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Abstract

We present a new brittle fracture simulation method based on a
boundary integral formulation of elasticity and recent explicit sur-
face mesh evolution algorithms. Unlike prior physically-based sim-
ulations in graphics, this avoids the need for volumetric sampling
and calculations, which aren’t reflected in the rendered output.
We represent each quasi-rigid body by a closed triangle mesh of
its boundary, on which we solve quasi-static linear elasticity via
boundary integrals in response to boundary conditions and loads
such as impact forces and gravity. A fracture condition based on
maximum tensile stress is subsequently evaluated at mesh vertices,
while crack initiation and propagation are formulated as an inter-
face tracking procedure in material space. Existing explicit mesh
tracking methods are modified to support evolving cracks directly
in the triangle mesh representation, giving highly detailed fractures
with sharp features, independent of any volumetric sampling (un-
like tetrahedral mesh or level set approaches); the triangle mesh rep-
resentation also allows simple integration into rigid body engines.
We also give details on our well-conditioned integral equation treat-
ment solved with a kernel-independent Fast Multipole Method for
linear time summation. Various brittle fracture scenarios demon-
strate the efficacy and robustness of our new method.

CR Categories: G.1.9 [Mathematics of Computing]: Numerical
Analysis—Integral Equations; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

Keywords: dynamics, fracture, rigid body, boundary integrals,
triangle mesh, Fast Multipole Method

1 Introduction

High-quality rigid body fracture has been a popular research topic
in computer graphics, with the purpose of increasing realism and
plausibility in computer-generated animation. Fracturing effects
such as shattering glass, destruction of a cement wall or blowing up
a space battleship greatly affect the immersive user experience in
computer games, virtual reality and film industry. Roughly speak-
ing, current state-of-the-art approaches can be categorized into two
groups: (1) crack propagation and (2) volume decomposition. The
first category uses a volume discretization to solve for the underly-
ing elastic dynamics, and applies some crack growth criteria, such
as principal stress hypothesis (Rankine hypothesis), critical strain
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Figure 1: A glass goblet broken into multiple shards (left), with
corresponding fracture propagation shown in the material space
(right). Only the surface mesh is used for both the physical compu-
tation and fracture propagation.

energy release rate (Griffith criterion) and minimum strain energy
density (Beltrami hypothesis), to propagate fractures inside the ma-
terial. These methods are generally physically realistic, but entail
significant computational cost due to either the poor scaling behav-
ior of the physical system or the complexity of the unstructured
volumetric grid’s remeshing operation. The second category starts
with spatial decomposition of the object instantly, instead of wait-
ing for the crack propagation process to create new fractured pieces.
Such a simplified strategy gives rise to computational efficiency and
flexible control of fragment generation, which is essential and at-
tractive to graphics experts, practitioners and users. However, the
potentially unpredictable physically inconsistent behavior caused
by this simplification might require significant post-processing.

Our goal is to design a new rigid body fracture algorithm that is
physically plausible and computationally efficient. We present a
surface-only method to handle both physical computation and frac-
ture evolution by formulating the quasi-static elasticity problem as



an indirect boundary integral equation and using explicit mesh-
based interface tracking technique (see Figure 1). By making use
of the indirect formulation, we eliminate the non-trivial null space
in the system of free-flying objects, which is an inherent problem
for the direct formulation. Elastic stress tensors, which are the cru-
cial ingredient for our fracture initiation and fracture propagation
method, can be thus written in a consistent analytical form. We
initiate and propagate crack interface in the spirit of the Rankine
hypothesis. Each crack front will be generated and evolved under
the principal stress flow in the object’s material space explicitly and
independently. We use existing robust mesh-based surface track-
ing methods, but incorporate significant modifications in order to
adapt the tracking algorithm to our fracture evolution problem. The
explicit approach not only avoids the need for a signed distance
volume grid but also preserves tiny surface geometrical features.
Another benefit is that our method can be easily combined with any
popular rigid body dynamics engine by using an explicit surface
representation. In our implementation, we use a velocity level linear
complementary programming (LCP) rigid body solver. The phys-
ical equation using our indirect formulation is well-conditioned,
and discretization of the integral equation leads to a dense sys-
tem, which is small relative to the the sparse system that arises in
the volumetric approach, but it nonetheless requires a sophisticated
solution approach. To that end, we modify a kernel-independent
Fast Multipole Method and combine it with a BiCG-STAB iterative
solver, to obtain a linear runtime in the number of surface triangles.

In summary, our core technical contributions are as follows:

• we have developed the first rigid body fracturing physical sim-
ulation that only requires surface representation and surface
mesh operations;

• we have designed and implemented a new well-conditioned
indirect boundary integral formulation for the linear quasi-
static elasticity problem;

• we offer the first explicit mesh-based surface tracking algo-
rithm for the rigid body brittle fracture problem.

We also highlight the flexibility of the kernel-independent Fast Mul-
tipole Method designed for the linear time n-body fast summation,
which to the best of our knowledge has not been previously used in
computer graphics models and applications.

2 Related Work

Fracture Simulation. Since the pioneering work of Terzopoulos
and Fleischer [1988] and Norton et al. [1991], fracture modeling
has been an important part of physically based animation and in-
teractive virtual environment. In their seminal work, O’Brien and
his collaborators [O’Brien and Hodgins 1999; O’Brien et al. 2002]
simulated brittle and ductile fracture by making use of the finite ele-
ment method (FEM). In order to deal with the elastodynamic prob-
lem, researchers used a corotational formulation to handle large
deformation and fracturing effects [Müller and Gross 2004; Irv-
ing et al. 2004; Parker and O’Brien 2009]. One of the most chal-
lenging problems in FEM-based fracture simulation arises from the
topology change of the volumetric mesh. Mesh elements cut by
the crack front must be dynamically remeshed so as to have the
simulation domain conform with the fracture surface [O’Brien and
Hodgins 1999; Wicke et al. 2010]. A näıve treatment, like deleting
elements or aligning the crack plane with the elements’ boundary,
may lead to a jagged result. Molino et al. [2004] and Sifakis et
al. [2007] introduced a virtual node algorithm to decouple material
domain and simulation domain by duplicating elements necessary
for modeling the topological change. To avoid volumetric mesh up-
dates, Pauly et al. [2005] and Steinemann et al. [2006] developed

meshless fracturing methods as a composition of mesh free simu-
lation and crack front tracking. Unlike these fracture propagation
approaches based on surface reconstruction or crack synthesis, we
develop a new crack front tracking algorithm using simple trian-
gle mesh operations similar to explicit mesh-based surface track-
ing techniques [Brochu and Bridson 2009; Da et al. 2014]. More-
over, by formulating the linear quasi-static stress analysis [Müller
et al. 2001; Bao et al. 2007; Zheng and James 2010] in our indirect
boundary integral formulation, we place all degrees of freedom on
the surface only and get rid of the visibility graph as required by
previous meshless methods. Other interesting fracturing work in-
cludes thin sheet problem [Kaufmann et al. 2009; Busaryev et al.
2013; Pfaff et al. 2014], Voronoi diagram methods [Bao et al. 2007;
Su et al. 2009; Müller et al. 2013] and material strength field syn-
thesis [Chen et al. 2014].

Boundary Integral Equations. Boundary integral equations (BIE)
are reformulations of boundary value problems for partial differen-
tial equations (PDEs). They have been present in the mathemat-
ics literature for almost two centuries, and engineers have made
much use of them for solving a wide range of real-world problems.
Their promise, motivating the present work, is to significantly re-
duce the number of degrees of freedom compared to volumetric
methods, and simplify the geometric part of the problem to surface
meshes only. For example, to solve elasticity in a region with an n-
element surface mesh, a BIE solver accelerated by FMM or similar
strategies takes O(n) time, and needs nothing more than the sur-
face mesh. By comparison, a uniform tetrahedral mesh conforming
to the surface would contain O(n1.5) elements, and the common
solver choice of a sparse Cholesky factorization would take O(n2)
space and O(n3) time.

The use of BIE methods in physical animation dates back to the
work of James and Pai [1999], who formulated the elastostatic
problem as direct boundary integral. Such a formulation is suit-
able for elliptic PDEs with Dirichlet boundary conditions, but it
has a nontrivial null space with pure Neumann boundary condi-
tion, for example a free flying rigid object. Researchers addressed
this problem within the FEM framework and overcame it by an-
choring degrees of freedom or projecting out the null space alge-
braically [Müller et al. 2001; Bao et al. 2007; Zheng and James
2010]. Our own approach is to tackle this ill-conditioned PDE
by exploring an indirect boundary integral formulation which has
previously been applied to vortex sheets [Brochu et al. 2012] and
ocean waves [Keeler and Bridson 2014]. A primary characteris-
tic of our method is that it involves solving a second kind Fred-
holm integral equation, which is guaranteed to be well-conditioned.
More details are provided in § 4.2. Other graphics applications
of BIE include the vortex method [Park and Kim 2005; Weiss-
mann and Pinkall 2010; Golas et al. 2012], time harmonic sound
rendering [James et al. 2006] and diffusion curve imaging [Sun
et al. 2014]. BIE has also been widely explored in mechanic field,
such as elstostatic problem, elastodynamics and fracture analy-
sis, using various discretization approaches including collocation
scheme [Blandford et al. 1981], Bubnov Galerkin [Frangi 2002],
Petrov Galerkin [Sladek et al. 2004], etc. Approaches consider-
ing elastic wave include time-domain boundary element formula-
tion [Messner and Schanz 2010], dual reciprocity method [Portela
et al. 1992] as well as time-harmonic solution [Rezayat et al.
1986]. Since dynamic approach involves special treatment on crack
tip during fracture propagation to keep numerical accuracy [Ang
2014], we instead look at the problem from a quasistatic point of
view. We also refer interested readers to [Chunrungsikul 2001] for
more discussions on singular integral quadrature.

Crack Front Tracking. Conventional FEM-based Lagrangian
fracture methods use volumetric mesh cutting algorithms to keep
track of fracture propagation. See [Wu et al. 2014] for a compre-



Algorithm 1 Rigid Body Fracture Simulation Loop

1: solve rigid body dynamics [fig. 2a]
2: estimate rigid body contact force [fig. 2b]
3: solve layer potential for elastostatic problem [fig. 2c]
4: apply stress analysis on surface nodes [fig. 2d]
5: add local maximum nodes to fracture node listN
6: set fracture line list L ←Crack Initiation(N )
7: for each line l in L
8: label all nodes, except the ends, of l as active
9: end for

10: while L 6= ∅ do
11: apply stress analysis on active crack nodes of L [fig. 2d]
12: label nodes as inactive if they fail on Rankine condition
13: assign propagation velocity to active crack nodes [eq. (9)]
14: Crack Propagation(L, sub timestep) [fig. 2e]
15: end while
16: update rigid body list if new fragments are created

hensive and detailed review of previous cutting algorithms in the
literature. Our fracture propagation algorithm is mostly related to
the mesh-based surface tracking techniques [Brochu and Bridson
2009; Da et al. 2014] which have been successfully applied to mul-
tiphase flow. We make several essential modifications to the mesh
operation strategy of the LosTopos library [Da et al. 2014] in or-
der to resolve the particular physical behaviour of crack initiation
and propagation. Our mesh operation strategy does depend on the
crack opening criterion. We use the Rankine condition, because
it seems to be much more effective than the Griffith energy type
approach [Hegemann et al. 2013] in preserving volume. The Rank-
ine approach provides us with the flexibility to control crack open
thickness, and it yields a physically convincing simulation result.

Fast Integral Equation Solver. Compared with FEM or the finite
difference method (FDM) for PDEs, the boundary integral formu-
lation has the advantage of having fewer degrees of freedom. How-
ever, the fact that unknown variables in BIE are all coupled leads to
dense system after discretization, which hinders the direct applica-
tion of a powerful iterative linear system solver. By using the low-
rank property of n-body interaction with non-oscillatory kernel, al-
gorithms of O(N) or O(Nlog N) complexity for matrix-vector mul-
tiplication have been developed since 1980’s, including particle-
particle/particle-mesh (P 3M ) [Hockney and Eastwood 1988], tree
code [Barnes and Hut 1986], panel clustering [Hackbusch and
Nowak 1989] and fast multipole method (FMM) [Greengard and
Rokhlin 1987]. A second class of methods are wavelet compression
techniques [Alpert et al. 1993], which lead to sparse and asymp-
totically well-conditioned approximations of the coefficient matrix.
Applications of the fast iterative dense system solver in computer
graphics include deformable material [James and Pai 2003], radios-
ity rendering [Hanrahan et al. 1991], fluid simulation [Brochu et al.
2012; Keeler and Bridson 2014] and sound rendering [Zheng and
James 2010]. Instead of applying a spherical multipole expansion
to the kernel function which is a second order tensor in the elasto-
static case, we introduce a radial basis function (RBF) style based
kernel independent FMM in § 5 by simplifying the implementation
of Ying et al. [2004]. By utilizing the RBF field approximation, we
are able to write the multipole expansion, multipole to multipole
(M2M), multipole to local (M2L), local to local (L2L) and local
expansion in a simple consistent form.

3 Algorithm Overview

Our rigid body fracture simulation method is closely related to the
work by Müller et al. [2001], Bao et al. [2007] and Zheng and

Figure 2: A graphical visualization of Algorithm 1: our rigid body
simulation loop is composed of (a) Rigid Body Dynamics, (b) Re-
solving Contact, (c) Solving Layer Potential, (d) Stress Analysis and
(e) Fracture Propagation.

James [2010], who also applied a quasi-static linear elastic model
to stress analysis. We use an LCP-based rigid body simulator [Er-
leben 2007] for the purpose of stability and simplicity. We are not
discussing rigid body simulation in this paper but refer interested
readers to [Bender et al. 2012] for a comprehensive review. Fig-
ure 2 provides a brief illustration of the work flow in our fractur-
ing system, while detailed major steps in each timestep iteration
are summarized in Algorithm 1. Each iteration starts with a rigid
body simulation, and contact forces are computed for each object.
If there are rigid bodies in contact, the contact forces and the grav-
itational forces will be transformed into the material space, respec-
tively, and used as Neumann boundary conditions and inhomoge-
neous terms for our boundary integral equation. The dense system
generated by such integral equation will be solved using the BiCG-
STAB iterative solver [van der Vorst 1992], combined with a fast
summation method. Once we obtain the layer potential, we can
evaluate elastic deformation, like displacement and stress, in the
material domain. Such information will be used to start and prop-
agate fracture by checking the Rankine condition. Finally, after all
fractures finish propagating or cut completely through the material,
we update the rigid body list if there are new fragments generated
by fracturing process.

Due to the characteristics of rigid bodies, linear elasticity is suit-
able for simulating material undergoing small deformations. Even
though the quasi-static model doesn’t capture elastic wave propa-
gation, which affects fracture as noted by Glondu et al. [2013], our
indirect boundary integral can be extended to elastodynamic model
similarly to acoustic scattering models [James et al. 2006]. Such an
extension could be easily combined with our other modules.

4 Boundary Element Simulation

4.1 Elastostatic Constitutive Model

We assume that the material to be simulated always satisfies hy-
perelastic and isotropic properties. Traditional approaches involve
defining the elastic constitutive relation from an energy density and
using the first Piola Kirchhoff stress tensor, P. However, for the
boundary element method used in this paper, it is necessary to build
the model upon the second Piola Kirchhoff stress tensor, S. By so
doing, we obtain a linearized mapping between the displacement
u(x) and the stress tensor S(x), with a small deformation assump-



(a) (b) (c)

Figure 3: (a) A general material domain enclosed by two codimen-
sion one embedded submanifolds (lines); (b) When the submanifold
is exterior to the enclosed domain, it constructs an interior poten-
tial field whose jumping condition on it is positive; (c) Otherwise, it
constructs an exterior potential field with a negative jumping con-
dition. The surface normal is consistent and always pointing out of
the material domain.

tion:

F(x) = ∇u(x) + I, x ∈ Ω

ε(x) =
1

2
(F(x) + FT (x))− I, x ∈ Ω

S(x) = C : ε(x), x ∈ Ω

(1)

Here F is the deformation gradient and Ω represents the material
space. ε is a linearized right Cauchy-Green strain tensor, and C
denotes a symmetric fourth order material elasticity tensor. The
specific linear elasticity model we use is

S = 2µε+ λtr(ε)I,

where λ, µ are Lamé parameters.

Similar to previous approaches [Bao et al. 2007; Su et al. 2009;
Müller et al. 2013], we adopt a quasi-static physical model in the
stress analysis, by ignoring the influence of the elastic waves on
fracture propagation. That is, there are no inertia terms, and we
obtain the simplified equations

∇ · σ(x) = g, x ∈ Ω

σ(x) · n(x) = f(x), x ∈ ∂Ω,
(2)

where g and f represent body forces such as gravity and boundary
traction or contact force, respectively. Notice that σ represents the
Cauchy stress tensor, which is related to S via

σ =
1

det(F)
FSFT . (3)

Even though in general the stress tensors σ and S are different, it
can be shown that they are equivalent under geometrical lineariza-
tion when the deformation is small. By substituting σ into Equa-
tion 1, we actually obtain the Navier-Cauchy equation, which is
solved using a direct boundary integral formulation in [James and
Pai 1999] to accomplish interactive haptic rendering.

4.2 Indirect Boundary Integral

We now explore the elliptic characteristics of Navier-Cauchy equa-
tion and transform the PDE into an indirect boundary integral equa-
tion using potential theory. A similar idea has been applied to po-
tential flow [Brochu et al. 2012; Keeler and Bridson 2014] in com-
puter graphics to solve Laplace’s equation. In our case, we are deal-
ing with a Poisson-style equation concerning the inhomogeneous
term due to g. We represent the displacement solution u(x), when
x lies in the material domain Ω enclosed by m codimension one

embedded submanifolds ∂Ωp, as shown in Figure 3, as a layer po-
tential with an additional potential term to account for the body
force:

u(x) =

m∑
p=0

∮
∂Ωp

Φ(‖x− y‖2)ρ(y)dy

+

∮
∂Ωp

ℵ(‖x− y‖2)⊗2 g⊗3 nydy, x ∈ Ω

(4)

where the first summand is a single layer potential term while the
second is a Newton potential term [Meßner 2008]. Such a represen-
tation only handles Neumann boundary conditions, as we focus on
free-flying rigid body fracturing in this project. A complete solu-
tion could be achieved by incorporating a double layer potential to
account for Dirichlet boundary conditions which appear frequently
in articulated body simulation. The operator ⊗n is a conventional
n-mode tensor vector multiplication, defined as follows using Ein-
stein notation:

M⊗n v =MI1I2···In···IN vIn

M∈ RI1×I2×···In···×IN , v ∈ RIn×1
(5)

Φ(r) and ℵ(r) are, respectively, the fundamental solution and a
higher order fundamental solution’s gradient of the Navier-Cauchy
equation:

Φij(r) =
1

8πµr

[
2δij −

(
λ+ µ

λ+ 2µ

)
(δij − r,ir,j)

]
ℵijk(r) =

r,k
8πµ

− 1

32πµ

(
λ+ µ

λ+ 2µ

)
χijk(r)

(6)

where

χijk(r) = δijr,k + δikr,j + δjkr,i + r,ir,jr,k.

δ is the Kronecker delta. ρ(y) denotes the charge density of layer
potential in potential theory and it is the unknown variable in our
formulation. To solve for ρ(y), we use Equation 2 combined with
Equation 1 and Equation 3, which yields

f(x) = κ(x)ρ(x) +

m∑
p=0

∮
∂Ωp

∂ℵ(‖x− y‖2)

∂nx
⊗2 g⊗3 nydy

+
1

2

∮
∂Ωp

C :
(

Γ(x, y) + ΓT (x, y)
)
· nxdy, x ∈ ∂Ωq

(7)

where

κ(x) = sgn(∂Ωq)
ω(x)

4π
, x ∈ ∂Ωq

Γ(x, y) = ∇xΦ(‖x− y‖2)ρ(y), x ∈ ∂Ωq, y ∈ ∂Ωp.

The quantity κ(x)ρ(x) accounts for the jump behavior of the sec-
ond integral operator when x approaches the domain’s boundary;
sgn(∂Ω) is a sign function which equals 1 when ∂Ω encloses an
interior domain and −1 otherwise; and ω(x) is a solid angle at the
node x. Note that both f(x) and g(x) are represented in the material
space. For a more detailed derivation of the layer potential model
we presented in this section, please refer to Section 1 of the supple-
mental material.

4.3 Boundary Element Discretization

In general the solution of an elliptic PDE can be represented as a
single layer potential, double layer potential, or even a mixed po-
tential. Single layer potentials give rise to Fredholm equations of
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Figure 4: Upper: We compare our formulation and another on-
line implementation by solving the same problems with compatible
boundary conditions in a and b (ours) as well as with incompatible
boundary condition in c and d (ours); Lower: Problems with more
complicated domains e, g, h with zero Neumann boundary condi-
tions on the circle, 1 on one pair of square sides and−1 on the other
pair. A solution for a simple square domain f is also included, for
comparison.

the second kind after taking the normal derivative, which leads to
a well-conditioned linear system for Neumann boundary problem
after discretization. Such well-conditioning property is guaranteed
by the Fredholm Alternative theory from functional analysis. In
Figure 4 (a, b, c, d), we compare our implementation with an-
other mixed potential method [Kirkup and Yazdani 2008] for 2D
Laplace’s problem. Both methods achieve similar results for com-
patible boundary conditions; see (a, b). On the other hand, our
method generates a smoother solution in (d), as opposed to (c), for
incompatible boundary conditions. We also show that our approach
can be easily applied to more complicated domains in (e, f, g, h).

We discretize Equation 7 using piecewise constant shape functions,
and adopt a collocation scheme at triangle centroids:

(D + A)ρ = f− g̃ (8)

where D is diagonal with nonzero entries corresponding to
κ(x)ρ(x), and f collects all the discretized boundary tractions. A is
a dense matrix corresponding to the second summand on the right-
hand side of Equation 7, while g̃ is composed of the first summand.
Please refer to Section 1.4 of the supplemental material for assem-
bly details of Equation 8. After obtaining the layer potential ρ by
solving the above equation, we can evaluate the deformation dis-
placement using Equation 4 and elastic stress by substituting the
displacement into Equation 1 at any point in the material. 3D elas-
tic results with displacements evaluated on the boundary surface
and volume energy visualization are shown in Table 1. Other dis-
cretization approaches, including the Galerkin projection method,
Nyström method combined with high order quadrature rules like
quadrature by expansion (QBX) [Köckner et al. 2013], can also be
applied to obtain higher order convergence rates.

During the fracturing process, we need to run stress analysis at can-
didate nodes, either for the purpose of opening a crack or propa-
gating a crack. We evaluate the elastic stress at these positions and
compute the eigendecomposition of it directly, due to the quasi-
static elasticity assumption. The maximum positive eigenvalue is
used to decide whether a candidate node should undergo material
failure, or its fracture propagation velocity if it is already a crack
node.

original mesh deformed mesh elastic energy

Table 1: Elastic deformation solved by the indirect boundary in-
tegral formulation. first row: applying a point force load on the
top face; second row: twisting the cube; third row: stretching the
object.

5 Fast Multipole Method

Although the sum of D and A in Equation 8 forms a well-
conditioned matrix, its dense structure hinders the application of
powerful iterative linear system solvers. By making use of a fast
summation method like FMM, we can achieve linear running time
to solve the dense system; see, for example, the work by Sun et
al. [2014] for a clear introduction to 2D FMM. The same frame-
work can be extended to the 3D version by replacing the Laurent
expansion with a spherical multipole expansion of the kernel func-
tion [Greengard and Rokhlin 1987]. Instead of applying such a
complicated expansion to our second order tensor kernel function,
we introduce a simplified kernel-independent FMM which only re-
quires kernel evaluation. Our work is closely related to [Ying et al.
2004]. Instead of using a layer potential as they did, we make use
of an RBF-style method to approximate far-field interactions. More
specifically, for boundary integrals with different integrands (kernel
functions), we choose corresponding kernel function as the RBF ba-
sis for our FMM, so there is no need for either kernel expansions or
extra layer potential evaluations.

Given a cluster of particles lying on a smooth manifold, our kernel-
independent FMM starts with building an octree spatial partition.
For each octree node that has a non-empty interaction list, we assign
two virtual bounding spheres as illustrated in Figure 5a. The virtual
sphere is identified as either a representing sphere or a checking
sphere. The RBF basis is placed on the exterior sphere to approxi-
mate the influence from far field to local, while the interior sphere
is used to approximate the influence from local to far field. To de-
termine the RBF’s coefficients α, we evaluate the values η on the
checking sphere (the first step in Figure 5a, b, c, d and e) and solve
a linear system Kα = η (the second step in Figure 5a, c, d and e).
As opposed to the Tikhonov regularization solver used by [Ying
et al. 2004], we observe that our matrix K is well-conditioned, and
therefore we solve the system directly by computing the LU de-
composition of the matrix. By fixing the size of both virtual spheres
relative to the size of the octree node, we pre-compute the LU fac-
torization for a cubic box with unit length once at the beginning and
apply it with a sizing multiplier$ during run time. $ is the scaling
factor of octree node relative to the unit box. We present the RBF
approximation of a 2D problem in Figure 6.

Finally, we follow the conventional FMM scheme and complete our



(a) Multipole Expansion (b) Local Expansion (c) Multipole to Multipole (d) Multipole to Local (e) Local to Local

Figure 5: A 2D illustration of RBF based (a) multipole expansion (b) local expansion (c) multipole to multipole translation (d) multipole to
local expansion (e) local to local translation. Circles in blue are checking circle while circles in green are representing circle. The red arrows
point from known data to the unknowns we want to solve. Numbers on the arrows represent the order of computation.

(a) Exact Potential (b) RBF Potential (c) Relative Error

Figure 6: An illustration of the use of an RBF method to approx-
imate a 2D anisotropic exterior potential field: (a) exact far field
generated by 1e5 particles with random mass placed nonuniformly
inside the center black box (b) approximated far field by only 10
degrees of freedom placed at red dots (representing circle) and red
stars are checking circle (c) relative error between exact field and
approximated field

fast summation in three steps. First, we traverse the octree structure
in a bottom-up order, applying multipole expansions to leaf nodes
as well as multipole-to-multipole translations to each node (Fig-
ure 5a, c). The expansion results are stored as RBF coefficient vec-
tors for each traversed node. Next, a multipole-to-local expansion
step is taken between each tree node and nodes in its interaction
list as shown by Figure 5d. We finish the summation by traversing
top-down through the octree, aggregating the far-field influences by
applying local-to-local translations to each node (Figure 5e) as well
as an additional composition step to each leaf node. In the com-
position step, we use a local expansion to account for far-field in-
fluences (Figure 5b) and a direct summation for the influence from
near-field particles. Please see Section 2 of the supplemental ma-
terial for a thorough discussion of the implementation details. A
runtime comparison between our FMM and brute force summation
is provided; see Table 2 and Figure 7.

By making use of FMM, we can compute matrix-vector products in
linear time. To solve Equation 8, we combine FMM with the BiCG-
STAB iterative solver and achieve fast convergence as well as an

Model Vertices FMM(s) BF(s) Error(L∞)
star 2675 5.639 0.095 1.1e-5
armadillo 23245 6.522 7.071 2.15e-4
fertility 220332 56.642 648.971 7.7e-5
moebius 704480 273.339 6577.087 4.3e-5
dragon 3609600 949.959 206429.02 6.1e-5

Table 2: Detailed input information, algorithm timing and accu-
racy for tests shown in Figure 7 run (sequentially) on a desktop
with an Intel i7-3770K and 16GB of memory.

Figure 7: Runtime comparison between an O(n2) brute force
method (red), O(n) complexity (green dash) and our FMM (blue)
using the 3D Navier-Cauchy equation’s fundamental solution as an
RBF basis.

accurate solution. More detailed numerical results are provided in
§ 7.

6 Fracture Propagation Tracking

Traditional physically-based fracture simulation generates and
evolves cracks by cutting through volumetric mesh elements. Cut-
ting algorithms have been developed for different kinds of elements,
including tetrahedra, polyhedra and point clouds [Wu et al. 2014].
To avoid volumetric mesh cutting and remeshing, meshless meth-
ods have been proposed to track crack evolution in the material
space directly with an additional surface reconstruction or construc-
tive solid geometry (CSG) step [Pauly et al. 2005; Steinemann et al.
2006]. We present a new explicit crack-tracking algorithm that is
computationally cheaper than volumetric methods, utilizing local
triangle mesh operations (see Figure 8). Our approach uses a sur-
face tracking library [Da et al. 2014], but we have made significant
modifications for crack tracking.

6.1 Mesh-Based Surface Tracking

The explicit surface tracking approach has become increasingly
popular recently, as it preserves more geometric details than
implicit methods. Interesting applications include viscoelastic



Figure 8: Propagating fracture following a predefined path on
sphere (left) and bunny (right). Bottom row shows the mesh quality
of crack surface.

objects [Wojtan et al. 2009], water [Brochu et al. 2010] and
smoke [Brochu et al. 2012]. We extend this idea to rigid body brit-
tle fracture simulation by explicitly tracking the crack propagation
in the material space. We make the same assumption as Hegemann
et al. [2013], namely that material failure starts from the bound-
ary surface. Such an assumption ignores fracturing effects starting
in the interior of the material, but is still acceptable for rigid body
fracturing led by contact interaction or user cuts, which are the most
common scenarios in computer graphics. It would be possible in fu-
ture work to extend our method to support interior cracks by adding
volumetric evaluation samples and inserting tiny ellipsoid meshes
at crack starting positions.

6.2 Contact Force Model and Fracture Criteria

As we use a velocity level LCP-based rigid body solver to resolve
rigid body contact. The physical outputs are contact impulses Ic
instead of contact forces fc. To compute the corresponding contact
forces, we estimate the contact duration td similarly to Koschier
et al. [2014]. Then we assume a constant force acting during the
whole contact period, which leads to a simple contact force model
fc = Ic/td. After we transform all contact forces for an object to
its material space, we use them as traction boundary conditions for
the elastostatic problem of that object and solve for ρ of the layer
potential as described in § 4.3.

To open and propagate a crack, we evaluated two different cracking
criteria, the Rankine condition and Griffith energy minimization. A
shape optimization-based minimal energy approach gives rise to a
direct way for crack propagation under the gradient descent flow,
but suffers from inevitable volume loss depending on surface reso-
lution, which is also evident in Hegemann et al.’s results [2013]’s
results. By making use of the Rankine condition, we can control
the volume loss, which is independent of surface resolution, by a
user-defined crack thickness. Such parameter can be set very small
to meet the visualization requirement.

Figure 9: crack initiation first applies local remeshing (A1) and
then propagates active crack node into the material (A2).

Figure 10: crack extension extends the crack line when the end
point either satisfies Rankine condition or a smoothness criterion.

Algorithm 2 Crack Initiation(N )

1: clear fracture line list L
2: sortN into descending order based on principal stress
3: for each node v inN
4: if v lies in 1-ring of lines in L
5: continue
6: else
7: l←Open Crack(v)
8: add l into L
9: end if

10: end for
11: return L

6.3 Fracture Initiation and Propagation

After solving the layer potential problem, we apply stress analy-
sis to each vertex on the boundary surface. We choose vertices
whose principal stress value is larger than a user-specified thresh-
old, and maximal among all its 1-ring neighbours, as candidates to
open cracks. Once we have a candidate list, we process them se-
quentially. To open a crack at a given vertex, we first compute the
cutting line on its 1-ring triangle by the crack plane. If the cutting
line is almost aligned with a 1-ring edge, we will replace it with
the edge in order to avoid a degenerate triangle. Next, we offset the
crack plane along its normal and opposite direction by a thickness
parameter specified by the user. We then compute how these two
planes intersect the vertex’s 1-ring edge and apply local remeshing,
as illustrated in Figure 9: the three red coloring nodes will com-
pose a new crack line, from which the center node will be an active
node which can evolve into the material while the other two will
be inactive at this moment to represent the ends of the crack line.
Once a crack line is generated, it will be stored in a crack line list.
An overview of our fracture initiation procedure can be found in
Algorithm 2.

To evolve a crack line in the material space, we propose a crack
velocity model as follows and use it to propagate each active node
on the crack line.

vcp = α(h− proje(h)) (9)

where h is the unit vector that bisects the angle composed of the cor-
responding crack node and its two nearby crack nodes, proje(·) is
the orthogonal projection onto the principal eigenvector e of stress
tensor. The bisection strategy contributes to a relative smooth crack
front, as there is no physical rule on how a crack node (a synthetic
construct of our geometric representation) should propagate within
the plane defined by the principal eigenvector of stress. α is a scalar
product of principal eigenvalue, a control parameter regarding the
mesh resolution and a scaling factor tuned by the user which we
set to 0.5. We also check the direction of the propagation velocity
vector to enforce movement into the material. The overline symbol
denotes unit vector. As presented in Figure 10, the end points of
a crack line can become active according to the following criteria:
(a) Rankine condition; (b) crack line smoothness. If one end e of
the crack line becomes active, we will apply a crack extension op-
eration. We compute the cutting line on the 1-ring triangles of e
and choose the one which spans a larger angle with the crack line
to avoid an inverting crack. Then we apply the same crack plane
offset cutting and remeshing operation as described in crack open-
ing operation. Finally, we activate e and use the extended point as
the new end of the crack line.

As presented in Algorithm 3, a substep time integration will be ap-
plied when we propagate the crack lines. During each substep,
we propagate each crack line sequentially and handle crack line



Algorithm 3 Crack Propagation(L, sub timestep)

1: dt← sub timestep
2: for each line l in L
3: Update Node Position(l, dt)
4: for each active node v in l
5: if v hits boundary surface
6: label v as inactive
7: end if
8: end for
9: Local Remeshing(l)

10: Crack Line Smoothing(l)
11: Feature Preserved Smoothing(l)
12: Crack Line Extension(l)
13: if number of active nodes in l equal 0
14: Update Mesh Topology(l)
15: remove l from L
16: end if
17: end for

splitting and merging operations. When a crack line is touching
the boundary surface, we apply vertex snapping operation similar
to [Da et al. 2014] and mark the corresponding vertices on the crack
line as inactive. The propagation process of a crack will stop if all
vertices lying on it are inactive. An intuitive 2D illustration is pre-
sented in Figure 11. A merge operation occurs when a crack line
forms a loop during the process of propagation as in Figure 12. We
model this loop using crack circle and apply the same operation to
it as crack line in terms of propagation, smoothing and remeshing.
If two different crack lines intersect with each other, we apply a
passive strategy to deactivate both of them.

When a crack circle degenerates to a point or a non-manifold line,
we regard this as material separation and apply a separation oper-
ation by a local mesh connectivity update (see Figure 8 left). We
also check if any two nearby nodes on a crack line or a crack circle
are labeled as inactive. If so, we apply a topology change operation
to account for crack cutting through material. Given two inactive
crack node, we first use an average crack plane to cut through the
material boundary surface colored in blue as in Figure 13. The
crack plane will create a path on the surface mesh by intersection.
A local remeshing operation will be applied following the inter-
section path. Next, we open the path and delete the two triangles
sharing the same edge defined by the two inactive crack nodes on
the crack surface colored in green. Finally, we close up the mesh
by connecting the hanging vertices with new triangles.

Figure 11: crack splitting splits one crack line by deactivating
crack nodes that touch the boundary surface.

Figure 12: crack merging turns a crack line into a crack circle
when a loop is detected during the propagation.

Figure 13: crack topology change is applied to the non-manifold
crack nodes. (B1) We use an interpolated cutting plane to locally
remesh the boundary surface (blue). (B2) We then delete the tri-
angles sharing the edge of two nearby nodes on the material sur-
face (green) and thicken the inserted crack on the boundary surface.
(B3) Finally, we stitch up the mesh to make it a closed manifold.

6.4 Remeshing Operation

Mesh quality is always an essential component of physical simu-
lation. During the substep time integration, a remeshing operation
will be applied within each substep, as mentioned in Algorithm 3.
Various metrics as well as remeshing approaches have been pro-
posed for volumetric and surface meshes. Our remeshing opera-
tions are similar to what have been reported in [Brochu and Brid-
son 2009; Da et al. 2014], including edge splitting, edge collapsing,
edge flipping. In addition, we make several extra modifications for
valid operations to keep the crack line consistent before and after
remeshing, which are listed as follow:

• During edge splitting, if one of the edge vertex is non-crack
node, the new vertex is also non-crack node. Otherwise, the
new vertex is a crack node.

• During edge collapsing, if both edge vertices are crack node
or non-crack node, the merged vertex will be crack node or
non-crack node respectively. Otherwise, the merged vertex
will be a crack node.

• An edge flipping operation will take place if and only if at
least one vertex of the candidate edge and one of the new edge
are non-crack nodes.

Besides the above local remeshing operations, during each step we
also apply a small amount of ridge preserving smoothing and crack
line smoothing operations.

7 Results and Discussion

Both the single layer potential and Newton potential kernel func-
tions in Equation 6 and their gradients are singular. In our imple-
mentation, we mollify the singular kernel by clamping the distance
variable r to 10−5m and apply Gaussian quadrature on each trian-
gle when assembling the discretized linear system in Equation 8. To
verify our physical model, we implement solvers for the 2D Lapla-
cian problem in Matlab (Figure 4) and the 3D elastostatic problem
in C++ (Table 1). The 2D tearing result, shown in the submission
video, is composed of a plane stress model implemented in Matlab
and a 2D ElTopo tracking library mexed from C++. The linear sys-
tem is generated by a second kind Fredholm equation and is usually
well-conditioned. We achieve convergence in less than 50 iterations
(mostly 20 to 30) using a BiCG-STAB solver for all the examples
we show in this paper. By replacing the matrix vector multiplication
operations with FMM in each iteration, we achieve a linear running
time with the model’s surface resolution. In our FMM implementa-
tion, each octree node will be accompanied by two virtual spheres



Figure 14: Three sculptures on a dinner table are generated using our mesh based brittle fracturing method. Our explicit tracking approach
preserves tiny but interesting surface details during fracture propagation.

Figure 15: Crack propagation inside the material due to constant
external forces applied in the opposite direction at the top and bot-
tom face.

as illustrated in Figure 5. For a unit cube centered on the origin,
we place both spheres, interior and exterior, co-centered with the
cube. The size of the interior sphere and exterior sphere are set to
1.2 and 3.0 respectively. This stencil is applied to each octree node
and scaled according to its size.

Our fracture propagation method is built on LosTopos, an explicit
surface tracking library. As mentioned in § 6.3 and § 6.4, we
modify the remeshing and topological changing strategies to adapt
fracture propagation problem. Our current approach doesn’t sup-
port adaptivity, so we pre-process all the downloaded mesh files at
the beginning of each simulation (Figure 1, Figure 15, Figure 14,
Figure 16), which is composed of several steps of remeshing and
feature-preserved smoothing. In Figure 8, we show examples of
crack propagation following a user defined path. The result is ren-
dered in wireframe so the mesh updates can be clearly seen when
the crack cuts through the model. During the physical simulation,
we adopt the crack growth idea that brittle material requires sig-
nificantly higher energy to start a new crack than to lengthen an
existing crack by the same distance, as mentioned in [Smith et al.
2001], and use two different Rankine conditions for fracture ini-
tiation and fracture propagation. These two condition numbers as
well as the crack thickness can be tuned by an artist, even varying
them in material space, to achieve the desired fracturing pattern and
simulation result.

We implemented a velocity level LCP based rigid body solver for

Case LPSC(s) BiCG-STAB SEC(s) CTC(s)
ceramic plate 176.349 8 ∼ 29 3.383 0.877
mode I crack 404.492 22 17.008 1.472
glass goblet 363.396 4 ∼ 33 8.411 1.92
hollow sphere 289.146 4 ∼ 26 3.857 1.043
dinner table 397.443 7 ∼ 47 14.736 1.185

Table 3: Runtime cost details for the 3D fracture simulation cases
included in this paper. LPSC: average layer potential solve cost;
BiCG-STAB: BiCG-STAB iterations; SEC: average stress evalua-
tion cost per fracture propagation step; CTC: average crack track-
ing cost per fracture propagation step.

Figure 16: Rigid body brittle fracture simulation of plate (up) and
hollow sphere (down) with respective fracture propagation in the
material space (second & third column).

results shown in Figure 1, Figure 14 and Figure 16. In Figure 14, we
apply different Lamé parameters and Rankine condition numbers to
each object to achieve a different fracturing behavior. In Figure 1
and Figure 16, we demonstrate how the fractures propagate in the
material space due to the rigid body contacts in the world space. We
use the explicit Euler method for time integration and adopt a rela-
tively small simulation timestep, 0.001s, in order to resolve enough
contacts for fracture generation. Detailed runtime information of
the simulation results is listed in Table 3. Our collision detection
method is based on signed distance field versus point shell to han-
dle general non-convex shapes. These modules can be replaced by
other rigid body dynamic engines based on explicit mesh contact,
like Bullet. In the example of Figure 15, we apply a pair of con-
stant forces in the opposite direction at the top and bottom faces of
the volumetric shape, and demonstrate how the crack initiates and
propagates inside the material.

Limitations and Future Work Since our implementation is very
aggressive in aiming to eliminate all volumetric degrees of free-
dom, there are some limitations in our proposed method. For ex-
ample, we don’t consider the case where material failure starts in
the interior. Secondly, our passive strategy of dealing with crack
merging can be further improved with more understanding of the
physical behavior of this phenomenon. These limitations are items
for future work. Additional themes for future investigation include
developing more accurate quadrature rules for singular kernel in-
tegration, mesh adaptivity for explicit surface tracking, decoupling
between the physical simulation’s degrees of freedom and tracking
mesh resolution, GPU parallization of kernel independent FMM,
etc.



8 Conclusion

By combining an indirect boundary integral formulation, explicit
surface tracking and a kernel-independent fast multipole method,
we present the first effective method for rigid body brittle fracture
using the boundary surface mesh only, and demonstrate its merits.
Our method provides a novel direction for qualitative fracture simu-
lation. It is accurate, and at the same time computationally econom-
ical, and it successfully resolves crack evolution in various settings.
We have demonstrated the method’s potential, and have pointed out
a few directions for further exploration and improvement.
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