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Problem formulation

We consider singularly-perturbed elliptic B.V.P’s given by:

− εu′′ + ωu′ + βu = f in Ω = (0, 1), u(0) = u0, u(1) = u1.

I The presence of boundary layers makes standard
discretization techniques fail.

I Adaptive meshes or stabilization techniques need to be used.

I We consider the Shishkin mesh: a piecewise equidistant
mesh.

I We will analyze the multiplicative Schwarz method in the
context of domain decomposition methods.



The Shishkin mesh

The 1D Shishkin mesh divides the domain into two subdomains:

Use of FDMs on this mesh leads to discrete operators of the form:
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Properties of the discrete operator

We thus need to obtain solutions to algebraic systems of the form:

AuN = fN

where the discretized convection-diffusion matrix A is
non-symmetric, nonnormal and typically ill conditioned.

Numerical example: N=198, ε = 10−8, ω = 1, β = 0, and
boundary conditions u(0) = u(1) = 0, we have:

κ2(A) κ2(Y )

FDM upwind 4.0500× 1010 1.9016× 1017

where A = YΛY−1.



Poor performance of standard solution methods

The unpreconditioned GMRES method performs poorly when used
to solve these types of problems:
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N=198, ε = 10−4 and 10−8, ω = 1, β = 0, u(0) = u(1) = 0.

Other solution methods, like the unpreconditioned BiCGSTAB,
perform in a similar way.



Special solution techniques are needed
On the other hand the multiplicative Schwarz method applied to a
Shishkin mesh discretization works well:
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GMRES
Multiplicative Schwarz

N=198, ε = 10−4, ω = 1, β = 0, u(0) = u(1) = 0.

Can we prove this analytically?



The multiplicative Schwarz method

I The multiplicative Schwarz iterative scheme is

xk+1 = Txk + v , T = (I − P2)(I − P1), k = 0, 1, 2, . . . ,

where the vector v is defined such that the scheme is
consistent, i.e., x = Tx + v .

I The focus on each local domain is achieved using restriction
operators:

R1 = [In 0] , R2 = [0 In] .

I The matrices corresponding to the solves on the two separate
subdomains are:

Pi = RT
i (RiAR

T
i )−1RiA, i = 1, 2.



Error at each step

The error of the multiplicative Schwarz iteration is given by

ek+1 = uN − xk+1 = (TuN + v)− (Txk + v) = Tek ,

and hence ek+1 = T k+1e0 by induction.

For any consistent norm ‖ · ‖, we have

‖ek+1‖ ≤ ‖T k+1‖ ‖e0‖ ≤ ‖T‖k+1 ‖e0‖.



Convergence based on structure

Exploiting the structure of the iteration matrix T we show:

Lemma [E., Liesen , Szyld, Tichý, 2016]

The iteration matrix in the multiplicative Schwarz iteration is given by

T =


0 . . . 0

t1

...
tn+1

...
tN−1

0 . . . 0


= t eTn+1.

Therefore, T 2 = t (eTn+1 t) eTn+1 = tn+1 T , and

‖T k+1‖ = |tn+1|k ‖T‖ .

How can we bound |tn+1|, and ‖T‖ in a convenient norm (‖ · ‖∞)?



Convergence analysis
Details
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Convergence analysis
Bounding

(
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)
m,m

and
(
A−1

h

)
1,1

A matrix B = [bi ,j ] is called a nonsingular M-matrix when

I B is nonsingular,

I bi ,i > 0 for all i , bi ,j ≤ 0 for all i 6= j ,

I and B−1 ≥ 0 (elementwise).

If AH and Ah are nonsingular M-matrices, then using [Nabben 1999],

(
A−1

H

)
m,m
≤ min

{
1

|bH |
,

1

|cH |

}
,

(
A−1

h

)
1,1
≤ min

{
1

|bh|
,

1

|ch|

}
.

A sufficient condition: The sign conditions & irreducibly diagonal
dominant ⇒ nonsingular M-matrix. [Meurant, 1996], [Hackbusch, 2010]



Convergence analysis
The upwind scheme

The matrices AH and Ah are M-matrices, and using the rank-one
structure of the iteration matrix, we know that the error satisfies:

‖e(k+1)‖∞
‖e(0)‖∞

≤ ρk‖T‖∞.

Theorem [E., Liesen , Szyld, Tichý, 2016]

For the upwind scheme we have

ρ ≤ ε

ε+ ωH
, and ‖T‖∞ ≤

ε

ε+ ωH
.



Convergence analysis
The central difference scheme

I Ah is still an M-matrix.

I If ωH > 2ε, i.e. bH > 0, then AH is not an M-matrix
. . . the most common situation from a practical point of view.

I Recall
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I How to bound

(
A−1

H

)
m,m

? . . . results by [Usmani 1994]

I We proved: If m = N/2− 1 is even, then

bH(A−1
H )m,m ≤

1−
∣∣∣bHcH ∣∣∣m∣∣∣ cHbH ∣∣∣+
∣∣∣bHcH ∣∣∣m <

2mε

ε+ ωH
2

.



Convergence analysis
The central difference scheme

Ah is M-matrix, if ωH > 2ε, AH is not an M-matrix.

Theorem [E., Liesen , Szyld, Tichý, 2016]

Let m = N/2− 1 be even, and let ωH > 2ε. For the central
difference scheme we have

ρ <
2mε

ε+ ωH
2

< N
ε

ε+ ω
N

, and ‖T‖∞ < 2.

I Standard convergence results: asymptotic and only for
symmetric problems using the CG method.

I Our results: for a class of nonsymmetric, nonnormal problems
and descriptive from the first step.



Numerical examples

Consider
−εu′′ + u′ = 1, u(0) = 0, u(1) = 0,

i.e.
ω = 1, β = 0, f (x) ≡ 1 .

For various values of the diffusion parameter ε we have:

ε ρup our bound ρcd our bound

10−8 9.4× 10−7 9.9× 10−7 1.8× 10−4 3.9× 10−4

10−6 9.4× 10−5 9.9× 10−5 1.8× 10−2 3.9× 10−2

10−4 9.3× 10−3 9.8× 10−3 8.3× 10−1 3.8× 10−0

We can see that the bounds fit closely the numerical results.

ρup <
ε

ε+ ωH
. ρcd <

2mε

ε+ ωH
2

.



Numerical examples
Upwind, ε = 10−8
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Numerical examples
Upwind, ε = 10−4
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Numerical examples
Central differences, ε = 10−8
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Numerical examples
Central differences, ε = 10−4
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Schwarz method as a preconditioner

We have the consistent scheme

xk+1 = T xk + v .

Hence, x solves Ax = b and also “the preconditioned system”

(I − T )x = v .

We can formally define a preconditioner M such

Ax = b ⇔ M−1Ax = M−1b ⇔ (I − T )x = v .

Clearly M = A(I − T )−1. Then

xk+1 = xk + (I − T )(x − xk)

= xk + M−1rk .



Schwarz method as a preconditioner for GMRES

I The multiplicative Schwarz method as well as GMRES
applied to the preconditioned system obtain their
approximations from the same Krylov subspace.

I In terms of the residual norm, the preconditioned GMRES
will always converge faster than the multiplicative Schwarz.

I Moreover, in this case, the iteration matrix T has rank-one
structure, and

dim (Kk(I − T , r0)) ≤ 2.

I Therefore, GMRES converges in at most 2 steps,
motivating the use of the preconditioner for higher
dimensional cases.

I Practical point of view: when using inexact solves
convergence may deteriorate.



Numerical example
Upwind Finite Differences, N = 198, ε = 10−4, ω = 1, β = 0

We can compare the behavior of the unpreconditioned and
preconditioned GMRES method:
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Summary & Conclusions

I We considered finite difference discretizations of the
singularly-perturbed convection-diffusion-reaction equation
posed on a Shishkin mesh.

I Exploiting the structure of the discretized operators we have
developed descriptive bounds that describe convergence from
the first iteration.

I For the upwind and central finite differences we proved rapid
convergence of the multiplicative Schwarz method in the most
relevant cases.

I Due to the rank-one structure of T , the preconditioned
GMRES converges in two steps.

I Details in: C. Echeverŕıa, J. Liesen, D. Szyld, and P. Tichý,

[Convergence of the multiplicative Schwarz method for singularly perturbed

convection-diffusion problems discretized on a Shishkin mesh, 2016, submitted]
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