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What is GMRES?

Quoting Saad and Schultz (1986):

We present an iterative method for solving linear systems,

which has the property of minimizing at every step the norm of

the residual vector over a Krylov subspace. The algorithm is

derived from the Arnoldi process for constructing an

`2-orthogonal basis of Krylov subspaces.

Quoting Wikipedia:

In mathematics, the generalized minimal residual method

(usually abbreviated GMRES) is an iterative method for the

numerical solution of a nonsymmetric system of linear equations.

The method approximates the solution by the vector in a Krylov

subspace with minimal residual. The Arnoldi iteration is used to

�nd this vector.
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Some References (Very Incomplete)

contributing to the understanding of GMRES in various situations:

Starke (1997)

Chan, Chow, Saad and Yeung (1998)

Chen, Kincaid and Young (1999)

Klawonn (1998)

Ernst (2000); Eiermann and Ernst (2001)

Sarkis and Szyld (2007)

Pestana and Wathen (2013)

and in Hilbert space (but with A ∈ L(X )) in particular:

Campbell, Ipsen, Kelley and Meyer (1996)

Moret (1997)

Calvetti, Lewis and Reichel (2002)

Gasparo, Papini and Pasquali (2008)
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Purpose/Plan of This Talk

re-derive GMRES with natural algorithmic ingredients

draw inspirations from a Hilbert space setting (PDE problems)

obtain 'canonical GMRES'

locate GMRES variants in the literature in this framework

to sort out my own personal lack of knowledge/confusion about these
variants

Hilbert space analysis matters
(→ recall talk by W. Zulehner for instance)

even though in this talk everything is �nite dimensional
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Problem Setting

(primal) quantities in X � iterates, errors
(dual) quantities in X ∗ � rhs, residuals

Ax = b in Rn

A ∈ Rn×n (non-singular)

Rn also a Hilbert space

inner product (·, ·)M
(u, v)M = u>M v(

Rn; ‖·‖M
) M−1
↼−−−−−−−−−−−−−−−−⇁

M

(
Rn; ‖·‖M−1

)
M ∈ L(X ,X ∗) Riesz isomorphism

Ax = b in X ∗

A ∈ L(X ,X ∗) (non-singular)

X Hilbert space

inner product (·, ·)M

(u, v)M = 〈u, M v〉X ,X∗(
X ; ‖·‖M

) M−1
↼−−−−−−−−−−−−−−−−⇁

M

(
X ∗; ‖·‖M−1

)
M ∈ L(X ,X ∗) Riesz isomorphism
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Example: Stokes (Saddle-Point Problem)

[
A B?

B 0

](
u

p

)
=

(
f

0

)
∈ V ∗

∈ Q∗

V = H1
0 (Ω;R3), Q = L20(Ω)

Au = a(u, ·) ∈ V ∗

N u = n(u, ·) ∈ V ∗

B u = b(u, ·) ∈ Q∗

B?p = b(·, p) ∈ V ∗

∫
Ω
µ∇u :∇v dx︸ ︷︷ ︸

a(u,v)

+

∫
Ω

(∇u ·U) · v dx︸ ︷︷ ︸
n(u,v)

−
∫

Ω
p div v dx︸ ︷︷ ︸
b(v ,p)

=

∫
Ω
F · v dx︸ ︷︷ ︸
〈f , v〉

−
∫

Ω
div u q dx︸ ︷︷ ︸
b(u,q)

= 0
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Example: Oseen (Saddle-Point Problem)
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Ingredients of 'Canonical GMRES'

The residual is always going to be r := b − Ax ∈ X ∗.

1 Krylov subspaces

Due to A ∈ L(X ,X ∗) we cannot form

Kk(A

P−1

; r) := span
{
r , Ar , A2r , . . . , Ak−1r

}

⊂ X ∗

where P ∈ L(X ,X ∗) non-singular is a 'preconditioner' (required!).

2 Inner product (·, ·)W in X for Arnoldi

Since Kk(AP−1; r) ⊂ X ∗ holds, orthonormality is de�ned w.r.t. W−1.

3 Inner product (·, ·)M in X for residual minimization

Since r ∈ X ∗ holds, ‖r‖M−1 will be the quantity minimized.
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The Arnoldi Process

The Arnoldi process (here displayed with modi�ed GS) generates
an orthonormal basis of the Krylov subspace Kk(A

P−1

; r0):

Input: Matrix A

, P−1, W−1

(or matrix-vector products), initial vector r0

∈ X ∗

Output:

W−1-

ONB v1, v2, . . .

∈ X ∗

with span
{
v1, . . . , vk

}
= Kk(A

P−1

; r0)

1: Set

z1 := W−1r0 and

v1 :=
r0

〈r0, r0〉1/2

and z1 :=
z1

〈r0, z1〉1/2

2: for k = 1, 2, . . . do
3: Set vk+1 := Avk // new Krylov vector

4: for j = 1, 2, . . . , k do

5: Set hj,k := (vk+1, vj) // orthogonal. coe�cients
6: Set vk+1 := vk+1 − hj,k vj
7: end for

8: Set

zk+1 := W−1vk+1 and

hk+1,k := (vk+1, vk+1)1/2 // = (vk+1, vk+1)
1/2

W−1

9: Set vk+1 :=
vk+1

hk+1,k

and zk+1 :=
zk+1

hk+1,k

10: end for

Both vj and zj = W−1vj need to be stored due to MGS.
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4: for j = 1, 2, . . . , k do

5: Set hj,k := 〈vk+1, zj〉 // orthogonal. coe�cients
6: Set vk+1 := vk+1 − hj,k vj
7: end for

8: Set zk+1 := W−1vk+1 and hk+1,k := 〈vk+1, zk+1〉1/2 // = (vk+1, vk+1)
1/2
W−1

9: Set vk+1 :=
vk+1

hk+1,k
and zk+1 :=

zk+1

hk+1,k

10: end for

Both vj and zj = W−1vj need to be stored due to MGS.
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The Arnoldi Process

In matrix form the Arnoldi process reads

h2,1

v2

· · · vk+1

 = AP−1

v1

· · · vk

−
v1

· · · vk

 h1,1

or Vk+1H = AP−1Vk

where H is the upper Hessenberg matrix

H =


(v1, AP

−1v1)W−1 (v1, AP
−1v2)W−1 · · ·

(v2, AP
−1v1)W−1 (v2, AP

−1v2)W−1 · · ·
0 (v3, AP

−1v2)W−1 · · ·
... 0
...

...

 ∈ R(k+1)×k .
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Residual Norm Minimization

By design, xk − x0 ∈ P−1Kk(AP−1; r0)

and therefore rk − r0 ∈ AP−1Kk(AP−1; r0) = rangeAP−1Vk .

Hence

‖rk‖2M−1 =
∥∥r0 − AP−1Vk~y

∥∥2
M−1

~y ∈ Rk

=
∥∥r0 − Vk+1H~y

∥∥2
M−1

due to AP−1Vk = Vk+1H

=
∥∥‖r0‖W−1 v1 − Vk+1H~y

∥∥2
M−1

since v1 = r0/‖r0‖W−1

=
∥∥Vk+1

(
‖r0‖W−1 ~e1 − H~y

)∥∥2
M−1

=
∥∥‖r0‖M−1 ~e1 − H~y

∥∥2
2

by M−1-orthonormality.

The Arnoldi-inner product W−1 is mathematically irrelevant and can be
chosen for algorithmic convenience. Here we are led to choose W := M,
which from now on we assume.
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Short Recurrences

Short recurrences occur when

Hk,k =


(v1, AP

−1v1)M−1 (v1, AP
−1v2)M−1 · · ·

(v2, AP
−1v1)M−1 (v2, AP

−1v2)M−1 · · ·
0 (v3, AP

−1v2)M−1 · · ·
... 0
...

...

 ∈ Rk×k

is symmetric, i.e., when

M−1AP−1 = P−>A>M−1. (SRC)

This means that AP−1 ∈ L(X ∗) is
(
X ∗, ‖ · ‖M−1

)
-Hilbert space self-adjoint.

Should we call the method MINRES then?
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(SRC) and the Normal Equations

We are going to refer to GMRES as just described by

GMRES
(
A, P−1, M−1, b, x0

)
.

Recall

M−1AP−1 = P−>A>M−1. (SRC)

Given A and M, (SRC) always holds for the choice P−1 := H−1A>M−1,
where H = H> is non-singular.

This is mathematically equivalent to
running GMRES on the normal equations (modi�ed problem)

A>M−1Ax = A>M−1b

with preconditioner H. In other words,

GMRES
(
A, H−1A>M−1, M−1, b, x0

)
⇔ GMRES

(
A>M−1A, H−1, A−1MA−>, A>M−1b, x0

)
⇔ CG

(
A>M−1A, H−1, A>M−1b, x0

)
.
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Convergence Analysis

In the absence of any particular properties of (A,P,M) we can use the
Jordan decomposition (with U, J ∈ Cn×n)

M−1/2AP−1M1/2 = U J U−1.

Then for any polynomial p,

p(AP−1) = M1/2U p(J)U−1M−1/2

holds and thus∥∥p(AP−1) r0
∥∥2
M−1

=
∥∥U p(J)U−1M−1/2r0

∥∥2
2

≤ σ2max

(
U p(J)U−1

)
‖r0‖2M−1

= λmax

(
p(AP−1)>M−1p(AP−1);M−1

)
‖r0‖2M−1 .
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Alternatively, using the Schur decomposition M−1/2AP−1M1/2 = U R UH

(with U,R ∈ Cn×n) we arrive at∥∥p(AP−1) r0
∥∥2
M−1
≤ σ2max

(
p(R)

)
‖r0‖2M−1

= λmax
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p(AP−1)>M−1p(AP−1);M−1
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U p(J)U−1

)
‖r0‖2M−1
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(
p(AP−1)>M−1p(AP−1);M−1

)
‖r0‖2M−1 .

This convergence estimate depends on the complete triplet (A,P,M).
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Normality Condition

For AP−1 ∈ L(X ∗), (AP−1)> ∈ L(X ) is its adjoint and

(AP−1)◦ = M (AP−1)>M−1

is its Hilbert space adjoint w.r.t.
(
X ∗, ‖ · ‖M−1

)
.

We have already encountered the (Hilbert space) self-adjointness condition
AP−1 = (AP−1)◦, responsible for short recursions:

M−1AP−1 = P−>A>M−1. (SRC)

The normality condition AP−1(AP−1)◦ = (AP−1)◦AP−1 reads

AP−1M(AP−1)>M−1 = M (AP−1)>M−1AP−1 (NC)

or B B> = B>B with B = M−1/2AP−1M1/2.
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Convergence Analysis Under Normality

Suppose that (NC) holds. Then with U,D ∈ Cn×n unitary/diagonal,

B = M−1/2AP−1M1/2 = U D UH

and for any polynomial p,

p(AP−1) = M1/2U p(D)UHM−1/2

holds and thus∥∥p(AP−1) r0
∥∥2
M−1

=
∥∥U p(D)UHM−1/2r0

∥∥2
2

≤ σ2max

(
U p(D)UH

)
‖r0‖2M−1

=
[
max
j
|p(λj)|

]2 ‖r0‖2M−1 ,
where λj are the (complex; real under the (SRC)) eigenvalues of AP−1.

The resulting convergence estimate depends only on (A,P) and it is
independent of the norm M−1 we choose for residual minimization.
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Intermediate Summary

We have re-derived 'canonical' GMRES from '�rst principles' and from
a Hilbert space perspective, carefully distinguishing mapping properties
and primal and dual quantities.

Two choices arise (for the user):
1 preconditioner P ∈ L(X ,X ∗)
2 inner product (·, ·)M−1 in X ∗ for residual minimization
3 inner product (·, ·)W−1 in X ∗ for Arnoldi (non-essential)

For the latter we �x wlog W := M for algorithmic convenience.

One application of A, P−1 and M−1 each is required per iteration.

(SRC)⇒ (NC)⇒ convergence est. in terms of spectrum of AP−1

Not discussed:

Solution of least-squares problems (by updated QR factorization).
Under particular choices of (A,P,M) one may take advantage of
additional structure to streamline the implementation.
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Dual vs. Primal Krylov Subspaces

'Canonical GMRES' is working with the (dual, residual-based) Krylov
subspaces

Kk(AP−1; r0) ⊂ X ∗

generated by AP−1 ∈ L(X ∗). It turned out convenient to �x wlog
W := M.

Equivalently, the algorithm can be written using the (primal) Krylov
subspaces (see next two slides)

P−1Kk(AP−1; r0) =

Kk(P−1A;P−1r0) ⊂ X .

'Equivalently' means same iterates xk , same residuals rk = b − Axk , same
residual norms ‖rk‖M−1 .

Caution: Do not confuse with 'right/left preconditioning'. There is no
such distinction in 'canonical GMRES'.
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Using Primal Krylov Subspaces

The Arnoldi process generates a basis {Uk} of Kk(P−1A;P−1r0) ⊂ X with
is orthonormal w.r.t. the inner product W (mathematically irrelevant).

In matrix form the Arnoldi process reads

P−1AUk = Uk+1H,

where H is the upper Hessenberg matrix

H =


(v1, P

−1Av1)W (v1, P
−1Av2)W · · ·

(v2, P
−1Av1)W (v2, P

−1Av2)W · · ·
0 (v3, P

−1Av2)W · · ·
... 0
...

...

 ∈ R(k+1)×k .

The short recursion condition becomes WP−1A = (WP−1A)>, which
appears to be di�erent from (SRC) . . .
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Using Primal Krylov Subspaces

We still want to minimize

‖rk‖2M−1 =
∥∥r0 − AUk~y

∥∥2
M−1

~y ∈ Rk

=
∥∥P−1r0 − Uk+1H~y

∥∥2
P>M−1P

P−1AUk = Uk+1H

=
∥∥‖P−1r0‖W u1 − Uk+1H~y

∥∥2
P>M−1P

u1 = P−1r0/‖P−1r0‖W
=
∥∥Uk+1

(
‖P−1r0‖W ~e1 − H~y

)∥∥2
P>M−1P

=
∥∥‖r0‖M−1 ~e1 − H~y

∥∥2
2

by W -orthonormality.

The Arnoldi-inner product W is mathematically irrelevant and can be
chosen for algorithmic convenience. Here we are led to choose
W := P>M−1P ∈ L(X ,X ∗).

But then the implementations with primal/dual Krylov subspaces agree:
uj = P−1vj holds, the Hessenberg matrices are the same, and the short
recursion conditions agree. So we continue with the original version, using
dual Krylov subspaces.
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What if A ∈ L(X )?

The residual r := b − Ax belongs to X now.

1 Krylov subspaces

With A ∈ L(X ) we can form

Kk(A

P−1

; r) := span
{
r , Ar , A2r , . . . , Ak−1r

}
⊂ X

but P ∈ L(X ) is optional now.

2 Inner product (·, ·)W in X for Arnoldi

Since Kk(AP−1; r) ⊂ X holds, orthonormality is de�ned w.r.t. W .

3 Inner product (·, ·)M in X for residual minimization

Since r ∈ X holds, ‖r‖M will be the quantity minimized.
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The Arnoldi Process for A ∈ L(X ,X ∗)

The Arnoldi process (here displayed with modi�ed GS) generates a
W−1-orthonormal basis of the Krylov subspace Kk(AP−1; r0):

Input: Matrix A, P−1, W−1 (or matrix-vector products), initial vector r0 ∈ X ∗

Output: W−1-ONB v1, v2, . . . ∈ X ∗ with span
{
v1, . . . , vk

}
= Kk(AP−1; r0)

1: Set z1 := W−1r0 and v1 :=
r0

〈r0, z1〉1/2
and z1 :=

z1
〈r0, z1〉1/2

2: for k = 1, 2, . . . do
3: Set vk+1 := AP−1vk // new Krylov vector

4: for j = 1, 2, . . . , k do

5: Set hj,k := 〈vk+1, zj〉 // orthogonal. coe�cients
6: Set vk+1 := vk+1 − hj,k vj
7: end for

8: Set zk+1 := W−1vk+1 and hk+1,k := 〈vk+1, zk+1〉1/2 // = (vk+1, vk+1)
1/2

W−1

9: Set vk+1 :=
vk+1

hk+1,k
and zk+1 :=

zk+1

hk+1,k

10: end for

Both vj and zj = W−1vj need to be stored due to MGS.
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Residual Minimization for A ∈ L(X ,X ∗)

By design, xk − x0 ∈ P−1Kk(AP−1; r0)

and therefore rk − r0 ∈ AP−1Kk(AP−1; r0) = rangeAP−1Vk .

‖rk‖2M−1 =
∥∥r0 − AP−1Vk~y

∥∥2
M−1

~y ∈ Rk

=
∥∥r0 − Vk+1H~y

∥∥2
M−1

due to AP−1Vk = Vk+1H

=
∥∥‖r0‖M−1 v1 − Vk+1H~y

∥∥2
M−1

since v1 = r0/‖r0‖M−1

=
∥∥Vk+1

(
‖r0‖M−1 ~e1 − H~y

)∥∥2
M−1

=
∥∥‖r0‖M−1 ~e1 − H~y

∥∥2
2

by M−1-orthonormality.

The Arnoldi-inner product W is mathematically irrelevant and can be
chosen for algorithmic convenience. Here we are led � again � to choose
W := M, which from now on we assume.
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Short Rec./Norm. Conditions for A ∈ L(X ,X ∗)

Self-adjointness AP−1 = (AP−1)◦ in
(
X ∗; ‖·‖M−1

)
is responsible for short

recursions:

M−1AP−1 = P−>A>M−1. (SRC)

The normality condition AP−1(AP−1)◦ = (AP−1)◦AP−1 reads

AP−1M (AP−1)>M−1 = M (AP−1)>M−1AP−1. (NC)

The convergence analysis carries over, mutatis mutandis.
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Overview of Canonical GMRES

A ∈ L(X ,X ∗)

preconditioner P ∈ L(X ,X ∗)

inner product M ∈ L(X ,X ∗)

Krylov subspaces
Kk(AP−1; r0) ⊂ X ∗

Arnoldi orthonormality w.r.t.
M−1, apply M−1

residual minimization ‖r‖M−1

GMRES
(
A, P−1, M−1, b, x0

)
.

A ∈ L(X )

preconditioner P ∈ L(X )

inner product M ∈ L(X ,X ∗)

Krylov subspaces
Kk(AP−1; r0) ⊂ X

Arnoldi orthonormality w.r.t.
M, apply M

residual minimization ‖r‖M

GMRES
(
A, P−1, M, b, x0

)
.
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GMRES in the Literature I

The very frequent 'right preconditioned' GMRES is motivated by
considering the modi�ed problem

AP−1u = b.

The Arnoldi process for Kk(AP−1; r0) is typically carried out w.r.t. the
Euclidean inner product and ‖r‖2 = ‖b − Ax‖2 is minimized.

This corresponds to canonical GMRES with

A non-singular, P non-singular

, W = M = id .

U The user does not need to know whether A ∈ L(X ,X ∗) or A ∈ L(X )
since M = M−1 = id. (This also saves one operation per iteration.)

D The user cannot control which norm of the residual is being
minimized. This appears to be a restriction, which cannot be
compensated for by the preconditioner. Opportunities to satisfy (SRC)
and (NC) are limited.

Preconditioned GMRES Revisited Vancouver 25 / 32

[see for instance (Saad, 2003, Ch. 9.3), Matlab, PETSc, . . . ]
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GMRES in the Literature II

A small number of papers consider

Ax = b with A ∈ L(X ,X ∗)

where the preconditioner P := M (spd) is chosen. The Arnoldi process for
Kk(AP−1; r0) is carried out w.r.t. the inner product W−1 = M−1.

This corresponds to canonical GMRES with

A non-singular, P = M, W = M.

U P = M saves one operation per iteration.

D Coupling the choice of residual norm and preconditioner appears to be
a restriction compared to full 'canonical GMRES'. Opportunities to
satisfy (SRC) � which amounts to A = A> � and (NC) are limited.

Preconditioned GMRES Revisited Vancouver 26 / 32

[see for instance (Starke, 1997, Sect. 3), (Chan et al., 1998, Alg. 2.3), (Ernst, 2000, Ch. 9.3), . . . ]
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GMRES in the Literature III

Bramble & Pasciak derived a method (BPCG)�here adjusted to �t our
setting�for self-adjoint, inde�nite problems with A ∈ L(X ,X ∗) in
saddle-point form

with a particular preconditioner P and inner product M:

A =

[
A1 B>

B −A2

]

, P =

[
Â1 B>

0 − id

]
, M =

[
A1 − Â1 0

0 id

]

with A1 � 0 (spd), A2 � 0 (spsd).

The (SRC) holds by construction.
Moreover, under appropriate assumptions, the eigenvalues of AP−1 are not
only real but positive.

U One obtains a CG-like convergence result.

D ‖r‖M−1 = ‖e‖AM−1A is non-trivial to interpret.

Preconditioned GMRES Revisited Vancouver 27 / 32
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GMRES in the Literature IV

Klawonn extended the analysis of Bramble & Pasciak and employed
canonical GMRES for self-adjoint, inde�nite problems with A ∈ L(X ,X ∗) in
saddle-point form

with a particular preconditioner P and inner product M:

A =

[
A1 B>

B −t2A2

]

, P =

[
Â1 B>

0 −Â2

]
, M =

[
A1 − Â1 0

0 Â2

]

with A1,A2 � 0 (spd).

The (SRC) holds (although it does not seem to
have been used in the numerical experiments). Moreover, under appropriate
assumptions, the eigenvalues of AP−1 are not only real but positive.

U One obtains a CG-like convergence result, robustly in t ∈ R.
D ‖r‖M−1 = ‖e‖AM−1A is non-trivial to interpret.

Preconditioned GMRES Revisited Vancouver 28 / 32
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GMRES in the Literature IV

Klawonn extended the analysis of Bramble & Pasciak and employed
canonical GMRES for self-adjoint, inde�nite problems with A ∈ L(X ,X ∗) in
saddle-point form with a particular preconditioner P and inner product M:

A =

[
A1 B>

B −t2A2

]
, P =

[
Â1 B>

0 −Â2

]
, M =

[
A1 − Â1 0

0 Â2

]

with A1,A2 � 0 (spd). The (SRC) holds (although it does not seem to
have been used in the numerical experiments). Moreover, under appropriate
assumptions, the eigenvalues of AP−1 are not only real but positive.
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GMRES in the Literature V

The term 'preconditioned MINRES' seems to be reserved for the setting

A = A>, P spd, M = P.

Certainly the (SRC) holds in this setting:

M−1AP−1 = P−>A>M−1 (SRC)

but it is also valid in many other situations with or without A = A>.
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GMRES in the Literature VI

The very frequent 'left preconditioned' GMRES is motivated by considering
the modi�ed problem

P−1L Ax = P−1L b.

The Arnoldi process for Kk(P−1L A;P−1L r0) is typically carried out w.r.t. the
Euclidean inner product and ‖P−1L r‖2 = ‖b − Ax‖P−>L P−1L

is minimized.

This cannot be modeled in canonical GMRES except as a modi�ed problem:

P−1L A non-singular, P = id, W = M = id .

U The user does not need to know whether A, P belong to L(X ,X ∗) or
L(X ) since the choice P = P−1 = id and M = M−1 = id holds.
Moreover, this choice reduces the cost per iteration.

D The user may not be able to factorize the desired residual metric. Not
using P nor M appears to be a restriction, which cannot be
compensated for by PL. Opportunities for (SRC) and (NC) are limited.
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GMRES in the Literature VII

Pestana & Wathen also consider a 'left preconditioned' GMRES

P−1L Ax = P−1L b.

where A ∈ L(X ). Both A and the 'left preconditioner' PL ∈ L(X ) are
assumed to be

(
X , ‖ · ‖H

)
-Hilbert space self-adjoint w.r.t. a reference inner

product H ∈ L(X ,X ∗): HA = A>H and HPL = P>L H.

The Arnoldi
process for Kk(P−1L A;P−1L r0) is carried out w.r.t. the inner product
W = HPL and ‖P−1L r‖HPL

= ‖b − Ax‖P−>L H is minimized.

This corresponds to canonical GMRES with

P−1L A non-singular, P = id

, W = M = HPL.

U The (SRC) holds by construction.

D The requirements appear to constitute a restriction compared to full
'canonical GMRES'.
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Concluding Remarks

We have re-derived 'canonical GMRES' from a Hilbert space
perspective for Ax = b in X ∗ (and Ax = b in X ).

It appears natural that the user
1 �rst chooses the inner product (·, ·)M−1 in X ∗ for residual minimization,
2 then the preconditioner P ∈ L(X ,X ∗), so that ideally (SRC) or at least

(NC) holds.

If (NC) is achieved, then P is responsible for fast convergence
(eigenvalues of AP−1), while M is responsible for being able to
observe a meaningful norm of the residual.

Don't use Matlab or PETSc implementations of GMRES unless you
are determined to measure (and stop on) the residual norm ‖r‖2, since
they make the choice M = id for you.

Should we say MINRES rather than GMRES when (SRC) hold?
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Should we say MINRES rather than GMRES when (SRC) hold?

Thank You
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