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Abstract. We introduce a new approximate inverse preconditioner for a mixed finite element
discretization of an incompressible magnetohydrodynamics model problem. The derivation exploits
the nullity of the discrete curl-curl operator in the Maxwell subproblem. We show that the inverse of
the coefficient matrix contains zero blocks and use discretization considerations to obtain a practical
preconditioner based on further sparsification. We demonstrate the viability of our approach with a
set of numerical experiments.
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1. Introduction. Incompressible magnetohydrodynamics (MHD) describes the
flow of an electrically conductive fluid in the presence of a magnetic field [2, 7, 11, 21].
Given a sufficiently smooth domain Ω, consider the steady-state incompressible MHD
model [11, Chapter 2]:

−ν∆u+ (u · ∇)u+∇p− κ (∇× b)× b = f in Ω,(1.1a)

∇ · u = 0 in Ω,(1.1b)

κνm∇× (∇× b) +∇r − κ∇× (u× b) = g in Ω,(1.1c)

∇ · b = 0 in Ω.(1.1d)

Here u is the velocity, p is the hydrodynamic pressure, and b is a magnetic field and the
Lagrange multiplier associated with the divergence constraint on the magnetic field
is denoted by r. The vector functions f and g represent external forcing terms. The
three dimensionless parameters that characterize this model are the hydrodynamic
viscosity ν, the magnetic viscosity νm, and the coupling number κ.

To complete the model, we consider the inhomogeneous Dirichlet boundary con-
ditions:

u = u0 on ∂Ω,(1.2a)

n× b = n× b0 on ∂Ω,(1.2b)

r = r0 on ∂Ω(1.2c)
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B58 MICHAEL WATHEN AND CHEN GREIF

with n being the unit outward normal on ∂Ω and u0, b0, and r0 being the functions
defined on the boundary.

We will consider two nonlinear iteration schemes—Picard iteration and Newton’s
method. Using the notation

uk+1 = uk + δu, pk+1 = pk + δp,

bk+1 = bk + δb, rk+1 = rk + δr,

where ∗k+1 is the k + 1st iteration of either the Picard or Newton’s iteration, the
linearized system can be written as

(1.3)

−ν∆δu+ (uk · ∇)δu+ α(δu · ∇)uk

+ ∇δp− κ(∇× δb)× bk − ακ(∇× bk)× δb = ru,

∇ · δu = rp,

κνm∇× (∇× δb) +∇r − κ∇× (δu× bk)− ακ∇× (uk × δb) = rb,

∇ · δb = rr,

where

ru = f −
[
−ν∆uk + (uk · ∇)uk +∇pk − κ (∇× bk)× bk

]
,

rp = −∇ · uk,

rb = g −
[
κνm∇× (∇× bk) +∇r − κ∇× (uk × bk)

]
,

rr = −∇ · bk,

and

(1.4) α =

{
0 for Picard,
1 for Newton.

In subsequent sections, additional details on the schemes and the associated linear
systems will be provided. Those systems have an interesting block structure, and the
properties of their corresponding discrete operators may in some cases be exploited to
obtain effective sparse approximations, based on Schur complements or null spaces.

In recent years, interest in the development of block preconditioning methods for
the MHD model has increased; see [1, 6, 16, 24, 25, 29, 30, 31]. One of the main
questions explored in those papers is how to approximate the Schur complements
that arise in the course of forming the block matrices associated with the iterative
solution procedure. While good scalable iterations with respect to mesh refinement
are obtained, so far fully scalable iterations for large three-dimensional (3D) problems
with high coupling numbers have not been fully developed. In this paper, we develop a
new formula for the inverse of the coefficient matrix and use it to introduce a scalable
block approximate inverse preconditioner. In the course of our derivation, we build
upon and utilize the approximations and techniques used in [24, 25, 31] for block
triangular preconditioners.

The remainder of the paper is structured as follows. In section 2 we introduce
the finite element discretization that we use, discuss a few properties of the discrete
operators, and present the linear system that arises from the discretization. In sec-
tion 3, we derive a new formula for the inverse and show that the (exact) inverse
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APPROXIMATE INVERSE PRECONDITIONER FOR MHD B59

has a few zero blocks. In section 4, we approximate Schur complements that appear
in the formula by sparse operators and derive a new approximate inverse formula.
In section 5, we use the approximate Schur complement to form a block triangular
preconditioner. Section 6 presents numerical experiments that demonstrate the via-
bility and effectiveness of this preconditioning approach. Finally, we offer some brief
concluding remarks in section 7.

2. Discretization. We consider a finite element discretization of the MHD
model (1.1)–(1.2), where the hydrodynamic unknowns (u and p) are discretized with
any stable mixed finite elements and the magnetic and multiplier unknowns are dis-
cretized through a mixed edge and nodal element pair. Using the same formulation
as [31], we use Taylor–Hood elements [28] for (u, p) and the lowest order Nédélec [23]
pair for (b, r). This choice of mixed finite elements avoids the need to stabilize the
fluid/pressure variables and provides conforming H(curl) elements for the magnetic
variables.

2.1. Finite element spaces. The mixed finite element approximation used
for (1.1)–(1.2) was introduced and analyzed in [27]. Thus, we find the weak solu-
tion (u, p, b, r) in the standard Sobolev spaces

u ∈ V =
{
v ∈ H1(Ω)d : v = u0 on ∂Ω

}
,

p ∈ Q = { q ∈ L2(Ω) : (q, 1)Ω = 0},

b ∈ C =
{
c ∈ L2(Ω)d : ∇× c ∈ L2(Ω)d̄, n× c = n× b0 on ∂Ω

}
,

s ∈ S = {r ∈ H1(Ω) : r = r0 on ∂Ω},

where we use (·, ·)Ω for all L2-inner products and use d̄ = 2d− 3 to define the curl
operator for both 2D and 3D vector fields [12].

Note that appropriate boundary conditions are incorporated as part of the defi-
nition of the spaces. In general, the issue of boundary conditions is rather involved
and is strongly connected to the problem at hand and the domain. It requires tak-
ing into account geometric and physical conservation considerations, as the extensive
discussion in [11, Chapter 4] demonstrates. For our model problem, Dirichlet bound-
ary conditions are incorporated. For a discussion of Neumann and other boundary
conditions we refer the reader to [11, 18, 25] and the references therein.

Let the domain Ω be divided into regular meshes Th = {K} made up of triangles
(d = 2) or tetrahedra (d = 3) with mesh size h. We will seek the weak solution
(uh, ph, bh, rh) in the finite element spaces

uh ∈ Vh = {u ∈ V : u|K ∈ P2(K)d, K ∈ Th },

ph ∈ Qh = { p ∈ Q ∩H1(Ω) : p|K ∈ P1(K), K ∈ Th },

bh ∈ Ch = { b ∈ C : b|K ∈ R1(K), K ∈ Th },

rh ∈ Sh = { r ∈ S : r|K ∈ P1(K), K ∈ Th },

(2.1)

where we denote Pk(K) and R1(K) as the space of polynomials of degree at most k
and the space of Nédélec vector elements of the first kind [20, 23], respectively. From
the linearization in (1.3), the weak formulation of the problem is given by finding
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B60 MICHAEL WATHEN AND CHEN GREIF

(δuh, δph, δbh, δrh) ∈ Vh ×Qh ×Ch × Sh such that

F̃ (uk
h; δuh,v) +B(v, pkh) + C̃(bkh;v, δbh) = Ru(uk

h, b
k
h, p

k
h;v),

B(δuh, q) = Rp(uk
h; q),

M̃(uk
h; δbh, c)− C(bkh; δuh, c) +D(c, δrh) = Rb(u

k
h, b

k
h, r

k
h; c),

D(δbh, s) = Rr(bkh; s)

(2.2)

for all (v, q, c, s) ∈ Vh ×Qh ×Ch × Sh, where

F̃ (w;u,v) = F (w;u,v) + αFNT(w;u,v),

C̃(d;v, b) = C(d;v, b) + αCNT(d;v, b),

M̃(w; b, c) = M(b, c) + αMNT(w; b, c).

We use the subscript NT to denote Newton linearization. The linearization is
around (uk

h, b
k
h), and thus the right-hand side represents the residual at the current

iteration (uh, ph, bh, rh):

Ru(uk
h, b

k
h, p

k;v) = (f ,v)Ω − F (uk
h;uk

h,v)− C(bkh;v, bkh)−B(v, pkh),

Rp(uk
h; q) = −B(uk

h, q),

Rb(u
k
h, b

k
h, r

k; c) = (g, c)Ω −M(bkh, c) + C(bkh;uk
h, c)−D(c, rkh),

Rr(bkh; s) = −D(bkh, s),

.(2.3)

The Picard forms that define (2.2) are given as

(2.4)

F (w;u,v) = ν(∇u,∇v)Ω +
(
(w · ∇)u,v

)
Ω
, B(u, q) = −(∇ · u, q)Ω,

M(b, c) = κνm(∇× b,∇× c)Ω, D(b, s) = (b,∇s)Ω,

C(d;v, b) = κ
(
v × d,∇× b

)
Ω
,

and the Newton forms are given by

(2.5)

FNT(w;u,v) =
(
(u · ∇)w,v

)
Ω
,

CNT(d;v, b) = κ
(
v × b,∇× d

)
Ω
,

MNT(w; b, c) = −κ
(
w × b,∇× c

)
Ω
.

2.2. The linear system. Upon discretization of the weak formulation in (2.2)–
(2.3) with the corresponding forms given by (2.4), we obtain the following linear
system:

(2.6)


F + αFNT BT CT + αCT

NT 0
B 0 0 0
−C 0 M + αMNT DT

0 0 D 0




δu
δp
δb
δr

 =


ru
rp
rb
rr


with

ru = f − Fuk − CT bk −BT pk,

rp = −Buk,
rb = g −Muk + Cbk −DT rk,

rr = −Dbk,
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APPROXIMATE INVERSE PRECONDITIONER FOR MHD B61

where F is a discrete convection-diffusion operator, B is a fluid divergence operator,
M is the curl-curl operator, D is the magnetic divergence operator, and C represents
the coupling terms. The dimensions are denoted as follows:

(2.7) dim(δu) = nu, dim(δp) = mu, dim(δb) = nb, and dim(δr) = mb.

System (2.6) needs to be solved repeatedly, with changing right-hand sides, through-
out the nonlinear iteration.

2.3. Null spaces. To complete the introduction of mathematical objects that we
will be using for solving the problem, we establish notation and a necessary property
of the null spaces involved. The function spaces that we are using allow for a seamless
transition between the continuous and the discrete forms. Similarly to [13, section 2.2],
we introduce the Helmholtz decomposition. To aid our discussion, let us denote the
basis functions for the finite element spaces Ch and Sh in (2.1) as

Ch = span〈φj〉nb
j=1 and Sh = span〈βi〉mb

i=1.

Thus, ∇Sh ⊂ Ch such that there is a matrix G ∈ Rnb×mb :

∇βj =

nb∑
i=1

Gijφj for j = 1, . . . ,mb.

Given a function rh ∈ Sh defined by rh =
∑mb

j=1 rjβj ,

∇rh =

nb∑
i=1

mb∑
j=1

Gijrjφj ,

such that for q ∈ Rmb , we have

(2.8) b = Gr,

describing the coefficient vectors of

(2.9) bh = ∇rh

in terms of the basis functions. For the lowest order elements the entries of G are

(2.10) Gij =


1 if node j is the head of edge i,

−1 if node j is the tail of edge i

0 otherwise.

In a similar fashion to [13, Proposition 2.2], we now establish two useful matrix
equalities.

Proposition 2.1. The following relationships with respect to the discrete gradi-
ent operator, G, hold:

1. MG = 0,
2. CTG = 0.

Proof. By (2.4), the bilinear form for CT is given by

C(dh;vh, bh) = κ
(
vh × dh,∇× bh

)
Ω
.
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B62 MICHAEL WATHEN AND CHEN GREIF

The bilinear form for M is given in the same equation, too. Incorporating (2.9)
into the above given bilinear form for C and using subsequently the tensor identity
∇×∇rh ≡ 0, we see that on the continuous level C(dh;vh,∇rh) = 0. Incorporating
the relation for the discrete relationship (2.8), the result for CT follows. Trivially, for
M the same relation holds, given that it has the same null space.

We note that the matrix properties in Proposition 2.1 do not hold in a more
general setting, with nonconstant coefficients or an irregular mesh.

Next, we consider the null spaces for the discrete operators associated with the
Newton iteration. In Proposition 2.1 we define the null space for CT . Now, consider
the continuous representation of the coupling terms from (1.3):

CT ↔ (∇× δb)× bk, CT
NT ↔ (∇× bk)× δb,

C ↔ ∇× (δu× bk), MNT ↔ ∇× (uk × δb),

where↔ denotes an association between the matrix and its corresponding continuous
form. We recall that (δu, δb) are the unknowns and (uk, bk) is the solution at the
previous step. It is straightforward to find an expression for δb and the null space
of CT . However, the null space of CT

NT is significantly harder to compute, since the
solution at the current nonlinear iteration would have to be in the same direction as
the curl of the solution at the previous nonlinear iteration. This is also the case for
the null spaces of C and MNT.

Despite the challenge in explicitly forming null spaces for the operators associated
with the Newton iteration, in practice we observe that we can successfully apply the
same solution techniques we use for the Picard iteration. We illustrate this in section 6.

3. A new formula for the inverse of the MHD coefficient matrix. Ex-
amining (2.6), we observe that for the purpose of designing a block preconditioner, it
may be useful to understand the properties of M +αMNT and CT +αCT

NT. The case
α = 0 corresponds to the Picard iteration, and those two matrices reduce to M and
CT , respectively. We have established in Proposition 2.1 that the null space of those
matrices is identical, given by G. In this section we show that this property can be
exploited to derive a new formula for the inverse.

Let us denote by K the coefficient matrix in the MHD model (2.6) and write it as

K =

(
KNS KT

C

−KC KM

)
,

where KNS is the Navier–Stokes matrix, KC is the block for the coupling, and KM is
the Maxwell matrix:

(3.1)

KNS =

(
F BT

B 0

)
, KM =

(
M DT

D 0

)
,

KT
C =

(
CT 0
0 0

)
, KC =

(
C 0
0 0

)
.

Then, by [5, equation (3.4)], the inverse is given by

(3.2) K−1 =

(
K−1

NS +K−1
NSKT

CS−1KCKNS
−1 −K−1

NSKT
CS−1

S−1KCKNS
−1 S−1

)
,

where S denotes the Schur complement,

(3.3) S = KM +KCK−1
NSK

T
C.

D
ow

nl
oa

de
d 

03
/1

0/
20

 to
 1

42
.1

03
.2

9.
12

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

APPROXIMATE INVERSE PRECONDITIONER FOR MHD B63

The inverses K−1
NS and S−1 appear multiple times in (3.2), and we now derive

explicit formulas that further reveal their block structure. Notably, using results that
have appeared in [9], we show that S−1 has a zero (2,2) block.

Let us denote the inverse of the Navier–Stokes coefficient matrix as

K−1
NS =

(
K1 K2

K3 K4

)
,

and let

(3.4) L = DG and MF = M + CK1C
T +DTW−1D.

We then have the following useful result.

Lemma 3.1. The inverse of the Schur complement, S, can be written as

(3.5) S−1 =

(
M−1

F (I −DTL−1GT ) GL−1

L−1GT 0

)
,

where G is the null space of M and MF and L are defined in (3.4).

Proof. Writing out all the matrices involved in formula (3.3) for S, we have

S =

(
M + CK1C

T DT

D 0

)
.

By Proposition 2.1, the discrete gradient operator is the null space of M and CT , and
therefore

(3.6) null(M + CK1C
T ) = null(M) and dim(null(M)) = mb.

Thus, the (1,1) block of the Schur complement has the maximum nullity which still
allows a nonsingular saddle-point system. Therefore, using [9, equation (3.6)], the
inverse of the Schur complement is given by (3.5).

The lemma and the null space properties of the discrete operators involved can
now be used to generate a new formula for K−1, which shows the remarkable property
that this inverse of the MHD coefficient matrix has five zero blocks.

Theorem 3.2. The inverse of the MHD coefficient matrix, namely, K−1, is given
by

(3.7) K−1 =


K1 −K1ZK1 K2 −K1ZK2 −K1C

TM−1
F H 0

K3 −K3ZK1 K4 −K3ZK2 −K3C
TM−1

F H 0

M−1
F CK1 M−1

F CK2 M−1
F H GL−1

0 0 L−1GT 0

 ,

where L is defined in (3.4),

Z = CTM−1
F C, and H = I −DTL−1GT .

Proof. The proof is rather straightforward and is based on using the result of
Lemma 3.1, along with the following observation. From the inverse formula in (3.2)
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B64 MICHAEL WATHEN AND CHEN GREIF

we see that there are block operations of the form S−1KC in the (1, 1) and (2, 1)
blocks. Multiplying these out gives

(3.8) S−1KC =

(
M−1

F (I −DL−1GT )C 0

L−1GTC 0

)
=

(
M−1

F C 0

0 0

)
.

Using now (3.2) and Lemma 3.1, the block inverse formula in (3.2) is explicitly given
by (3.7), as required.

4. A new approximate inverse-based preconditioner. Having developed a
useful formula for the exact inverse of the MHD coefficient matrix, we now aim to find
a preconditioner based on sparsifying the formula in (3.7), by exploiting null space
properties and the magnitudes of coefficient matrix entries.

The inverse of the Navier–Stokes coefficient matrix is a useful quantity in the
derivation that follows. Using [5, equation (3.4)], it is given by

(4.1) K−1
NS =

(
K1 K2

K3 K4

)
=

(
F−1 − F−1BTS−1

NSBF
−1 −F−1BTS−1

NS

−S−1
NSBF

−1 S−1
NS

)
,

where
SNS = BF−1BT

is the fluid Schur complement.
Our strategy in general will be to use our new formula for the inverse of the

coefficient matrix and identify places where we may be able to drop elements of the
inverse while maintaining an effective approximation to it from a preconditioning
point of view.

4.1. Sparsification based on projection. The formula for S−1 is given in
(3.5). We now show that from a preconditioning point of view, it may be possible
to drop the dense matrix term DTL−1GT while preserving approximately the same
spectral properties of the preconditioned matrix.

To that end, observe that from Proposition 2.1 we have

HM = (I −DTL−1GT )M = M.

From (3.4), L is the product of the matrices D and G, which is equivalent to selecting
it to be a scalar Laplacian [13, Proposition 2.2], which is particularly appealing. Using
this definition of L, we obtain the useful relation

G = M−1
L DT , where ML = M +DTL−1D,

and from [9, Theorem 3.5], which states that

(4.2) DM−1
L DT = L,

we obtain
HDT = DT −DTL−1DM−1

L DT = 0.

By (4.2), we have

H2 = (I −DTL−1DM−1
L )(I −DTL−1DM−1

L )

= I − 2DTL−1DM−1
L +DTL−1DM−1

L DTL−1DM−1
L

= I − 2DTL−1DM−1
L +DTL−1DM−1

L = H.
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APPROXIMATE INVERSE PRECONDITIONER FOR MHD B65

Table 1
Relevant matrices and their approximate orders, entrywise, based on assuming that the mesh

size is sufficiently small and the PDE parameters are moderate in size.

Matrix Approximate order

F O(h−2)
B O(h−1)
C O(h−1)
ML O(h−2)

BF−1BT O(1)

Thus, H is an orthogonal projector onto the range space of M and the null space of
DT . This property is related to the discrete Helmholtz decomposition, which holds
in this case:

ker(M)⊕ ker(D) = Rn.

Based on the above derivation, we conclude that turning H into the identity may
give us an effective approximation to S−1:

(4.3) Ŝ−1 =

(
M−1

F GL−1

L−1GT 0

)
.

4.2. Sparsification based on discretization. Next, we further sparsify (4.3)
by considering the inverse of MF . To that end, we look at magnitudes of entries in
the matrices that make up MF . In the discussion that follows, we will assume that
the mesh size h is small and the parameters involved in the model are moderate, such
that we can perform an asymptotic analysis that allows us to drop terms merely based
on the order with respect to h.

The main bottleneck in forming and approximating MF is CK1C
T , where we

recall thatK1 is the (1, 1) block matrix of the inverse of the Navier–Stokes subproblem.
First, we rewrite MF as

MF = ML + CK1C
T with ML = M +DTL−1D.

Then, by the Sherman–Morrison–Woodbury formula,

(4.4) M−1
F = M−1

L −M−1
L CK1(K1 −K1C

TM−1
L CK1)−1K1C

TM−1
L .

From approximate matrix orders given in Table 1, we can approximate the ma-
trices in (4.4). We have numerically confirmed that

(4.5) K1 ≈ O(h2) and K1 −K1C
TM−1

L CK1 ≈ O(h2).

Taking the leading order approximation, we see that

M−1
L ≈ O(h2) and M−1

L CK1(K1 −K1C
TM−1

L CK1)−1K1C
TM−1

L ≈ O(h4).

Thus, we can use the approximation

(4.6) M−1
F ≈M−1

L .

Finally, using the definition of L in (3.4), which we recall is equivalent to L
being a scalar Laplacian, in [13, Corollary 3.2] the authors showed that M + X is
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B66 MICHAEL WATHEN AND CHEN GREIF

spectrally equivalent to M +DTL−1D. Thus, we replace ML by M +X in the final
approximation to the inverse of the Schur complement:

(4.7) S−1
approx =

(
M−1

X GL−1

L−1GT 0

)
,

where MX = M +X.
In a similar fashion to the approximation of MF , we consider the magnitude of

the matrix entries to further simplify the inverse formula in (3.7). From the defi-
nition of the inverse of the Navier–Stokes block in (4.1), we take the leading order
approximations of Ki for i = 1, 2, 3, 4, such that

K1 ≈ O(h2), K2 ≈ O(h), K3 ≈ O(h), and K4 ≈ O(1).

Using these approximations we observe that

Z = CTM−1
F C ≈ O(1),

and thus we take the leading order terms of the upper block 2-by-2 matrix of (3.7) to
obtain the approximation

(4.8)

(
K1 −K1ZK1 K2 −K1ZK2

K3 −K3ZK1 K4 −K3ZK2

)
≈
(
K1 K2

K3 K4

)
.

Hence, using (4.7)–(4.8) yields the following approximation of (3.7):

(4.9) P̃−1
1 =


K1 K2 −K1C

TM−1
X 0

K3 K4 −K3C
TM−1

X 0

M−1
X CK1 M−1

X CK2 M−1
X GL−1

0 0 L−1GT 0

 .

We recall that Ki, i = 1, 2, 3, 4, are defined in (4.1).
Finally, we consider the approximate orders of the individual blocks of (4.9). Re-

moving theO(h3) terms in the (1,3) and (3,1) blocks of (4.9) yields the approximation:

P−1
1 =


F−1 − F−1BTS−1

NSBF
−1 F−1BTS−1

NS 0 0

S−1
NSBF

−1 −S−1
NS −S−1

NSBF
−1CTM−1

X 0

0 M−1
X CF−1BTS−1

NS M−1
X GL−1

0 0 L−1GT 0

 .

Table 2 shows the number of solves or matrix-vector multiplies per linear iteration
for an efficient implementation of the approximate inverse preconditioner.

4.3. Spectral analysis. The effectiveness of our preconditioner is largely de-
termined by the spectral structure of the preconditioned matrix. For the eigenvalue
analysis below, we use P̃−1

1 in (4.9) for practical reasons; the analysis is significantly

easier in that case. The eigenvalue analysis for P̃−1
1 K provides a theoretical justifica-

tion for the use of the more practical preconditioner P−1
1 , and we use the latter for

the numerical results in section 6.
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Table 2
Number of solves and matrix-vector multiplies in applying P−1

1 to an arbitrary vector.

Solves/Multiplies Number of operations

F−1 4

A−1
p 3

Q−1
p 3

M−1
X 2

L−1 2

CT or C 2

BT or B 4
GT or G 2

The P̃−1
1 K is given by

(4.10) P̃−1
1 K =


Iu +K1C

TM−1
L C 0 K1C

T (I −M−1
L M) 0

S−1
NSBF

−1CTM−1
L C Ip S−1

NSBF
−1CT (I −M−1

L M) 0

0 0 M−1
L (M + CK1C

T ) G
0 0 0 Ir

 .

Let us introduce a few identities utilizing the null space properties of CT and ML.
Proposition 4.1 is particularly useful to simplify (4.10).

Proposition 4.1. The following relations hold:

(i) CT (I −M−1
L M) = 0,

(ii) CT (I +M−1
L M) = 2CT .

Proof. Since CT and M have the same null space, by Proposition 2.1 and the
Helmholtz decomposition, we obtain

CT (I −M−1
L M)b = CT (I −M−1

L M)d,

where d /∈ Null(M). Since M−1
L M is zero on the null space of M and the identity on

the range space of M ,
(I −M−1

L M) ∈ Null(M).

Therefore, identity (i) holds due to the fact that the null spaces of CT and M are the
same. Using similar arguments, identity (ii) can also be shown to be true.

Using Proposition 4.1 simplifies (4.10) to

(4.11) P̃−1
1 K =


Iu +K1C

TM−1
L C 0 0 0

S−1
NSBF

−1CTM−1
L C Ip 0 0

0 0 M−1
L (M + CK1C

T ) G
0 0 0 Ir

 .

In Theorem 4.2, (u, p, b, r) denote the incremental quantities from the nonlinear
iteration and the dimensions are defined in (2.7).

Theorem 4.2. The matrix P̃−1
1 K has an eigenvalue λ = 1 of algebraic multiplic-

ity at least nu − nb + 3mb +mu. The corresponding eigenvectors {vi}nu−nb+3mb+mu

i=1

are given by
vi = (ui, pi, bi, ri),

where ui ∈ Null(C), bi ∈ Null(M), and pi and ri are free.

D
ow

nl
oa

de
d 

03
/1

0/
20

 to
 1

42
.1

03
.2

9.
12

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B68 MICHAEL WATHEN AND CHEN GREIF

Fig. 1. Real (blue) and imaginary (red) parts of eigenvalues of preconditioned matrix P−1
1 K

using the smooth solution given in (6.2) of section 6.1. The dimensions of these matrices are
1399× 1399.

Proof. Since (4.11) is block diagonal where the two 2-by-2 blocks are also trian-
gular, generalized eigenvalue problem

P̃−1
1 Kv = λv,

where v = (u, p, b, r), can be written as

λu = (Iu +K1C
TM−1

L C)u,(4.12a)

λp = p,(4.12b)

λb = M−1
L (M + CK1C

T )b,(4.12c)

λr = r.(4.12d)

Consider λ = 1, and then (4.12b) and (4.12d) are automatically satisfied. Taking
u ∈ Null(C) and b ∈ Null(M + CK1C

T ), (4.12a) and (4.12c) also hold. Since from
Proposition 2.1, the null space of M and CT are the same, we choose b ∈ Null(M).

In practice, we use the approximate inverse preconditioner in P−1
1 with MX as the

approximation to the magnetic primal Schur complement and the pressure-convection
diffusion (PCD) approximation developed in [8] for the fluid Schur complement, SNS.
The PCD approximation is based on

(4.13) SNS = BF−1BT ≈ Ap F
−1
p Qp,

where the matrix Ap is the pressure Laplacian, Fp is the pressure convection-diffusion
operator, and Qp is the pressure mass matrix.

Figure 1 shows the eigenvalues of P−1
1 K for the first numerical experiment we

present in section 6. We see that the clustering around the eigenvalue λ = 1 is very
strong.

5. Block triangular preconditioning. A common preconditioning approach
in the literature for block systems is based on forming block triangular preconditioners.
Often this is done by forming block decompositions and approximating the Schur
complements arising within them. This approach is rather effective for the MHD
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APPROXIMATE INVERSE PRECONDITIONER FOR MHD B69

model, as shown in [24, 25, 31], in particular for 2D problems. When it comes to
3D problems, scalability is often lost as the mesh is refined or the coupling and/or
viscosity parameters vary.

In this section we return to this approach and show that the approximate block
Schur complement inverse we established in (4.7) gives us an opportunity to derive
a new preconditioner, which falls within the general category of block triangular
preconditioners. Let us define

(5.1) P̃2 =

(
KNS KT

C

0 −S

)
,

where KNS and KT
C are defined in (3.1) and S in (3.3). From [15, 22], under mild in-

vertibility conditions, the preconditioned matrix, P̃−1
2 K, has precisely two eigenvalues

±1 and is diagonalizable. We would therefore expect an appropriate Krylov subspace
solver to converge within two iterations in exact arithmetic.

The direct solve for the Navier–Stokes system is computationally costly, so we
approximate KNS with the Schur complement system:

(5.2) PNS =

(
F BT

0 −SNS

)
,

where SNS is the fluid Schur complement defined in (4.1). Using (5.2), we obtain the
practical preconditioner

(5.3) P2 =

(
PNS KT

C

0 −S

)
,

where PNS, KT
C and S are defined in (5.2), (3.1), and (3.3), respectively.

The preconditioner is interesting for this problem in terms of its spectral proper-
ties. In particular, as we did in section 4, we are able to take advantage of the common
null spaces of the matrices M and C to obtain strong clustering of the eigenvalues of
the preconditioned matrix. This is shown in Theorem 5.1, below.

Theorem 5.1. The matrix P−1
2 K has an eigenvalue λ = 1 of algebraic multiplic-

ity at least nu and an eigenvalue λ = −1 of algebraic multiplicity at least nb. The
corresponding (known) eigenvectors are given as

λ = 1 : with eigenvectors {vi}nb−mb
i=1 and {vj}nu

j=nb−mb+1, given as follows:

vi = (ui,−S−1Bui, bi, 0) and vj = (uj ,−S−1Buj , 0, 0),

where bi ∈ null(D) 6= 0, Cui = (2M + CK1C
T )bi and uj ∈ null(C).

λ = −1 : with eigenvectors {vi}nb−mb
i=1 and {vj}nb

j=nb−mb+1, given as follows:

(5.4) vi = (ui, 0, bi, ri) and vj = (0, 0, bj , rj),

where ui ∈ null(B) 6= 0, Fui + CT bi = 0, bj ∈ null(M), and ri and rj are
free.

Proof. The corresponding eigenvalue problem is
F BT CT 0
B 0 0 0
−C 0 M DT

0 0 D 0



u
p
b
r

 = λ


F BT CT 0
0 −SNS 0 0
0 0 −(M +KC) −DT

0 0 −D 0



u
p
b
r

 ,D
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B70 MICHAEL WATHEN AND CHEN GREIF

where KC = CK1C
T . The four block rows of the generalized eigenvalue problem can

be written as

(1− λ)(Fu+BT p+ CT b) = 0,(5.5a)

Bu = −λSNS p,(5.5b)

(1 + λ)(Mb+DT r) + λCK1C
T b− Cu = 0,(5.5c)

(1 + λ)Db = 0.(5.5d)

We split the eigenvalue analysis into two parts: λ = 1 and λ = −1.
λ = 1:

Equation (5.5a) is automatically satisfied. Equation (5.5b) simplifies to

p = −S−1
NSBu.

From (5.5d) we have Db = 0, and hence b ∈ null(D). Let us take r = 0, and
then (5.5c) yields

(5.6) Cu = (2M + CK1C
T )b.

Case 1. Consider b = 0, and then we have that Cu = 0. Hence, u must
be in the null space of C. Since

dim(null(C)) = nu − nb +mb,

this accounts for nu − nb +mb such eigenvectors.
Case 2. Consider 0 6= b ∈ null(D), and then Cu = (2M + CK1C

T )b.
Since the rank of C and (2M +CK1C

T ) is nb−mb, then the condition (5.6)
has at least nb −mb linearly independent eigenvectors.
Therefore λ = 1 is an eigenvalue with algebraic multiplicity at least nu.

λ = −1:
Equation (5.5d) is satisfied, and hence r is free. Simplifying (5.5c) gives

(5.7) CK1C
T b+ Cu = 0.

Let us take u ∈ null(B), and then p = 0 and the condition for b is

(5.8) Fu+ CT b = 0.

Under the condition that u ∈ null(B), (5.8) satisfies the equality (5.7).
Case 1. Consider u = 0, and then to satisfy (5.8) we require CT b = 0.

Therefore, we take b ∈ null(CT ). Since the null space of CT is made up of
discrete gradients, then

dim(null(CT )) = mb.

Case 2. Consider u ∈ null(B) and u 6= 0, and then from (5.8) we have
u = −F−1CT b. Since the rank of CT is nb−mb and F is full rank, then there
are only nb −mb such linearly independent b’s that determine u. Hence, for
this case we obtain at least nb −mb such eigenvectors.
Therefore λ = −1 is an eigenvalue with algebraic multiplicity at least nb.

P2 is defined in (5.3), but in practice we use the approximation for the inverse
of the Schur complement (4.7). The eigenvalues of the preconditioned matrix P−1

2 K
are represented in Figure 2. As with the eigenvalues for the approximate inverse
preconditioned matrix we see a small degradation of the eigenvalue clusters. However,
we still see strong clustering around 1 and −1.
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Fig. 2. Real (blue) and imaginary (red) parts of eigenvalues of preconditioned matrix P−1
2 K

using the smooth solution given (6.2). The dimensions of these matrices are 1399× 1399.

Table 3
Solution method for block systems associated with the preconditioners

Matrix Implementation method
Qp single AMG V-cycle
Ap single AMG V-cycle

F̂ or F Preconditioned AMG GMRES with tolerance 1e-2
M +X AMG method developed in [14] with tolerance 1e-2
W single AMG V-cycle

6. Numerical experiments. In this section we present several 3D numerical
results to illustrate the performance and scalability of our preconditioning techniques.

Experimental setup. We use FEniCS [19], a finite element software package,
to create the matrix system, and PETSc [3, 4] and HYPRE [10] to solve the resulting
system of equations.

We set the nonlinear stopping tolerance to 1e-4 and the linear solve tolerance as
1e-3. For all experiments we use FGMRES(30) [26] as the linear solver and Picard or
Newton for the nonlinear iteration schemes. The tolerances are not very strict, but
they are fairly realistic for this challenging problem.

In section 4 we described the preconditioning approach, with a focus on the Picard
iteration. For the Newton scheme, every solve associated with F and multiplication
associated with CT are replaced with F̂ = F+FNT and ĈT = CT +CT

NT, respectively,
as per (2.6). Table 3 details the methods that we use to solve the systems associated
with the block preconditioner. We note that G is constructed using (2.10).

We use the following notation:
• ` amesh level, DoFs is the total degrees of freedom, time is the average solve

time;
• itNL is the number of nonlinear/Newton iterations to solve;
• itO is the average number of linear/FGMRES iterations;
• itMX is the average of CG/auxiliary space iterations to solve M +X;
• itF is the average of FGMRES iterations to solve F̂ .

We have inserted P1 or P2 superscripts to time or it∗ to denote whether we use the
approximate inverse or block preconditioner, respectively.

D
ow

nl
oa

de
d 

03
/1

0/
20

 to
 1

42
.1

03
.2

9.
12

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B72 MICHAEL WATHEN AND CHEN GREIF

Fig. 3. Stream lines of the velocity solution of cavity driven problem with κ = 1e1, ν = 1e− 1,
νm = 1e− 1, and Ha =

√
1000.

6.1. 3D cavity driven flow. The first example we consider is the classic lid
driven cavity problem [8]. It is driven by the following Dirichlet boundary conditions:

(6.1)

u = (1, 0, 0) on z = 1,

u = (0, 0, 0) on x = ±1, y = ±1, z = −1,

n× b = n× bN on ∂Ω,

r = 0 on ∂Ω,

where bN = (−1, 0, 0). Figure 3 depicts the stream lines for the velocity solution.

Scalability results. Along with the nondimensional parameters (ν, νm, and κ)
described in section 1, we introduce the Hartmann number, which is equal to the ratio
of electromagnetic and viscous forces. It is defined as

Ha =

√
κ

ννm
.

The larger the Hartmann number is, the stronger the coupling between the electro-
magnetics and hydrodynamics variables, and thus the more challenging the setting is
for the numerical solution method.

Tables 4 and 5 show computational time and iteration counts using the approx-
imate inverse and block triangular preconditioners, applying both the Newton and
Picard nonlinear iteration schemes. Figures 4 and 5 show the timing results for a
single solve of the Newton and Picard system, referring to timeP1 and timeP2 in the
tables.

We can see that the approximate inverse preconditioner exhibits near-perfect scal-
ing with respect to the FGMRES iterations for both the Newton and Picard iterations.
On the other hand, the FGMRES iterations for the block triangular preconditioner
increase each mesh level for the harder problem, Ha =

√
1000. For the easier param-

eter setup, Table 4, we can see that both preconditioners yield scalable iterations.
The linear iterations for the Picard nonlinear scheme appear to be about half that
for the Newton system. We speculate that this is because the preconditioners we
derive are designed for the Picard iteration, for which it is easier to exploit the null
space properties of the operators involved, as explained in section 2.3. However, we
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Table 4
3D cavity driven using both the approximate inverse and block triangular preconditioner with

parameters κ = 1, ν = 1, νm = 1, and Ha = 1.

` DoFs timeP1 itP1
NL itP1

O itP1
MX itP1

F timeP2 itP2
NL itP2

O itP2
MX itP2

F

1 14,012 1.2 3 10.0 1.7 1.6 0.8 4 21.5 2.0 2.0
2 28,436 2.8 3 10.0 1.8 1.6 1.9 4 21.5 2.0 2.0
3 64,697 11.4 3 9.7 1.9 1.8 6.9 4 21.0 2.0 2.0
4 245,276 34.6 4 11.0 2.1 1.9 13.7 3 18.3 2.0 2.0
5 937,715 255.2 4 10.5 2.2 1.9 135.9 3 19.0 2.5 2.0
6 5,057,636 1979.2 3 9.7 2.7 2.1 2273.5 3 22.3 3.0 2.5

(a) Newton iteration, α = 1.

` DoFs timeP1 itP1
NL itP1

O itP1
MX itP1

F timeP2 itP2
NL itP2

O itP2
MX itP2

F

1 14,012 0.9 4 6.8 1.7 1.6 0.5 4 13.0 2.0 2.0
2 28,436 1.9 4 6.5 1.78 1.7 1.2 4 12.8 2.0 2.0
3 64,697 7.7 4 6.2 1.8 1.8 4.6 4 12.8 2.0 2.0
4 245,276 21.7 4 5.2 2.0 1.8 11.9 4 11.5 2.0 2.0
5 937,715 144.4 5 5.8 2.1 1.9 80.8 5 11.2 2.7 2.0
6 5,057,636 984.5 4 5.5 2.7 2.0 1074.7 4 11.8 3.1 2.5

(b) Picard iteration, α = 0.

Table 5
3D cavity driven using both the approximate inverse and block triangular preconditioner with

parameters κ = 1e1, ν = 1e− 1, νm = 1e− 1, and Ha =
√

1000.

` DoFs timeP1 itP1
NL itP1

O itP1
MX itP1

F timeP2 itP2
NL itP2

O itP2
MX itP2

F

1 14,012 7.6 4 57.0 2.0 2.0 5.6 4 146.2 2.0 2.0
2 28,436 22.2 4 56.2 2.0 2.0 14.9 4 147.2 2.0 2.0
3 64,697 66.0 4 56.0 2.0 2.0 47.8 4 154.2 2.0 2.0
4 245,276 271.5 4 56.0 2.1 2.0 205.6 4 160.5 2.2 2.0
5 937,715 1255.2 4 55.5 2.8 2.0 1003.9 4 168.8 2.9 2.0
6 5,057,636 17656.4 4 58.5 3.0 2.1 35563.2 4 217.5 3.0 2.0

(a) Newton iteration, α = 1.

` DoFs timeP1 itP1
NL itP1

O itP1
MX itP1

F timeP2 itP2
NL itP2

O itP2
MX itP2

F

1 14,012 6.2 5 43.0 1.9 2.0 3.5 6 93.0 2.0 2.0
2 28,436 15.4 6 42.5 1.9 2.0 10.3 6 98.3 2.0 2.0
3 64,697 48.0 6 41.8 2.0 2.0 35.4 6 113.2 2.0 2.0
4 245,276 212.9 6 43.0 2.3 2.0 153.3 7 114.6 2.2 2.0
5 937,715 1308.0 6 41.7 2.8 2.0 1306.8 7 116.0 2.9 2.0
6 5,057,636 19860.7 6 44.8 3.0 2.1 26196.3 7 141.6 3.1 2.1

(b) Picard iteration, α = 0.

still obtain good results using the Newton iteration. We note that for the highest
mesh level (` = 6) for both Tables 4 and 5 the approximate inverse preconditioner
yields lower iteration counts. In fact, for the more difficult problem (Ha =

√
1000)

the approximate inverse preconditioner is approximately four times quicker in terms
of iteration counts and almost exactly two times quicker in terms of computational
time than the block triangular preconditioner for ` = 6. From the timing results in
Figures 4 and 5, we see that the timings are approximately linear for most meshes.
We do see some mild deterioration for the larger meshes. Given the good scaling in
iterations and our observations about the computational cost per iteration, we would
expect that a fully optimized code would yield linear a scaling in timings.
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(a) Parameters: κ = 1, ν = 1, νm = 1, and
Ha = 1.

(b) Parameters: κ = 1e1, ν = 1e-1, νm = 1e-1,
and Ha =

√
1000.

Fig. 4. Timing results for cavity driven flow using the Newton iteration, α = 1.

(a) Parameters: κ = 1, ν = 1, νm = 1, and
Ha = 1.

(b) Parameters: κ = 1e1, ν = 1e-1, νm = 1e-1,
and Ha =

√
1000.

Fig. 5. Timing results for cavity driven flow using the Picard iteration, α = 0.

Computational cost of preconditioners. From the definition of the approx-
imate inverse preconditioner it is obvious that each iteration is more expensive than
the block triangular preconditioner. However, as seen in Table 4 and particularly in
Table 5, the scalability of the results for the approximate inverse preconditioner pro-
duce a significant speed up in solution time for the larger problems. Table 6 shows the
total number of solves and matrix-vector products for an application of the approx-
imate inverse and the block triangular preconditioners per linear iteration for mesh
level ` = 6 in Table 5. In the table, “Total FGMRES operations” denotes the total
number of solves or matrix-vector multiplies for one linear iteration (for the entire
linear system). Thus, the column is calculated by multiplying the number of applica-
tions of each individual matrix (i.e., the inverse of a matrix or matrix-vector products)
by the number of linear iterations, it∗O. For example, there are four applications of the
inverse F̃ using the approximate inverse preconditioner (see Table 2) at each linear
iteration and from mesh level ` = 6 in Table 5 the number of average FGMRES is
58.5, and thus the value for “Total FGMRES operations” would be 4 × 58.5 = 234.0.

From the table, we see that the approximate inverse preconditioner has a smaller
number of solves for both systems associated with vector-valued (F̂ and MX) and
scalar-valued (Ap, Qp and W ) matrices. Also, the total number of matrix-vector
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Table 6
Computational cost using P1 and P2 for mesh level ` = 6 in Table 5 for one solve of the full

linear system. The “Total FGMRES operations” column is calculated by multiplying the number of
individual matrix operations (see Table 2) by the number of linear iterations, it∗O. In this particular
instance, the iteration times for P1 and P2 can be extracted from the row corresponding to ` = 6 in
Table 5 and are 58.5 and 217.5, respectively.

Linear operations
P1 : itP1

O = 58.5 P2 : itP2
O = 217.5

Total FGMRES operations Total FGMRES operations

F̂−1 234.0 217.5

A−1
p 175.5 217.5

Q−1
p 175.5 217.5

M−1
X 117.0 217.5

L−1 117.0 217.5

ĈT or C 117.0 217.5

BT or B 234.0 217.5
GT or G 117.0 435.0

Total execution time 17656.4 35563.2

Fig. 6. Example Fichera corner domain for mesh level ` = 3.

products is smaller for the approximate inverse preconditioner. This is reflected in
the time it takes to solve this system, where the approximate inverse preconditioner is
faster than the block triangular one. We also note that the iterations in Table 5 remain
constant for the approximate inverse preconditioner compared to the block triangular
one. Therefore, for harder problems on larger meshes it seems that the approximate
inverse preconditioner is more efficient with respect to time and iterations.

6.2. Fichera corner. The second problem we consider is a smooth solution on
a nonconvex domain. Specifically, the domain is a cube missing a corner, and it is
known as the Fichera corner [17, section 4.3]. It is defined as

Ω = (0, 1)3/[0.5, 1)× [0.5, 1)× [0.5, 1).

An illustration of such a domain is given in Figure 6. We construct a problem whose
exact solution is

(6.2)

u = ∇× (u1, u1, u1) on Ω,

p = xyz(x− 1)(y − 1)(z − 1) exp(x) on Ω,

b = ∇× (b1, b1, b1) on Ω,

r = xyz(x− 1)(y − 1)(z − 1) exp(x+ y + z) on Ω,
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Table 7
Fichera corner using the approximate inverse preconditioner, α = 1. Setup 1: κ = 1e1, ν =

1e− 2, νm = 1e− 2, and Ha =
√

1e5. Setup 2: κ = 1e1, ν = 1e− 2, νm = 1e− 3, and Ha = 1000.

` DoFs
Setup 1 Setup 2

timeP1 itP1
NL itP1

O itP1
MX itP1

F timeP1 itP1
NL itP1

O itP1
MX itP1

F

1 34,250 15.6 4 29.2 2.6 2.0 102.3 7 211.7 2.0 2.0
2 57,569 30.4 4 29.2 2.7 2.0 242.3 7 237.0 2.1 2.0
3 89,612 52.9 4 28.8 2.9 2.0 440.7 7 252.1 2.1 2.0
4 332,744 232.2 4 27.8 3.0 2.0 2361.4 7 294.3 2.4 2.0
5 999,269 1026.3 4 27.8 3.0 3.0 8657.9 7 303.9 2.8 2.1
6 5,232,365 11593.5 5 28.6 3.0 3.0 111675.3 7 321.4 2.9 2.5

where

u1 = x2y2z2(x− 1)2(y − 1)2(z − 1)2 cos(x),

b1 = x2y2z2(x− 1)2(y − 1)2(z − 1)2 sin(y),

which defines the inhomogeneous Dirichlet boundary conditions and forcing terms f
and g.

Table 7 shows the timing and iteration results for the following two setups:
• Setup 1: κ = 1e1, ν = 1e− 2, νm = 1e− 2, and Ha =

√
1e5,

• Setup 2: κ = 1e1, ν = 1e− 2, νm = 1e− 3, and Ha = 1000.
We can see that for Setup 1 (Ha =

√
1e5) the outer FGMRES iterations remain

constant. However, when considering Setup 2 (Ha = 1000) we start to see a large
degradation in terms of the iteration counts. As mentioned in section 6.1, as the Hart-
mann number increases the numerical solution procedure becomes more challenging.

6.3. MHD generator. The final test example considered is the more physically
relevant MHD generator problem, similar to [25, section 5.2]. It describes unidirec-
tional flow in a duct which induces an electromagnetic field. We consider the channel
[0, 5] × [0, 1] × [0, 1]. On the left and right boundaries we enforce the boundary con-
dition u = (1, 0, 0) and on the other walls a no slip boundary condition is applied.
Defining δ = 0.1, b0 = 1, xon = 2, and xoff = 2.5, then the boundary condition
associated with the magnetic unknowns is n× b = n× (0,by, 0), where

by =
b0
2

[
tanh

(
x− xon

δ

)
− tanh

(
x− xoff

δ

)]
.

The timing and iteration results for the approximate inverse preconditioner are
presented in Table 8. From the table we can see that the iteration counts decrease
as the problem gets larger. Here we note that for the previous examples we were
discretizating on unit cube domains, but for this example we have a uniformly trian-
gulated mesh which is a box five times longer than it is wide or tall. We speculate
that this decrease in the iterations is due to the fact the mesh size h is becoming small
enough for mesh level ` ≥ 3, so that the fluid and magnetic viscosities are correctly
captured on these finer meshes.

7. Conclusions and outlook. Our numerical experiments demonstrate the vi-
ability and effectiveness of the approximate inverse preconditioner. We see strong
scalability with respect to mesh and/or large Hartmann numbers. We also observe
that our solver can handle nonconvex domains, such as the Fichera corner.
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Table 8
MHD generator using the approximate inverse preconditioner with parameters α = 1, κ = 1, ν =

1e− 1, νm = 1e− 1 and Ha = 10.

` DoFs timeP1 itP1
NL itP1

O itP1
MX itP1

F

1 2,199 1.5 3 172.7 1.5 1.9
2 13,809 13.3 3 108.0 1.5 2.0
3 96,957 260.8 4 105.2 1.9 2.0
4 724,725 1693.3 3 70.7 2.0 2.8
5 5,600,229 8515.7 3 68.0 2.1 2.6

Developing robust solvers for this problem is a challenging task, and we believe
that our approach shows promise for tackling large-scale 3D problems with high Hart-
mann numbers.

Further developments will include handling variable coefficients and other real-
world settings. There is a wealth of such problems; see [11]. Parallelization of the
code may also be an important venue to pursue. The availability of the inverse for-
mula and the construction of the approximate inverse present an opportunity to solve
for each block in parallel without the latency that may occur for other approaches.
Examining the structure of P1, we observe that each block column has some repeti-
tion for the sequence of systems which are solved. Therefore, one could apply each
block column in parallel. This may reduce the overall computational time for the
application of the approximate inverse preconditioner to one or two vector solves per
block column.

Our dropping strategy focuses on mesh size considerations only. Future work
may involve a different block matrix dropping strategy, which may take into account
the nondimensional parameter setup (ν, νm or κ) of the problem. This may improve
convergence for high Hartmann numbers or other challenging settings. That said, it
would likely be difficult to obtain full scalability with respect to the Hartman number.

Finally, a detailed comparison between existing preconditioners for the MHD
model would be highly desirable and is a high priority for us in future work. In
[24, 25] the authors use quad elements, which are not supported in FEniCS. In [1]
the authors use similar elements to the elements we use, but the solution approach is
significantly different.

Acknowledgment. We are grateful to the two referees for their helpful com-
ments and suggestions, which have greatly improved this paper.
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