned} \left\| p(AP^{-1}) r_0 \right\|_{M^{-1}}^2 &= \left\| U p(D) U^H M^{-1/2} r_0 \right\|_2^2 \\ &\leq \sigma_{\max}^2 (U p(D) U^H) \left\| r_0 \right\|_{M^{-1}}^2 \\ &= \left[\max_j |p(\lambda_j)| \right]^2 \left\| r_0 \right\|_{M^{-1}}^2, \end{aligned}$$

where λ_j are the (complex; real under the (SRC)) eigenvalues of AP^{-1} .

Convergence Analysis Under Normality

Suppose that (NC) holds. Then with $U, D \in \mathbb{C}^{n \times n}$ unitary/diagonal,

$$B = M^{-1/2} A P^{-1} M^{1/2} = U D U^{H}$$

and for any polynomial p,

$$p(AP^{-1}) = M^{1/2} U p(D) U^H M^{-1/2}$$

holds and thus

$$\begin{aligned} \left\| p(AP^{-1}) r_0 \right\|_{M^{-1}}^2 &= \left\| U p(D) U^H M^{-1/2} r_0 \right\|_2^2 \\ &\leq \sigma_{\max}^2 (U p(D) U^H) \left\| r_0 \right\|_{M^{-1}}^2 \\ &= \left[\max_j |p(\lambda_j)| \right]^2 \left\| r_0 \right\|_{M^{-1}}^2, \end{aligned}$$

where λ_j are the (complex; real under the (SRC)) eigenvalues of AP^{-1} .

The resulting convergence estimate depends only on (A, P) and it is independent of the norm M^{-1} we choose for residual minimization.

- Intermediate Summary
 - We have re-derived 'canonical' GMRES from 'first principles' and from a Hilbert space perspective, carefully distinguishing mapping properties and primal and dual quantities.
 - Two choices arise (for the user):
 - preconditioner $P \in \mathcal{L}(X, X^*)$
 - 2 inner product $(\cdot, \cdot)_{M^{-1}}$ in X^* for residual minimization
 - **(3)** inner product $(\cdot, \cdot)_{W^{-1}}$ in X^* for Arnoldi (non-essential)

For the latter we fix wlog W := M for algorithmic convenience.

- One application of A, P^{-1} and M^{-1} each is required per iteration.
- (SRC) \Rightarrow (NC) \Rightarrow convergence est. in terms of spectrum of AP^{-1}

- We have re-derived 'canonical' GMRES from 'first principles' and from a Hilbert space perspective, carefully distinguishing mapping properties and primal and dual quantities.
- Two choices arise (for the user):
 - preconditioner $P \in \mathcal{L}(X, X^*)$

Intermediate Summary

- 2 inner product $(\cdot, \cdot)_{M^{-1}}$ in X^* for residual minimization
- **3** inner product $(\cdot, \cdot)_{W^{-1}}$ in X^* for Arnoldi (non-essential)

For the latter we fix wlog W := M for algorithmic convenience.

- One application of A, P^{-1} and M^{-1} each is required per iteration.
- (SRC) \Rightarrow (NC) \Rightarrow convergence est. in terms of spectrum of AP^{-1}
- Not discussed:

- Solution of least-squares problems (by updated QR factorization).
- Under particular choices of (A, P, M) one may take advantage of additional structure to streamline the implementation.
- $[\rightarrow$ see talk by D. Szyld for an example]

m

GMRES from First Principles (and a Hilbert Space Perspective)

2 How does it Compare With...?

Dual vs. Primal Krylov Subspaces

'Canonical GMRES' is working with the (dual, residual-based) Krylov subspaces

$$K_k(AP^{-1}; r_0) \subset X^*$$

generated by $AP^{-1} \in \mathcal{L}(X^*)$. It turned out convenient to fix wlog W := M.

$$K_k(AP^{-1}; r_0) \subset X^*$$

generated by $AP^{-1} \in \mathcal{L}(X^*)$. It turned out convenient to fix wlog W := M.

Equivalently, the algorithm can be written using the (primal) Krylov subspaces (see next two slides)

$$K_k(P^{-1}A;P^{-1}r_0)\subset X.$$

$${\it K}_k(AP^{-1}; r_0) \subset X^*$$

generated by $AP^{-1} \in \mathcal{L}(X^*)$. It turned out convenient to fix wlog W := M.

Equivalently, the algorithm can be written using the (primal) Krylov subspaces (see next two slides)

$$P^{-1}K_k(AP^{-1};r_0) = K_k(P^{-1}A;P^{-1}r_0) \subset X.$$

$$K_k(AP^{-1}; r_0) \subset X^*$$

generated by $AP^{-1} \in \mathcal{L}(X^*)$. It turned out convenient to fix wlog W := M.

Equivalently, the algorithm can be written using the (primal) Krylov subspaces (see next two slides)

$$P^{-1}K_k(AP^{-1};r_0) = K_k(P^{-1}A;P^{-1}r_0) \subset X.$$

'Equivalently' means same iterates x_k , same residuals $r_k = b - Ax_k$, same residual norms $||r_k||_{M^{-1}}$.

$$K_k(AP^{-1}; r_0) \subset X^*$$

generated by $AP^{-1} \in \mathcal{L}(X^*)$. It turned out convenient to fix wlog W := M.

Equivalently, the algorithm can be written using the (primal) Krylov subspaces (see next two slides)

$$P^{-1}K_k(AP^{-1};r_0) = K_k(P^{-1}A;P^{-1}r_0) \subset X.$$

'Equivalently' means same iterates x_k , same residuals $r_k = b - Ax_k$, same residual norms $||r_k||_{M^{-1}}$.

Caution: Do not confuse with 'right/left preconditioning'. There is no such distinction in 'canonical GMRES'.

Using Primal Krylov Subspaces

5

The Arnoldi process generates a basis $\{U_k\}$ of $K_k(P^{-1}A; P^{-1}r_0) \subset X$ with is orthonormal w.r.t. the inner product W (mathematically irrelevant).

In matrix form the Arnoldi process reads

$$P^{-1}AU_k = U_{k+1}H,$$

where H is the upper Hessenberg matrix

$$H = \begin{bmatrix} (v_1, P^{-1}Av_1)_{W} & (v_1, P^{-1}Av_2)_{W} & \cdots \\ (v_2, P^{-1}Av_1)_{W} & (v_2, P^{-1}Av_2)_{W} & \cdots \\ 0 & (v_3, P^{-1}Av_2)_{W} & \cdots \\ \vdots & 0 & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{(k+1) \times k}.$$

The short recursion condition becomes $WP^{-1}A = (WP^{-1}A)^{\top}$, which appears to be different from (SRC) ...

$$\begin{aligned} \|r_{k}\|_{M^{-1}}^{2} &= \|r_{0} - AU_{k}\vec{y}\|_{M^{-1}}^{2} & \vec{y} \in \mathbb{R}^{k} \\ &= \|P^{-1}r_{0} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & P^{-1}AU_{k} = U_{k+1}H \\ &= \|\|P^{-1}r_{0}\|_{W} u_{1} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & u_{1} = P^{-1}r_{0}/\|P^{-1}r_{0}\|_{W} \\ &= \|U_{k+1}(\|P^{-1}r_{0}\|_{W}\vec{e_{1}} - H\vec{y})\|_{P^{\top}M^{-1}P}^{2} \end{aligned}$$

$$\begin{aligned} \|r_{k}\|_{M^{-1}}^{2} &= \|r_{0} - AU_{k}\vec{y}\|_{M^{-1}}^{2} & \vec{y} \in \mathbb{R}^{k} \\ &= \|P^{-1}r_{0} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & P^{-1}AU_{k} = U_{k+1}H \\ &= \|\|P^{-1}r_{0}\|_{W} u_{1} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & u_{1} = P^{-1}r_{0}/\|P^{-1}r_{0}\|_{W} \\ &= \|U_{k+1}(\|P^{-1}r_{0}\|_{W}\vec{e_{1}} - H\vec{y})\|_{P^{\top}M^{-1}P}^{2} \end{aligned}$$

The Arnoldi-inner product W is mathematically irrelevant and can be chosen for algorithmic convenience. Here we are led to choose $W := P^{\top} M^{-1} P \in \mathcal{L}(X, X^*).$

$$\begin{aligned} \|r_{k}\|_{M^{-1}}^{2} &= \|r_{0} - AU_{k}\vec{y}\|_{M^{-1}}^{2} & \vec{y} \in \mathbb{R}^{k} \\ &= \|P^{-1}r_{0} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & P^{-1}AU_{k} = U_{k+1}H \\ &= \|\|P^{-1}r_{0}\|_{W} u_{1} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & u_{1} = P^{-1}r_{0}/\|P^{-1}r_{0}\|_{W} \\ &= \|U_{k+1}(\|P^{-1}r_{0}\|_{W}\vec{e_{1}} - H\vec{y})\|_{P^{\top}M^{-1}P}^{2} & \\ &= \|\|r_{0}\|_{M^{-1}}\vec{e_{1}} - H\vec{y}\|_{2}^{2} & \text{by W-orthonormality.} \end{aligned}$$

The Arnoldi-inner product W is mathematically irrelevant and can be chosen for algorithmic convenience. Here we are led to choose $W := P^{\top} M^{-1} P \in \mathcal{L}(X, X^*).$

$$\begin{aligned} \|r_{k}\|_{M^{-1}}^{2} &= \|r_{0} - AU_{k}\vec{y}\|_{M^{-1}}^{2} & \vec{y} \in \mathbb{R}^{k} \\ &= \|P^{-1}r_{0} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & P^{-1}AU_{k} = U_{k+1}H \\ &= \|\|P^{-1}r_{0}\|_{W} u_{1} - U_{k+1}H\vec{y}\|_{P^{\top}M^{-1}P}^{2} & u_{1} = P^{-1}r_{0}/\|P^{-1}r_{0}\|_{W} \\ &= \|U_{k+1}(\|P^{-1}r_{0}\|_{W}\vec{e_{1}} - H\vec{y})\|_{P^{\top}M^{-1}P}^{2} & \\ &= \|\|r_{0}\|_{M^{-1}}\vec{e_{1}} - H\vec{y}\|_{2}^{2} & \text{by W-orthonormality.} \end{aligned}$$

The Arnoldi-inner product W is mathematically irrelevant and can be chosen for algorithmic convenience. Here we are led to choose $W := P^{\top} M^{-1} P \in \mathcal{L}(X, X^*).$

But then the implementations with primal/dual Krylov subspaces agree: $u_j = P^{-1}v_j$ holds, the Hessenberg matrices are the same, and the short recursion conditions agree. So we continue with the original version, using dual Krylov subspaces.

The residual r := b - Ax belongs to X now.

Krylov subspaces

With $A \in \mathcal{L}(X)$ we can form

$$K_k(A ; r) := \operatorname{span} \{r, Ar , A^2r , \dots, A^{k-1}r \} \subset X$$

The residual r := b - Ax belongs to X now.

Krylov subspaces

With $A \in \mathcal{L}(X)$ we may still want to use a preconditioner

$${\mathcal K}_k(AP^{-1};r):={
m span}ig\{r,\;AP^{-1}r,\;(AP^{-1})^2r,\;\ldots,\;(AP^{-1})^{k-1}rig\}\subset X$$

but $P \in \mathcal{L}(X)$ is optional now.

The residual r := b - Ax belongs to X now.

Krylov subspaces

With $A \in \mathcal{L}(X)$ we may still want to use a preconditioner

$${\mathcal K}_k(AP^{-1};r):={
m span}ig\{r,\;AP^{-1}r,\;(AP^{-1})^2r,\;\ldots,\;(AP^{-1})^{k-1}rig\}\subset X$$

but $P \in \mathcal{L}(X)$ is optional now.

Inner product (·, ·)_W in X for Arnoldi Since K_k(AP⁻¹; r) ⊂ X holds, orthonormality is defined w.r.t. W.

The residual r := b - Ax belongs to X now.

Krylov subspaces

With $A \in \mathcal{L}(X)$ we may still want to use a preconditioner

$$\mathcal{K}_k(AP^{-1}; r) := ext{span}ig\{r, \ AP^{-1}r, \ (AP^{-1})^2r, \ \dots, \ (AP^{-1})^{k-1}rig\} \subset X$$

but $P \in \mathcal{L}(X)$ is optional now.

- **2** Inner product $(\cdot, \cdot)_W$ in X for Arnoldi Since $K_k(AP^{-1}; r) \subset X$ holds, orthonormality is defined w.r.t. W.
- **Inner product** $(\cdot, \cdot)_M$ in X for residual minimization Since $r \in X$ holds, $||r||_M$ will be the quantity minimized.

The Arnoldi Process for $A \in \mathcal{L}(X,X^*)$

The Arnoldi process (here displayed with modified GS) generates a W^{-1} -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W^{-1} (or matrix-vector products), initial vector $r_0 \in X^*$ **Output:** W^{-1} -ONB $v_1, v_2, \ldots \in X^*$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W^{-1}r_0$ and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do Set $v_{k+1} := AP^{-1}v_k$ 3: // new Krylov vector 4: for j = 1, 2, ..., k do Set $h_{i,k} := \langle v_{k+1}, z_i \rangle$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ 7: end for Set $z_{k+1} := W^{-1}v_{k+1}$ and $h_{k+1,k} := \langle v_{k+1}, z_{k+1} \rangle^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1,k}}$ and $z_{k+1} := \frac{z_{k+1}}{h_{k+1,k}}$ 9: 10: end for

Both v_j and $z_j = W^{-1}v_j$ need to be stored due to MGS.

. The Arnoldi Process for $A\in\mathcal{L}(X)$

The Arnoldi process (here displayed with modified GS) generates a W -orthonormal basis of the Krylov subspace $\mathcal{K}_k(AP^{-1}; r_0)$:

Input: Matrix A, P^{-1} , W (or matrix-vector products), initial vector $r_0 \in X$ **Output:** *W*- ONB $v_1, v_2, \ldots \in X$ with span $\{v_1, \ldots, v_k\} = \mathcal{K}_k(AP^{-1}; r_0)$ 1: Set $z_1 := W$ r_0 and $v_1 := \frac{r_0}{\langle r_0, z_1 \rangle^{1/2}}$ and $z_1 := \frac{z_1}{\langle r_0, z_1 \rangle^{1/2}}$ 2: for k = 1, 2, ... do 3: Set $V_{k+1} := AP^{-1}V_k$ // new Krylov vector 4: for i = 1, 2, ..., k do Set $h_{i,k} := \langle \mathbf{v}_{k+1}, z_i \rangle$ // orthogonal. coefficients 5: 6: Set $v_{k+1} := v_{k+1} - h_{i,k} v_i$ 7: end for Set $z_{k+1} := W$ v_{k+1} and $h_{k+1,k} := \langle v_{k+1}, z_{k+1} \rangle^{1/2} // = (v_{k+1}, v_{k+1})^{1/2}$ 8: Set $v_{k+1} := \frac{v_{k+1}}{h_{k+1}}$ and $z_{k+1} := \frac{z_{k+1}}{h_{k+1}}$ 9: 10: end for

Both v_j and $z_j = W v_j$ need to be stored due to MGS.

Residual Minimization for $A \in \mathcal{L}(X, X^*)$

By design,
$$x_k - x_0 \in P^{-1}K_k(AP^{-1}; r_0)$$

and therefore $r_k - r_0 \in AP^{-1}K_k(AP^{-1}; r_0) = \text{range } AP^{-1}V_k.$
 $\|r_k\|_{M^{-1}}^2 = \|r_0 - AP^{-1}V_k\vec{y}\|_{M^{-1}}^2$ $\vec{y} \in \mathbb{R}^k$
 $= \|r_0 - V_{k+1}H\vec{y}\|_{M^{-1}}^2$ due to $AP^{-1}V_k = V_{k+1}H$
 $= \|\|r_0\|_{M^{-1}}v_1 - V_{k+1}H\vec{y}\|_{M^{-1}}^2$ since $v_1 = r_0/\|r_0\|_{M^{-1}}$
 $= \|V_{k+1}(\|r_0\|_{M^{-1}}\vec{e_1} - H\vec{y})\|_{M^{-1}}^2$ by M^{-1} -orthonormality.

By design,
$$x_k - x_0 \in P^{-1}K_k(AP^{-1}; r_0)$$

and therefore $r_k - r_0 \in AP^{-1}K_k(AP^{-1}; r_0) = \text{range } AP^{-1}V_k.$
 $\|r_k\|_M^2 = \|r_0 - AP^{-1}V_k\vec{y}\|_M^2$ $\vec{y} \in \mathbb{R}^k$
 $= \|r_0 - V_{k+1}H\vec{y}\|_M^2$ due to $AP^{-1}V_k = V_{k+1}H$
 $= \|\|r_0\|_M$ $v_1 - V_{k+1}H\vec{y}\|_M^2$ since $v_1 = r_0/\|r_0\|_M$
 $= \|V_{k+1}(\|r_0\|_M \quad \vec{e_1} - H\vec{y})\|_M^2$
 $= \|\|r_0\|_M \quad \vec{e_1} - H\vec{y}\|_2^2$ by M -orthonormality.

The Arnoldi-inner product W is mathematically irrelevant and can be chosen for algorithmic convenience. Here we are led — again — to choose W := M, which from now on we assume. Short Rec./Norm. Conditions for $A \in \mathcal{L}(X, X^*)$ m

Self-adjointness $AP^{-1} = (AP^{-1})^{\circ}$ in $(X^*; \|\cdot\|_{M^{-1}})$ is responsible for short recursions:

$$\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{P}^{-1} = \boldsymbol{P}^{-\top}\boldsymbol{A}^{\top}\boldsymbol{M}^{-1}.$$
 (SRC)

The normality condition $AP^{-1}(AP^{-1})^{\circ} = (AP^{-1})^{\circ}AP^{-1}$ reads

$$AP^{-1}M (AP^{-1})^{\top}M^{-1} = M (AP^{-1})^{\top}M^{-1}AP^{-1}.$$
 (NC)

Short Rec./Norm. Conditions for $A \in \mathcal{L}(X)$

5

Self-adjointness $AP^{-1} = (AP^{-1})^{\circ}$ in $(X ; \|\cdot\|_{M})$ is responsible for short recursions:

$$M \quad AP^{-1} = P^{-\top} A^{\top} M. \tag{SRC}$$

The normality condition $AP^{-1}(AP^{-1})^{\circ} = (AP^{-1})^{\circ}AP^{-1}$ reads

$$AP^{-1}M^{-1}(AP^{-1})^{\top}M = M^{-1}(AP^{-1})^{\top}M AP^{-1}.$$
 (NC)

The convergence analysis carries over, mutatis mutandis.

$A \in \mathcal{L}(X, X^*)$

- preconditioner $P \in \mathcal{L}(X, X^*)$
- inner product $M \in \mathcal{L}(X, X^*)$
- Krylov subspaces
 K_k(AP⁻¹; r₀) ⊂ X*
- Arnoldi orthonormality w.r.t. M⁻¹, apply M⁻¹
- residual minimization $||r||_{M^{-1}}$

$A \in \mathcal{L}(X)$

- preconditioner $P \in \mathcal{L}(X)$
- inner product $M \in \mathcal{L}(X, X^*)$
- Krylov subspaces
 K_k(AP⁻¹; r₀) ⊂ X
- Arnoldi orthonormality w.r.t.
 M, apply *M*
- residual minimization $||r||_M$

GMRES $(A, P^{-1}, M^{-1}, b, x_0)$.

$$GMRES(A, P^{-1}, M, b, x_0).$$

The very frequent 'right preconditioned' GMRES is motivated by considering the modified problem

$$AP^{-1}u=b.$$

The Arnoldi process for $K_k(AP^{-1}; r_0)$ is typically carried out w.r.t. the Euclidean inner product and $||r||_2 = ||b - Ax||_2$ is minimized.

A non-singular, P non-singular

[see for instance (Saad, 2003, Ch. 9.3), Matlab, PETSc,]

The very frequent 'right preconditioned' GMRES is motivated by considering the modified problem

$$AP^{-1}u=b.$$

The Arnoldi process for $K_k(AP^{-1}; r_0)$ is typically carried out w.r.t. the Euclidean inner product and $||r||_2 = ||b - Ax||_2$ is minimized.

This corresponds to canonical GMRES with

A non-singular, P non-singular, W = M = id.

[see for instance (Saad, 2003, Ch. 9.3), Matlab, PETSc, ...]

The very frequent 'right preconditioned' GMRES is motivated by considering the modified problem

$$AP^{-1}u=b.$$

The Arnoldi process for $K_k(AP^{-1}; r_0)$ is typically carried out w.r.t. the Euclidean inner product and $||r||_2 = ||b - Ax||_2$ is minimized.

This corresponds to canonical GMRES with

A non-singular, P non-singular, W = M = id.

- The user does not need to know whether $A \in \mathcal{L}(X, X^*)$ or $A \in \mathcal{L}(X)$ since $M = M^{-1} = id$. (This also saves one operation per iteration.)
- The user cannot control which norm of the residual is being minimized. This appears to be a restriction, which cannot be compensated for by the preconditioner. Opportunities to satisfy (SRC) and (NC) are limited.
 [see for instance (Saad, 2003, Ch. 9.3), Matlab, PETSc, ...]

A small number of papers consider

$$Ax = b$$
 with $A \in \mathcal{L}(X, X^*)$

where the preconditioner P := M (spd) is chosen. The Arnoldi process for $K_k(AP^{-1}; r_0)$ is carried out w.r.t. the inner product $W^{-1} = M^{-1}$.

[see for instance (Starke, 1997, Sect. 3), (Chan et al., 1998, Alg. 2.3), (Ernst, 2000, Ch. 9.3), ...]

A small number of papers consider

$$A\mathbf{x} = b$$
 with $A \in \mathcal{L}(\mathbf{X}, X^*)$

where the preconditioner P := M (spd) is chosen. The Arnoldi process for $K_k(AP^{-1}; r_0)$ is carried out w.r.t. the inner product $W^{-1} = M^{-1}$.

This corresponds to canonical GMRES with

A non-singular, P = M, W = M.

[see for instance (Starke, 1997, Sect. 3), (Chan et al., 1998, Alg. 2.3), (Ernst, 2000, Ch. 9.3), ...]

A small number of papers consider

$$A\mathbf{x} = b$$
 with $A \in \mathcal{L}(\mathbf{X}, X^*)$

where the preconditioner P := M (spd) is chosen. The Arnoldi process for $K_k(AP^{-1}; r_0)$ is carried out w.r.t. the inner product $W^{-1} = M^{-1}$.

This corresponds to canonical GMRES with

A non-singular, P = M, W = M.

P = M saves one operation per iteration.

Coupling the choice of residual norm and preconditioner appears to be a restriction compared to full 'canonical GMRES'. Opportunities to satisfy (SRC) — which amounts to $A = A^{\top}$ — and (NC) are limited.

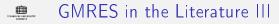
[see for instance (Starke, 1997, Sect. 3), (Chan et al., 1998, Alg. 2.3), (Ernst, 2000, Ch. 9.3), ...]

Bramble & Pasciak derived a method (BPCG)—here adjusted to fit our setting—for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -A_2 \end{bmatrix}$$

with $A_1 \succ 0$ (spd), $A_2 \succeq 0$ (spsd).

[Bramble and Pasciak (1988),]



Bramble & Pasciak derived a method (BPCG)—here adjusted to fit our setting—for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form with a particular preconditioner P and inner product M:

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -A_2 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} \widehat{A}_1 & B^\top \\ 0 & -id \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} A_1 - \widehat{A}_1 & 0 \\ 0 & id \end{bmatrix}$$

with $A_1 \succ 0$ (spd), $A_2 \succeq 0$ (spsd).

[Bramble and Pasciak (1988), ...]

Bramble & Pasciak derived a method (BPCG)—here adjusted to fit our setting—for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form with a particular preconditioner P and inner product M:

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -A_2 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} \widehat{A}_1 & B^\top \\ 0 & -\operatorname{id} \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} A_1 - \widehat{A}_1 & 0 \\ 0 & \operatorname{id} \end{bmatrix}$$

with $A_1 \succ 0$ (spd), $A_2 \succeq 0$ (spsd). The (SRC) holds by construction. Moreover, under appropriate assumptions, the eigenvalues of AP^{-1} are not only real but positive.

- 🖆 One obtains a CG-like convergence result.
- $\mathbb{R} \mid |r||_{M^{-1}} = ||e||_{AM^{-1}A} \text{ is non-trivial to interpret.}$

[Bramble and Pasciak (1988),]

Klawonn extended the analysis of Bramble & Pasciak and employed canonical GMRES for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -t^2 A_2 \end{bmatrix}$$

with $A_1, A_2 \succ 0$ (spd).

Klawonn extended the analysis of Bramble & Pasciak and employed canonical GMRES for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form with a particular preconditioner P and inner product M:

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -t^2 A_2 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} \widehat{A}_1 & B^\top \\ 0 & -\widehat{A}_2 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} A_1 - \widehat{A}_1 & 0 \\ 0 & \widehat{A}_2 \end{bmatrix}$$

with $A_1, A_2 \succ 0$ (spd).

Klawonn extended the analysis of Bramble & Pasciak and employed canonical GMRES for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form with a particular preconditioner P and inner product M:

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -t^2 A_2 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} \widehat{A}_1 & B^\top \\ 0 & -\widehat{A}_2 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} A_1 - \widehat{A}_1 & 0 \\ 0 & \widehat{A}_2 \end{bmatrix}$$

with $A_1, A_2 \succ 0$ (spd). The (SRC) holds (although it does not seem to have been used in the numerical experiments). Moreover, under appropriate assumptions, the eigenvalues of AP^{-1} are not only real but positive.

Klawonn extended the analysis of Bramble & Pasciak and employed canonical GMRES for self-adjoint, indefinite problems with $A \in \mathcal{L}(X, X^*)$ in saddle-point form with a particular preconditioner P and inner product M:

$$A = \begin{bmatrix} A_1 & B^\top \\ B & -t^2 A_2 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} \widehat{A}_1 & B^\top \\ 0 & -\widehat{A}_2 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} A_1 - \widehat{A}_1 & 0 \\ 0 & \widehat{A}_2 \end{bmatrix}$$

with $A_1, A_2 \succ 0$ (spd). The (SRC) holds (although it does not seem to have been used in the numerical experiments). Moreover, under appropriate assumptions, the eigenvalues of AP^{-1} are not only real but positive.

 $f \hspace{-0.1cm} \stackrel{\frown}{\longrightarrow} \hspace{-0.1cm}$ One obtains a CG-like convergence result, robustly in $t \in \mathbb{R}.$

$$\| = \| r \|_{M^{-1}} = \| e \|_{AM^{-1}A}$$
 is non-trivial to interpret.

The term 'preconditioned MINRES' seems to be reserved for the setting

$$A = A^{\top}, P \text{ spd}, M = P.$$

Certainly the (SRC) holds in this setting:

$$M^{-1}AP^{-1} = P^{-\top}A^{\top}M^{-1}$$
 (SRC)

but it is also valid in many other situations with or without $A = A^{\top}$.

[Elman et al. (2014); Günnel et al. (2014)]

The very frequent 'left preconditioned' GMRES is motivated by considering the modified problem

$$P_L^{-1}Ax = P_L^{-1}b.$$

The Arnoldi process for $K_k(P_L^{-1}A; P_L^{-1}r_0)$ is typically carried out w.r.t. the Euclidean inner product and $||P_L^{-1}r||_2 = ||b - Ax||_{P_L^{-\top}P_L^{-1}}$ is minimized.

This cannot be modeled in canonical GMRES except as a modified problem:

 $P_L^{-1}A$ non-singular, P = id, W = M = id.

[see for instance (Saad, 2003, Ch. 9.3), Matlab, PETSc, ...]

m

The very frequent 'left preconditioned' GMRES is motivated by considering the modified problem

$$P_L^{-1}Ax = P_L^{-1}b.$$

The Arnoldi process for $K_k(P_L^{-1}A; P_L^{-1}r_0)$ is typically carried out w.r.t. the Euclidean inner product and $||P_L^{-1}r||_2 = ||b - Ax||_{P_L^{-\top}P_L^{-1}}$ is minimized.

This cannot be modeled in canonical GMRES except as a modified problem:

$$P_{l}^{-1}A$$
 non-singular, $P = id$, $W = M = id$.

The user does not need to know whether A, P belong to $\mathcal{L}(X, X^*)$ or $\mathcal{L}(X)$ since the choice $P = P^{-1} = \text{id}$ and $M = M^{-1} = \text{id}$ holds. Moreover, this choice reduces the cost per iteration.

The user may not be able to factorize the desired residual metric. Not using P nor M appears to be a restriction, which cannot be compensated for by P_L . Opportunities for (SRC) and (NC) are limited. [see for instance (Saad, 2003, Ch. 9.3), Matlab, PETSc, ...]

Pestana & Wathen also consider a 'left preconditioned' GMRES

$$P_L^{-1}Ax = P_L^{-1}b.$$

where $A \in \mathcal{L}(X)$. Both A and the 'left preconditioner' $P_L \in \mathcal{L}(X)$ are assumed to be $(X, \|\cdot\|_H)$ -Hilbert space self-adjoint w.r.t. a reference inner product $H \in \mathcal{L}(X, X^*)$: $HA = A^{\top}H$ and $HP_L = P_L^{\top}H$.

This corresponds to canonical GMRES with

$$P_l^{-1}A$$
 non-singular, $P = id$

[(Pestana and Wathen, 2013, preprint version)]

Pestana & Wathen also consider a 'left preconditioned' GMRES

$$P_L^{-1}Ax = P_L^{-1}b.$$

where $A \in \mathcal{L}(X)$. Both A and the 'left preconditioner' $P_L \in \mathcal{L}(X)$ are assumed to be $(X, \|\cdot\|_H)$ -Hilbert space self-adjoint w.r.t. a reference inner product $H \in \mathcal{L}(X, X^*)$: $HA = A^{\top}H$ and $HP_L = P_L^{\top}H$. The Arnoldi process for $K_k(P_L^{-1}A; P_L^{-1}r_0)$ is carried out w.r.t. the inner product $W = HP_L$ and $\|P_L^{-1}r\|_{HP_L} = \|b - Ax\|_{P_L^{-\top}H}$ is minimized.

This corresponds to canonical GMRES with

$$P_{L}^{-1}A$$
 non-singular, $P = id$, $W = M = HP_{L}$.

[(Pestana and Wathen, 2013, preprint version)]

Pestana & Wathen also consider a 'left preconditioned' GMRES

$$P_L^{-1}Ax = P_L^{-1}b.$$

where $A \in \mathcal{L}(X)$. Both A and the 'left preconditioner' $P_L \in \mathcal{L}(X)$ are assumed to be $(X, \|\cdot\|_H)$ -Hilbert space self-adjoint w.r.t. a reference inner product $H \in \mathcal{L}(X, X^*)$: $HA = A^{\top}H$ and $HP_L = P_L^{\top}H$. The Arnoldi process for $K_k(P_L^{-1}A; P_L^{-1}r_0)$ is carried out w.r.t. the inner product $W = HP_L$ and $\|P_L^{-1}r\|_{HP_L} = \|b - Ax\|_{P_L^{-\top}H}$ is minimized.

This corresponds to canonical GMRES with

 $P_{L}^{-1}A$ non-singular, P = id, $W = M = HP_{L}$.

The (SRC) holds by construction.

The requirements appear to constitute a restriction compared to full 'canonical GMRES'.

[(Pestana and Wathen, 2013, preprint version)]

GMRES from First Principles (and a Hilbert Space Perspective)

How does it Compare With...?

- We have re-derived 'canonical GMRES' from a Hilbert space perspective for Ax = b in X^* (and Ax = b in X).
- It appears natural that the user
 - **1** first chooses the inner product $(\cdot, \cdot)_{M^{-1}}$ in X* for residual minimization,
 - So then the preconditioner $P \in \mathcal{L}(X, X^*)$, so that ideally (SRC) or at least (NC) holds.
- If (NC) is achieved, then P is responsible for fast convergence (eigenvalues of AP⁻¹), while M is responsible for being able to observe a meaningful norm of the residual.
- Don't use Matlab or PETSc implementations of GMRES unless you are determined to measure (and stop on) the residual norm $||r||_2$, since they make the choice M = id for you.
- Should we say MINRES rather than GMRES when (SRC) hold?

- We have re-derived 'canonical GMRES' from a Hilbert space perspective for Ax = b in X^* (and Ax = b in X).
- It appears natural that the user
 - **1** first chooses the inner product $(\cdot, \cdot)_{M^{-1}}$ in X* for residual minimization,
 - So then the preconditioner $P \in \mathcal{L}(X, X^*)$, so that ideally (SRC) or at least (NC) holds.
- If (NC) is achieved, then P is responsible for fast convergence (eigenvalues of AP⁻¹), while M is responsible for being able to observe a meaningful norm of the residual.
- Don't use Matlab or PETSc implementations of GMRES unless you are determined to measure (and stop on) the residual norm $||r||_2$, since they make the choice M = id for you.
- Should we say MINRES rather than GMRES when (SRC) hold?

Thank You

- Bramble, J. and Pasciak, J. (1988). A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. *Mathematics of Computation* 50: 1–17.
- Calvetti, D., Lewis, B. and Reichel, L. (2002). On the regularizing properties of the GMRES method. *Numerische Mathematik* 91: 605–625, doi: 10.1007/s002110100339.
- Campbell, S. L., Ipsen, I. C. F., Kelley, C. T. and Meyer, C. D. (1996). GMRES and the minimal polynomial. *BIT. Numerical Mathematics* 36: 664–675, doi: 10.1007/BF01733786.
- Chan, T. F., Chow, E., Saad, Y. and Yeung, M. C. (1998). Preserving symmetry in preconditioned Krylov subspace methods. SIAM Journal on Scientific Computing 20: 568-581, doi: 10.1137/S1064827596311554.
- Chen, J.-Y., Kincaid, D. R. and Young, D. M. (1999). Generalizations and modifications of the GMRES iterative method. *Numerical Algorithms* 21: 119–146, doi: 10.1023/A:1019105328973, numerical methods for partial differential equations (Marrakech, 1998).
- Eiermann, M. and Ernst, O. G. (2001). Geometric aspects of the theory of Krylov subspace methods. Acta Numerica 10: 251–312, doi: 10.1017/S0962492901000046.
- Elman, H., Silvester, D. and Wathen, A. (2014). Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, 2nd ed.

- Ernst, O. (2000). Minimal and orthogonal residual methods and their generalizations for solving linear operator equations. Habilitation Thesis, Faculty of Mathematics and Computer Sciences, TU Bergakademie Freiberg.
- Gasparo, M. G., Papini, A. and Pasquali, A. (2008). Some properties of GMRES in Hilbert spaces. *Numerical Functional Analysis and Optimization. An International Journal* 29: 1276–1285, doi: 10.1080/01630560802580786.
- Günnel, A., Herzog, R. and Sachs, E. (2014). A note on preconditioners and scalar products in Krylov subspace methods for self-adjoint problems in Hilbert space. *Electronic Transactions on Numerical Analysis* 41: 13–20.
- Klawonn, A. (1998). Block-triangular preconditioners for saddle point problems with a penalty term. SIAM Journal on Scientific Computing 19: 172–184 (electronic), doi: 10.1137/S1064827596303624, special issue on iterative methods (Copper Mountain, CO, 1996).
- Moret, I. (1997). A note on the superlinear convergence of GMRES. SIAM Journal on Numerical Analysis 34: 513–516, doi: 10.1137/S0036142993259792.
- Pestana, J. and Wathen, A. J. (2013). On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. *Journal of Computational and Applied Mathematics* 249: 57-68, doi: 10.1016/j.cam.2013.02.020.
- Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM, 2nd ed.

- Saad, Y. and Schultz, M. H. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 7: 856–869, doi: 10.1137/0907058.
- Sarkis, M. and Szyld, D. B. (2007). Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms. *Computer Methods in Applied Mechanics and Engineering* 196: 1612–1621, doi: 10.1016/j.cma.2006.03.027.
- Simoncini, V. (2004). Block triangular preconditioners for symmetric saddle-point problems. Applied Numerical Mathematics. An IMACS Journal 49: 63-80, doi: 10.1016/j.apnum.2003.11.012.
- Starke, G. (1997). Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems. *Numerische Mathematik* 78: 103–117, doi: 10.1007/s002110050306.