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OPTIMAL COMPLEX RELAXATION PARAMETERS IN
MULTIGRID FOR COMPLEX-SHIFTED LINEAR SYSTEMS\ast 

L. ROBERT HOCKING\dagger AND CHEN GREIF\dagger 

Abstract. We derive optimal complex relaxation parameters minimizing smoothing factors
associated with multigrid using red-black successive overrelaxation or damped Jacobi smoothing
applied to a class of linear systems arising from discretized linear partial differential equations with
a complex shift. Our analysis yields analytical formulas for smoothing factors as a function of the
complex relaxation parameter, which may then be efficiently numerically minimized. Our results
are applicable to second-order discretizations in arbitrary dimensions, and generalize earlier work of
Irad Yavneh on optimal relaxation parameters in the real case. Our analysis is based on deriving
a novel connection between the performance of successive overrelaxation as a smoother and as a
solver, and is validated by numerical experiments on problems in two and three spatial dimensions,
using both vertex- and cell-centered multigrid, with both constant and variable coefficients. In the
variable coefficient case we assign different relaxation parameters to different grids points, which our
framework allows us to do efficiently.

Key words. multigrid, complex linear systems, local Fourier analysis, damped Jacobi, red-black
SOR, relaxation parameter
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1. Introduction. We are interested in the performance of multigrid for nu-
merically solving d-dimensional complex-shifted linear partial differential equations
(PDEs)

(1.1) \scrL u = g, u, g : \Omega \subset \BbbR d \rightarrow \BbbC ,

where the domain \Omega is a d-dimensional rectangle, and \scrL is of the form

(1.2) \scrL = L+ s(\vec{}x),

where L is a real linear differential operator and s : \Omega \rightarrow \BbbC is a complex shift.
Multigrid [3, 29] is a highly efficient iterative solution technique based on sep-

arating the modes of the error into high frequencies and low frequencies, applying
a smoother to reduce the amplitudes of the high-frequency modes, and applying a
coarse grid correction to deal with the low frequencies. The smoothers that we are
considering in this paper are damped Jacobi (\omega -JAC) and red-black successive over-
relaxation (RB-SOR), both of which involve determining relaxation parameters. This
is the focus of our paper, and one of our main conclusions is that allowing these
parameters to take on complex values yields significant gains in performance.

To discretize the PDEs that we consider in this paper (see section 2 for a few
motivating examples), we use finite differences. Given the general form (1.1), we
assume \Omega = [0, 1]d and discretize uniformly with N interior grid points along each
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476 L. ROBERT HOCKING AND CHEN GREIF

Fig. 1. Visualization of the computational molecule associated with the discretization of (1.1)
in two dimensions.

dimension. We assume Dirichlet boundary conditions with mesh spacing h, and denote
our discrete grid by Gh. We assume that second-order centered differences are applied,
such that the computational molecule (stencil) of the corresponding discrete system

(1.3) \scrL huh = gh, \scrL h \in \BbbC Nd\times Nd

, uh, gh \in \BbbC Nd

forms a 2d+ 1 point star; see Figure 1 for an illustration.
In multiple dimensions it is convenient to label gridpoints by an index vector

(1.4) \vec{}I \in \{ 1, 2, . . . , N\} d.

To compute the entries of the matrix \scrL h, one must map these vectors onto single
indices. Suppose this mapping is represented by

Ord : \BbbZ d \rightarrow \BbbZ .

Then for rows associated with interior gridpoints not immediately next to the bound-
ary, the matrix entries are given by

[\scrL h]Ord(\vec{}I),Ord( \vec{}J) =

\left\{     
\Lambda if \vec{}I  - \vec{}J = \vec{}0,

 - cj if \vec{}I  - \vec{}J = \pm ej ,

0 otherwise,

(1.5)

where cj > 0, \Lambda \in \BbbC , and ej is the jth standard basis vector, j \in \{ 1, 2, . . . , d\} .
Using the above notation, again for interior grid points the \omega -JAC iteration is

given by

\~u
(n+1)
h

\Bigl( 
Ord(\vec{}I)

\Bigr) 
=

1

\Lambda 

\Biggl\{ 
g

\Biggl( 
Ord(\vec{}I)

\Biggr) 

+

d\sum 
j=1

cj

\Bigl[ 
u
(n)
h

\Bigl( 
Ord(\vec{}I + ej)

\Bigr) 
+ u

(n)
h

\Bigl( 
Ord(\vec{}I  - ej)

\Bigr) \Bigr] \Biggr\} 
,

u
(n+1)
h

\Bigl( 
Ord(\vec{}I)

\Bigr) 
= \omega \~u

(n+1)
h

\Bigl( 
Ord(\vec{}I)

\Bigr) 
+ (1 - \omega )u

(n)
h

\Bigl( 
Ord(\vec{}I)

\Bigr) 
,
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OPTIMAL COMPLEX RELAXATION PARAMETERS IN MULTIGRID 477

which is evaluated independently for each index vector \vec{}I and hence can be computed
in parallel. For gridpoints next to the boundary the above formulas are adjusted in a
manner that is influenced by the choice of boundary conditions; this is straightforward
and details are omitted.

RB-SOR relies on coloring the gridpoints as follows: black points are defined as
those for which the index vector \vec{}I = (I1, . . . , Id) satisfies I1 + I2 + \cdot \cdot \cdot + Id odd, say,
and red points are those for which I1+ I2+ \cdot \cdot \cdot + Id is of the opposite parity. Once the
gridpoints have been colored, RB-SOR runs two sweeps of the above-defined \omega -JAC
iteration: it runs independently on each of the black points which are then updated,
before running on the red points using the updated values at the black points, and
updating again.

In this paper, we analyze multigrid with \omega -JAC and RB-SOR smoothing applied
to systems of the form (1.1) with stencil (1.5). Our analysis is inspired by and extends
the beautiful work of Yavneh [34] on optimal relaxation parameters for RB-SOR in
the real case; to the best of our knowledge, no such analysis has been performed in
the complex case.

Naturally, working in the complex domain is more challenging, in the sense that
the optimization problems involved are twice the dimension of the real case and the
algebra is more difficult. Despite this, the analysis is still tractable and pays off.
In several cases it leads to significantly improved convergence rates; there are even
some examples for which there does not exist a real relaxation parameter leading
to a convergent method, and yet, satisfactory convergence is obtained for a suitable
complex relaxation parameter.

To achieve our goals, we use local Fourier analysis (LFA) to derive analytical
smoothing factors for \omega -JAC and RB-SOR, and then derive optimal complex relax-
ation parameters minimizing these smoothing factors. Our analysis is made easier by
a connection we derive between the smoothing properties of RB-SOR and those of
SOR as a standalone solver. For \omega -JAC, we are able to derive analytical formulas for
both the smoothing factor and optimal relaxation parameter. For RB-SOR, while we
are able to derive an analytical formula for the smoothing factor, the minimization
over viable complex relaxation parameters is done numerically. Fortunately, the opti-
mization problem in this case is observed to have a unique local minimum, and hence
minimization can be done efficiently at a negligible cost. Moreover, we show that the
optimal relaxation parameters we derive depend on only three real parameters for any
stencil of the form (1.5) in any dimension d \geq 2. Consequently, all possible optimal
relaxation parameters may be precomputed in a three-dimensional (3D) lookup table,
allowing for great computational efficiency.

We consider vertex-centered and cell-centered multigrid. In the former case, we
assume that a direct discretization is applied on all grids, while in the latter case
we assume that a Galerkin coarse grid operator is used, based on piecewise-constant
prolongation and its transpose. Both setups have the property that the stencil on all
coarse grids is of the form (1.5) if it is of that form on the finest grid, which means
that the relaxation parameters we derive may be used to apply different relaxation
parameters on different grids, as well as different points within a given grid in the case
of variable coefficients. The viability of the approach is demonstrated in numerical
experiments by way of significant gains in performance.

The remainder of this paper is organized as follows. In section 2 we present
relevant examples and provide an overview of related work. In section 3 we apply
LFA to our problem. Section 4 contains our analysis of \omega -JAC smoothing, h-ellipticity,
and their connection. Our analysis of RB-SOR smoothing appears in section 5. Our
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478 L. ROBERT HOCKING AND CHEN GREIF

results are validated in section 6 by numerical experiments. Finally, in section 7 we
draw some conclusions and discuss potential directions for future work.

2. Examples and related work. A few examples that illustrate the breadth
and importance of the class of problems (1.1)--(1.2) are in order. We will denote
throughout the ubiquitous imaginary unit as

i =
\surd 
 - 1.

An example of primary interest to us is the anisotropic Helmholtz equation [15]

(2.1)  - \nabla \cdot (D\nabla u) - k2(\vec{}x)(1 - i\alpha )u = g(\vec{}x), \vec{}x \in \Omega ,

with appropriate boundary conditions, where D \in \BbbR d\times d is a constant invertible diago-
nal matrix and \alpha \geq 0 represents the damping of the medium. Here k(\vec{}x) : \Omega \rightarrow [0,\infty )
is a nonnegative real function on \Omega and g(\vec{}x) is a source term.

Another example is the time evolution of the Schr\"odinger wave equation [17]

i\hbar \Psi t =  - \hbar 2

2m
\Delta \Psi + V\Psi .

After discretization in time with implicit time-stepping, this equation becomes a series
of complex-shifted systems of the form (1.2).

The complex diffusion equation

ut  - \alpha \Delta u = f with \alpha \in \BbbC 

is also of interest and relevance; it has appeared, for example, in image processing
applications [16].

Our framework is also applicable to the evaluation of functions of matrices via
the matrix contour integral

(2.2) f(L) =

\int 
\scrC 
f(z)(zI  - L) - 1dz,

where L is a real linear differential operator and \scrC \subset \BbbC is a contour containing the
spectrum of L, and on the interior of which f is analytic. Under some mild conditions,
discretization leads to a series of complex-shifted linear systems of the form explored
in this paper.

Multigrid techniques for complex linear systems of various kinds have been con-
sidered in the literature. In [26], the general complex case is analyzed within the
context of algebraic multigrid (AMG), and complex intergrid transfer operators are
developed. Complex symmetric systems are considered, for example, in [28]. While
these AMG solvers consider \omega -JAC and RB-SOR smoothing, only real relaxation pa-
rameters are considered despite the system being complex. Moreover, optimal values
are not derived. While work on optimal complex relaxation parameters for SOR as
a solver has appeared in the literature [21], to the best of our knowledge optimal
complex relaxation parameters for RB-SOR as a smoother have not been derived.

The isotropic Helmholtz equation

(2.3)  - \Delta u - k2(\vec{}x)(1 - i\alpha )u = g(\vec{}x), \vec{}x \in \Omega ,

is a special case of (2.1) with D = I, the identity matrix. It is a difficult problem that
has received much attention in the literature, including the development of multigrid
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OPTIMAL COMPLEX RELAXATION PARAMETERS IN MULTIGRID 479

methods. When 0 \leq \alpha \ll 1, as is the case for some geophysical applications of interest,
the problem is extremely challenging because in its discrete form it shifts a symmetric
positive definite linear operator (the negative Laplacian) into the indefinite domain.
Analysis in [7, 11] revealed the challenge of applying multigrid to this problem.

For larger values of \alpha , multigrid methods are easier to design and they converge
relatively rapidly. The papers [9, 10] consider preconditioning (2.3) using a version of
the same equation with a larger \alpha , approximately inverted using multigrid. This is
referred to as the shifted-Laplacian preconditioning technique. Other fast solvers for
the Helmholtz equations have been derived; see, for example, [8, 23, 24].

Recent years have seen significant research focusing on optimizing aspects of the
shifted-Laplacian preconditioner, such as the size of the shift [14, 5], the choice of
discretization [30], and the ingredients of the multigrid method. For example, in [30]
operator-dependent prolongation [6] was compared with prolongation based on prin-
ciples from algebraic multigrid, while also comparing smoothing based on \omega -JAC with
incomplete LU smoothing. In [20], the authors consider four-color SOR smoothing
in the context of a GPU implementation. However, the above-mentioned papers only
consider real relaxation parameters and do not derive optimal values.

3. Local Fourier analysis. There exist a number of theoretical tools for as-
sessing the efficiency of multigrid: LFA, two-grid analysis, and three-grid analysis
[29, 31, 32] are among the most popular. Recently, for parabolic or waveform multi-
grid, semi-algebraic mode analysis (SAMA) has been developed [12], which can handle
convection-dominated convection-diffusion equations as well.

LFA and k-grid methods are based on the idea of neglecting boundary conditions
by assuming an infinite grid, making certain simplifying assumptions regarding the
multigrid iteration matrix, and then considering its effect on Fourier modes. Under
these assumptions, for simple smoothers such as \omega -JAC or SOR with lexicographic or
red-black ordering, Fourier modes are either eigenfunctions of the multigrid iteration
matrix or otherwise they form low-dimensional invariant eigenspaces, making the
analysis relatively tractable.

To define LFA, we first partition Fourier modes into high-frequency and low-
frequency modes, based on the following definition, which assumes a coarse-to-fine
grid ratio of H/h = 2.

Definition 3.1. Given a Fourier mode \varphi h,\vec{}\theta (\vec{}x) := ei
\vec{}\theta \cdot \vec{}x/h with \vec{}\theta \in [ - \pi , \pi ]d, we

say that component \theta j of \vec{}\theta is high frequency if \theta j \in [ - \pi , \pi ]\setminus ( - \pi /2, \pi /2) and low
frequency otherwise. We say that \varphi h,\vec{}\theta (\vec{}x) is a low-frequency mode if every component

of \vec{}\theta is low frequency and is a high-frequency mode otherwise. We denote the set of
all high-frequency modes by \Theta d := [ - \pi , \pi ]d\setminus ( - \pi /2, \pi /2)d.

LFA is then based on the following two assumptions:
1. The grid Gh is assumed to be infinite, so that boundary conditions may be

neglected.
2. The coarse grid correction perfectly eliminates low-frequency modes while

leaving high-frequency modes unchanged, that is, denoting the ideal linear
coarse grid operator by Q, we have

(3.1) Q\varphi h,\vec{}\theta (\vec{}x) =

\Biggl\{ 
\vec{}0 if \vec{}\theta is low frequency,

\varphi h,\vec{}\theta (\vec{}x) if \vec{}\theta is high frequency.

In contrast to the idealized coarse grid operator of LFA, two-grid analysis and three-
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480 L. ROBERT HOCKING AND CHEN GREIF

grid analysis are based on the assumption that the multigrid hierarchy contains only
two and three grids, respectively, and that the matrix on the coarsest grid is inverted
exactly. In practice, the coarse grid correction operator only approximately behaves
like the LFA idealized coarse grid operator, and so two-grid and three-grid analysis
are more accurate. In [18], it was observed that LFA diverged significantly from two-
grid analysis, but the authors proposed a modified idealized coarse grid operator that
brought them into close agreement.

The LFA framework may thus be less accurate than two-grid and three-grid analy-
sis, but it serves us well for the problems we consider in this paper, providing a
tractable analytical tool that proves to be effective at deriving analytical formulas for
smoothing factors, which in turn allows us to efficiently obtain optimal LFA relaxation
parameters. We show in our numerical experiments that the relaxation parameters
we derive are reliable and significantly speed up multigrid convergence. In section 6.3
we experimentally compare multigrid convergence rates using optimal LFA relaxation
parameters with optimal two-grid relaxation parameters.

The idealized multigrid iteration matrix M associated with LFA is given by

(3.2) M = S\nu 2QS\nu 1 ,

where Q is defined by (3.1), S denotes the action of a smoother---for example \omega -JAC,
Gauss--Seidel, or RB-SOR---and \nu 1 and \nu 2 denote the number of pre- and postsmooth-
ing iterations, respectively. The smoothing factor is defined as

(3.3) \mu = \rho (M)
1
\nu ,

where \nu = \nu 1 + \nu 2 is total number of pre- and postsmoothing steps per multigrid
iteration and \rho (M) is the spectral radius of M . The smoothing factor gives us a
measure of the average error reduction factor per smoothing step.

The eigenfunctions of \omega -JAC are precisely the Fourier modes \varphi h,\vec{}\theta (\vec{}x). Denoting

by s\omega (\vec{}\theta ) the eigenvalue of \omega -JAC corresponding to Fourier mode \vec{}\theta , we have

(3.4) s\omega (\vec{}\theta ) = s\omega (x(\vec{}\theta )) = 1 - \omega 

\Biggl( 
1 - x(\vec{}\theta )

\Lambda 

\Biggr) 
,

where

(3.5) x(\vec{}\theta ) = 2

d\sum 
j=1

cj cos \theta j .

We define for convenience

(3.6) c =

d\sum 
j=1

cj , cm = min(c1, . . . , cd).

Noting that the set \Theta d defined in Definition 3.1 constrains at least one component \theta j of
\vec{}\theta to be high frequency, it follows that for this component we must have cos \theta j \leq 0. It

in turn follows that x(\vec{}\theta ) given by (3.5) is maximized by choosing this \theta j to correspond

to the cj that is smallest in magnitude, namely cm. From this one sees that x(\vec{}\theta ) maps
\Theta d onto the real interval [ - 2c, 2(c - cm)], hence

(3.7) \mu (\omega ) = max
\vec{}\theta \in \Theta d

| s\omega (x(\vec{}\theta ))| = max
x\in [ - 2c,2(c - cm)]

| s\omega (x)| .
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For RB-SOR, the situation is more delicate as the Fourier modes \varphi h,\vec{}\theta (\vec{}x) are not

eigenfunctions of the RB-SOR iteration matrix. In this case, we define \~\theta by

(3.8) \~\theta j = \theta j  - sign(\theta j)\pi ,

where we define sign(0) =  - 1. It can then be shown (see [33], [29, sect. 4.5.1]) that for

every \vec{}\theta \in [ - \pi , \pi ]d, the two-dimensional (2D) subspace of modes spanned by \varphi h,\vec{}\theta (\vec{}x)

and \varphi h,\~\theta (\vec{}x) is an invariant subspace of the RB-SOR iteration matrix. Then, defining\widetilde Q(\vec{}\theta ) and \widetilde S(\vec{}\theta ) to be 2 \times 2 matrices corresponding to the action of the coarse grid
correction and the RB-SOR iteration matrix, respectively, on this subspace, (3.3)
reduces to

(3.9) \mu (\omega ) = max
\vec{}\theta \in [ - \pi ,\pi ]d

\rho 
\Bigl( \widetilde S\nu 2(\vec{}\theta ) \widetilde Q(\vec{}\theta )\widetilde S\nu 1(\vec{}\theta )

\Bigr) 1
\nu 

.

The 2\times 2 matrices \widetilde Q(\vec{}\theta ) and \widetilde S(\vec{}\theta ) are sometimes called the symbol matrices associated
with the matrices Q and S---see, e.g., [31, p. 116]---and we follow this convention here.

The coarse grid correction symbol matrix \widetilde Q(\vec{}\theta ) is given explicitly by

\widetilde Q(\vec{}\theta ) =

\biggl[ 
q(\vec{}\theta ) 0

0 q(\~\theta )

\biggr] 
,

where

q(\vec{}\theta ) =

\Biggl\{ 
1 if \vec{}\theta is high frequency,

0 if \vec{}\theta is low frequency.

It follows that

(3.10) \mu (\omega ) = max
\vec{}\theta \in [ - \pi ,\pi ]d

\rho 
\Bigl( \widetilde S\nu 2(\vec{}\theta ) \widetilde Q(\vec{}\theta )\widetilde S\nu 1(\vec{}\theta )

\Bigr) 1
\nu 

= max
\vec{}\theta \in [ - \pi ,\pi ]d

\rho 
\Bigl( \widetilde Q(\vec{}\theta )\widetilde S\nu (\vec{}\theta )

\Bigr) 1
\nu 

.

Thus, within the framework of LFA the smoothing factor of RB-SOR depends on the
total number of smoothing operations \nu = \nu 1 + \nu 2 but not on the number of pre-
and postsmoothing operations \nu 1 and \nu 2 separately. The symbol matrix \widetilde S(\vec{}\theta ) can be
factored as

(3.11) \widetilde S(\vec{}\theta ) = \widetilde SR(\vec{}\theta )\widetilde SB(\vec{}\theta ),

where \widetilde SR and \widetilde SB denote the symbol matrices of the operators SR and SB correspond-
ing to partial relaxation sweeps over the red and black points, respectively. For the
class of operators (1.5), we have
(3.12)\widetilde SR =

1

2

\Biggl[ 
s\omega (x(\vec{}\theta )) + 1 s\omega (x(\~\theta )) - 1

s\omega (x(\vec{}\theta )) - 1 s\omega (x(\~\theta )) + 1

\Biggr] 
, \widetilde SB =

1

2

\Biggl[ 
s\omega (x(\vec{}\theta )) + 1  - s\omega (x(\~\theta )) + 1

 - s\omega (x(\vec{}\theta )) + 1 s\omega (x(\~\theta )) + 1

\Biggr] 
,

where s\omega (x(\vec{}\theta )) is given by (3.4) and s\omega (x(\~\theta )) is given by

(3.13) s\omega (x(\~\theta )) = 1 - \omega 

\Biggl( 
1 +

x(\vec{}\theta )

\Lambda 

\Biggr) 
.

This follows from an argument identical to that found in [34].
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4. Damped Jacobi smoothing and \bfith -ellipticity. Although the main goal of
our analysis in this paper is RB-SOR, we begin with the simpler case of \omega -JAC. Our
main objectives are to establish necessary conditions for \mu (\omega ) < 1, derive the optimal
complex value of \omega , and gain some insight into the measure of h-ellipticity and its
connection to \omega -JAC.

4.1. \bfith -ellipticity. Within the LFA framework, the eigenfunctions of \scrL h are
the Fourier modes \varphi h,\vec{}\theta (\vec{}x). Denoting by \widetilde \scrL h(\vec{}\theta ) the eigenvalue of \scrL h associated with

\varphi h,\vec{}\theta (\vec{}x), we may define the h-ellipticity of \scrL h [29, sect. 4.7] by

(4.1) Eh(\scrL h) =

\bigm| \bigm| \bigm| \bigm| \bigm| \widetilde \scrL h(\vec{}\theta 
m)\widetilde \scrL h(\vec{}\theta M )

\bigm| \bigm| \bigm| \bigm| \bigm| ,
where

(4.2) \vec{}\theta m = argmin\vec{}\theta \in \Theta d | \widetilde \scrL h(\vec{}\theta )| and \vec{}\theta M = argmax\vec{}\theta \in [ - \pi ,\pi ]d | \widetilde \scrL h(\vec{}\theta )| .

We have by construction Eh(\scrL h) \leq 1. If we additionally have

Eh(\scrL h) \geq const > 0,

then---insofar as LFA is accurate---the existence of smoothers leading to h-independent
convergence of multigrid is guaranteed. However, as Eh(\scrL h) \rightarrow 0 the convergence
of multigrid is expected to deteriorate, and in particular, Eh(\scrL h) = 0 implies that
no point-smoother (as opposed to line- or block-smoothers) can yield a convergent
method [29, p. 126]. In our setting, we have\widetilde \scrL h(\vec{}\theta ) = \Lambda  - x(\vec{}\theta ),

where x(\vec{}\theta ) is given by (3.5). As we have already noted, x(\vec{}\theta ) maps \Theta d onto the real
interval [ - 2c, 2(c - cm)]. From this, one readily computes

(4.3) \widetilde \scrL h(\vec{}\theta 
m) =

\left\{     
\Lambda  - 2(c - cm) if Re(\Lambda ) \geq 2(c - cm),

Im(\Lambda ) if  - 2c \leq Re(\Lambda ) < 2(c - cm),

\Lambda + 2c otherwise,

while

(4.4) \widetilde \scrL h(\vec{}\theta 
M ) =

\Biggl\{ 
\Lambda + 2c if Re(\Lambda ) > 0,

\Lambda  - 2c otherwise.

It then trivially follows that

Eh(\scrL h) \geq 
| Im(\Lambda )| 
| \Lambda | + 2c

> 0 if Im(\Lambda ) \not = 0.

This simple observation tells us that for the class of problems under consideration
adding an imaginary shift to the diagonal of \scrL h tends to improve h-ellipticity. More-
over, any nonzero shift guarantees Eh(\scrL h) > 0, even for matrices that are not di-
agonally dominant. By contrast, if \Lambda is real and positive, we have Eh(\scrL h) = 0 for
\Lambda \leq 2(c - cm). This could partially explain the success of the shifted-Laplacian family
of preconditioners.

The following proposition, the proof of which is omitted, shows that for | \Lambda | fixed,
h-ellipticity is maximized when \Lambda is purely imaginary.

Proposition 4.1. Let \Lambda = rei\phi with r > 0 and  - \pi \leq \phi \leq \pi . Then, for fixed r,
Eh(\scrL h) is maximized at \phi = \pm \pi 

2 .
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4.2. \bfitomega -JAC smoothing. From (3.7) and (3.4) we have

\mu (\omega ) = max
x\in [ - 2c,2(c - cm)]

| s\omega (x)| \geq | s\omega (0)| = | 1 - \omega | .

Evidently, the smoothing factor \mu (\omega ) of multigrid with \omega -JAC smoothing satisfies
\mu (\omega ) < 1 only if | 1 - \omega | < 1.

Theorem 4.2. Let \scrL h be a linear operator of the form (1.5) with \Lambda \in \BbbC , and let
c, cm \in \BbbR be defined as in (3.6). Let \mu (\omega ) defined by (3.7) denote the smoothing factor
of multigrid with \omega -JAC smoothing applied to this system. Let

\omega opt = argmin\omega \in \BbbC \mu (\omega ) and \mu opt = \mu (\omega opt)

denote the optimal complex relaxation parameter minimizing \mu (\omega ) and corresponding
optimal smoothing factor. Define

(4.5) b1 =

\biggl( 
1 - 2

c - cm
\Lambda 

\biggr) 
, b2 =

\biggl( 
1 +

2c

\Lambda 

\biggr) 
,

and assume b1, b2 \not = 0. Then there is a unique optimal complex relaxation parameter
given by

(4.6) \omega opt =

| b1| 
b1

+ | b2| 
b2

| b1| + | b2| 
.

The corresponding optimal complex smoothing factor is

(4.7) \mu opt =
| b1  - b2| 
| b1| + | b2| 

.

Proof. From (3.7) and (3.4) it follows that

\mu (\omega ) = max
x\in [ - 2c,2(c - cm)]

\bigm| \bigm| \bigm| 1 - \omega 
\Bigl( 
1 - x

\Lambda 

\Bigr) \bigm| \bigm| \bigm| .
For fixed \omega , \{ \omega 

\bigl( 
1 - x

\Lambda 

\bigr) 
\} is a line segment in \BbbC with endpoints \omega b1 and \omega b2. The

furthest point from z = 1 on this line segment must be one of the endpoints. Hence

(4.8) \mu (\omega ) = max(\mu 1(\omega ), \mu 2(\omega )) where \mu j(\omega ) = | 1 - \omega bj | , j = 1, 2.

Since \mu (\omega ) is the maximum of the moduli of two nonconstant holomorphic func-
tions, the maximum principle [13, p. 88] implies that the optimal complex \omega opt must
satisfy

(4.9) \mu 1(\omega ) = \mu 2(\omega ).

For if the optimal value \omega = \omega opt were to obey \mu 1(\omega opt) > \mu 2(\omega opt) (say), the maxi-
mum principle and continuity imply that we could find another \omega \ast 

opt in a neighborhood
of \omega opt obeying \mu 1(\omega opt) > \mu 1(\omega 

\ast 
opt) > \mu 2(\omega 

\ast 
opt), violating our assumption of the opti-

mality of \omega opt (the same argument applies if the roles of \mu 1 and \mu 2 are reversed).
Next, we rewrite (4.9) as f(\omega ) = ei\theta , where f(\omega ) is the M\"obius transform

f(\omega ) =
1 - b1\omega 

1 - b2\omega 
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and \theta \in [0, 2\pi ). It follows from elementary properties of M\"obius transforms [13, p.
63] that f - 1 is given by

f - 1(\omega ) =
\omega  - 1

b2\omega  - b1
.

Hence, any \omega obeying (4.9) must be of the form

\omega (\theta ) = f - 1(ei\theta ) =
ei\theta  - 1

b2ei\theta  - b1
=

1

b2

\biggl[ 
1 +

b1  - b2
b2ei\theta  - b1

\biggr] 
.

Substitution into (4.8) gives

\mu (\omega (\theta )) = \mu 2(\omega (\theta )) =

\bigm| \bigm| \bigm| \bigm| b1  - b2
b2ei\theta  - b1

\bigm| \bigm| \bigm| \bigm| \geq | b1  - b2| 
| b1| + | b2| 

, with equality iff ei\theta =  - b1
| b1| 

| b2| 
b2

.

It follows that \mu opt is given as stated in (4.7) in the statement of the theorem. It
similarly follows that \omega opt is given by

\omega opt = f - 1

\biggl( 
 - b1
| b1| 

| b2| 
b2

\biggr) 
=

 - b1
| b1| 

| b2| 
b2

 - 1

 - b2
b1
| b1| 

| b2| 
b2

 - b1
=

| b2| 
b2

+ | b1| 
b1

| b2| + | b1| 
,

giving us (4.6) as stated in the theorem.

It is also possible to analytically derive optimal real relaxation parameters and
smoothing factors for our problem of interest. However, because the tools of complex
analysis---notably the maximum principle---are no longer available, the proof is less
clean and involves many cases. For the sake of brevity, it has been omitted.

In the cases b1 = 0 or b2 = 0 one may prove that \mu (\omega ) \geq 1 for all \omega \in \BbbC ---optimal
relaxation parameters are therefore not of interest.

Equipped with the results of our smoothing analysis, we now show how a known
connection between damped Jacobi smoothing and h-ellipticity in the real symmetric
case generalizes to our current setting.

For real symmetric matrices \scrL h with diagonal D = a \cdot I and \widetilde \scrL h(\vec{}\theta 
m), \widetilde \scrL h(\vec{}\theta 

M ) > 0,
it is known (see, e.g., [29, pp. 126--127]) that the smoothing factor of multigrid with
damped Jacobi smoothing using relaxation parameter

(4.10) \omega \ast =
2a\widetilde \scrL h(\vec{}\theta m) + \widetilde \scrL h(\vec{}\theta M )

gives rise to the smoothing factor

(4.11) \mu \ast =
1 - Eh(\scrL h)

1 + Eh(\scrL h)
=
\widetilde \scrL h(\vec{}\theta 

M ) - \widetilde \scrL h(\vec{}\theta 
m)\widetilde \scrL h(\vec{}\theta M ) + \widetilde \scrL h(\vec{}\theta m)

,

where \widetilde \scrL h(\vec{}\theta 
m) and \widetilde \scrL h(\vec{}\theta 

M ) are given by (4.2). In our setting, it follows from (4.3),
(4.4), and (4.5) that

(4.12) \Lambda \cdot b1 = \widetilde \scrL h(\vec{}\theta 
m) and \Lambda \cdot b2 = \widetilde \scrL h(\vec{}\theta 

M ) if Re(\Lambda ) > 2(c - cm).

Hence, provided Re(\Lambda ) > 2(c  - cm), the optimal smoothing factor (4.7) derived in
Theorem 4.2 may be obtained from the rightmost equality of (4.11) by taking the
absolute value of the numerator, the absolute value of each term in the denominator,
substituting in (4.12), and cancelling common factors.
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Also for Re(\Lambda ) > 2(c  - cm), the optimal relaxation parameter (4.6) from The-
orem 4.2 may be seen as a generalization of (4.10) by dividing the numerator and
denominator of the latter by a, noting that the equality

| \widetilde \scrL h(\vec{}\theta 
m)| \widetilde \scrL h(\vec{}\theta m)

+
| \widetilde \scrL h(\vec{}\theta 

M )| \widetilde \scrL h(\vec{}\theta M )
= 2

is valid for real symmetric matrices \scrL h with \widetilde \scrL h(\vec{}\theta 
m), \widetilde \scrL h(\vec{}\theta 

M ) > 0, substituting it into

the numerator of (4.10), and then substituting (4.12) for \scrL h(\vec{}\theta 
m) and \scrL h(\vec{}\theta 

M ).

5. Red-black SOR smoothing. We now move to consider the case of primary
interest for us, namely RB-SOR smoothing. Expanding \widetilde S(\vec{}\theta ) = \widetilde SR(\vec{}\theta )\widetilde SB(\vec{}\theta ) from
(3.11) and (3.12) yields

\widetilde S(\vec{}\theta ) = \Biggl[ s11(\vec{}\theta ) s12(\vec{}\theta )

s21(\vec{}\theta ) s22(\vec{}\theta )

\Biggr] 
,

where

s11(\vec{}\theta ) =
1

4

\Bigl[ 
(s\omega (x(\vec{}\theta )) + 1)2 + (s\omega (x(\~\theta )) - 1)(1 - s\omega (x(\vec{}\theta )))

\Bigr] 
,

s12(\vec{}\theta ) =
1

4

\Bigl[ 
s2\omega (x(

\~\theta )) - 1 + (s\omega (x(\vec{}\theta )) + 1)(1 - s\omega (x(\~\theta )))
\Bigr] 
,

s21(\vec{}\theta ) =
1

4

\Bigl[ 
s2\omega (x(

\vec{}\theta )) - 1 + (s\omega (x(\~\theta )) + 1)(1 - s\omega (x(\vec{}\theta )))
\Bigr] 
,

s22(\vec{}\theta ) =
1

4

\Bigl[ 
(s\omega (x(\~\theta )) + 1)2 + (s\omega (x(\~\theta )) - 1)(1 - s\omega (x(\vec{}\theta )))

\Bigr] 
,

and s\omega (x(\vec{}\theta )) and s\omega (x(\~\theta )) are given by (3.4) and (3.13). The eigenvalues of \widetilde S(\vec{}\theta )
satisfy the quadratic equation

(5.1) \lambda 2  - tr(\widetilde S(\vec{}\theta ))\lambda + det(\widetilde S(\vec{}\theta )) = 0.

Thus, we compute the determinant and trace of \widetilde S(\vec{}\theta ), which will be useful for us
throughout our subsequent analysis. A short calculation yields

det(\widetilde S(\vec{}\theta )) = (1 - \omega )2,(5.2a)

tr(\widetilde S(\vec{}\theta )) = 2(1 - \omega ) + \omega 2x(
\vec{}\theta )2

\Lambda 2
.(5.2b)

From this we immediately obtain the following restriction on the domain of \omega , which
is identical to the classical result [19] for SOR as a solver.

Observation 5.1. \mu (\omega ) \geq 1 unless | \omega  - 1| < 1.

Proof. If \vec{}\theta and \~\theta are both high frequency (as is the case, for example, with \theta j =
\pi 
2

for all j = 1, . . . , d), then \widetilde Q(\vec{}\theta ) = I and from (3.10) we have

\rho ( \widetilde Q(\vec{}\theta )\widetilde S(\vec{}\theta )\nu ) 1
\nu = \rho (\widetilde S(\vec{}\theta )),

where \nu denotes the number of smoothing sweeps per multigrid iteration. Next, we
have

| 1 - \omega | 2 = | det(\widetilde S(\vec{}\theta ))| = | \lambda +(\vec{}\theta ) \cdot \lambda  - (\vec{}\theta )| \leq max(| \lambda +(\vec{}\theta )| , | \lambda  - (\vec{}\theta )| )2,
where \lambda +(\vec{}\theta ) and \lambda  - (\vec{}\theta ) are the eigenvalues of \widetilde S(\vec{}\theta ). Hence

| 1 - \omega | \leq max(| \lambda +(\vec{}\theta )| , | \lambda  - (\vec{}\theta )| ) = \rho (\widetilde S(\vec{}\theta )) \leq \mu (\omega ).
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It is straightforward to show that at least one of \vec{}\theta , \~\theta must be a high-frequency
mode. Following [34], we follow the convention that \~\theta is always high frequency, and we

define the smoothing factors for \vec{}\theta restricted to the high-frequency and low-frequency
modes, respectively, by

(5.3) \mu H = max
\vec{}\theta h.f.

\rho ( \widetilde Q(\vec{}\theta )\widetilde S(\vec{}\theta )\nu ) 1
\nu , \mu L = max

\vec{}\theta l.f.
\rho ( \widetilde Q(\vec{}\theta )\widetilde S(\vec{}\theta )\nu ) 1

\nu 

so that the overall smoothing factor is given by

(5.4) \mu (\omega ) = max(\mu H(\omega ), \mu L(\omega )).

Like [34], we go on to analyze the high-frequency and low-frequency cases separately.

5.1. The case of \vec{}\bfittheta high frequency. Our analysis of the high-frequency case
is based on deriving a connection between the performance of RB-SOR applied to
the matrix \scrL h defined by (1.3) when it is used as a smoother in conjunction with
multigrid, with its performance when applied as a direct solver to a associated matrix\widehat \scrL h. Because the case of a complex relaxation parameter in the context of a solver is
already well understood [21], we can leverage this connection and apply known results
about the solver case to the smoother case.

Given a linear operator \scrL h of the form (1.5) acting on the grid Gh with ordering

Ord, let us define the associated operator \widehat \scrL h acting on the same grid Gh by

[ \widehat \scrL h]Ord(\vec{}I),Ord( \vec{}J) =

\left\{     
\Lambda if \vec{}I  - \vec{}J = \vec{}0,

 - 
\bigl( 
cj  - cm

d

\bigr) 
if \vec{}I  - \vec{}J = \pm ej ,

0 otherwise,

(5.5)

where cm is given by (3.6). The boundary conditions of \widehat \scrL h are taken to be the same

as those of \scrL h, and the index vectors \vec{}I, \vec{}J are restricted to the same set (1.4). We can

think of \widehat \scrL h as a version of \scrL h in which the diagonal dominance has been improved
by decreasing the magnitude of all off-diagonal elements.

Let us denote by \widehat \scrM h(\omega ) the iteration matrix of SOR with relaxation parameter

\omega applied to (5.5). Let us denote by \widehat \rho (\omega ) the spectral radius of \widehat \scrM h(\omega ) in the limit
as h \rightarrow 0, that is

(5.6) \widehat \rho (\omega ) = lim
h\rightarrow 0

\rho (\widehat \scrM h(\omega )).

The following proposition establishes the promised link between \mu H(\omega ) and \widehat \rho (\omega ).
Proposition 5.2. Let \scrL h be any matrix of the form (1.5), and let \widehat \scrL h be the as-

sociated matrix (5.5). Let \mu H(\omega ) and \widehat \rho (\omega ) be defined by (5.3) and (5.6), respectively.
Then we have the equality

\mu H(\omega ) = \widehat \rho (\omega ).
Proof. Our basic approach is to show that both \mu H(\omega ) and \widehat \rho (\omega ) can be expressed

in the same way in terms of the roots of the same quadratic polynomial. We begin
with \mu H(\omega ). Following [34], we note that as \widetilde Q(\vec{}\theta ) = I from (5.3) we have

\mu H = max
\vec{}\theta h.f.

\rho ( \widetilde Q(\vec{}\theta )\widetilde S(\vec{}\theta )\nu ) 1
\nu = max

\vec{}\theta h.f.
\rho (\widetilde S(\vec{}\theta )\nu ) 1

\nu = max
\vec{}\theta h.f.

\rho (\widetilde S(\vec{}\theta ))
independent of the number of smoothing sweeps per multigrid iteration, \nu . Next,
note that although we have assumed that \vec{}\theta is high frequency (and hence must have
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at least one high-frequency component), it also must have at least one low-frequency
component. Otherwise, \~\theta would be low frequency, violating our convention. Thus we
must have cos \theta j \geq 0 for at least one component \theta j of \vec{}\theta , and similarly we must have

cos \theta j\prime \leq 0 for some other (possibly distinct) component \theta j\prime of \vec{}\theta . Setting cos \theta j = 0
for the cj corresponding to cm satisfies both conditions at once---the maximum and

minimum values of x(\vec{}\theta ) are obtained by setting all remaining cosines equal to +1 and
 - 1, respectively, yielding  - 2(c - cm) \leq x \leq 2(c - cm) (with c, cm defined as in (3.6)).
Hence

\mu H(\omega ) = max
x\in [ - 2(c - cm),2(c - cm)]

\bigl\{ 
max(| \lambda +(x, \omega )| , | \lambda  - (x, \omega )| )

\bigr\} 
where \lambda \pm (x, \omega ) are the two roots of the quadratic equation (5.1). Substituting the
expressions (5.2a) and (5.2b) for tr(S) and det(S) gives

\lambda 2  - 
\biggl( 
2(1 - \omega ) + \omega 2 x

2

\Lambda 2

\biggr) 
\lambda + (1 - \omega )2 = 0.

Next, we consider \widehat \rho (\omega ). It will be useful for us to consider the diagonal of the matrix\widehat \scrL h, which we denote by \widehat \scrD h. Applying a red-black ordering to \widehat \scrL h puts it in the block
2\times 2 form \widehat \scrL h =

\biggl[ 
Drr Lrb

Lbr Dbb

\biggr] 
,

where Drr and Dbb denote the restriction of \widehat \scrD h to red and black points, respectively.
Since Drr and Dbb are diagonal matrices, this tells us that \widehat \scrL h is a two-cyclic matrix
that satisfies Young's property A as defined in [36, p. 93]. It follows [36, Theorem 2.3]

that the eigenvalues \{ \lambda h\} of \widehat \scrM h(\omega ) are related to the eigenvalues \{ \delta h\} of the Jacobi

iteration matrix \widehat \scrJ h = I  - ( \widehat \scrD h)
 - 1 \widehat \scrL h by Young's relation

(5.7) (\lambda h + \omega  - 1)2 = \omega 2\delta 2h\lambda h.

At the same time, the eigenvalues \{ \delta h\} of the Jacobi iteration matrix \widehat \scrJ h are given by

\{ \delta h\} =
\scrI h
\Lambda 
, where \scrI h =

\left\{   2

d\sum 
j=1

\Bigl( 
cj  - 

cm
d

\Bigr) 
cos \theta j : \theta j \in 

\biggl\{ 
2\pi \ell 

N + 1

\biggr\} N

\ell =1

\right\}   ,

and in particular, the largest magnitude eigenvalue of the Jacobi iteration matrix is
given by \pm \delta \ast h, where

(5.8) \delta \ast h = 2
c - cm

\Lambda 
cos(2\pi h),

a fact which will be useful in our subsequent analysis.
To see this, note that the Jacobi matrix can be factored as

\widehat \scrJ h =
1

\Lambda 

d\bigoplus 
j=1

\Bigl( 
cj  - 

cm
d

\Bigr) 
TN [1, 0, 1],

where TN [1, 0, 1] is the tridiagonal Toeplitz matrix of size N \times N with 1's on its 1st
and  - 1st diagonals and zeros elsewhere. The eigenvalues of TN [1, 0, 1] are known

analytically; see, for example, [22, Theorem 2.2]. The spectrum of \widehat \scrJ h may then be
found by applying well-known properties of Kronecker sums.
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Since the roots of polynomials depend continuously on their coefficients [25], and
since \scrI h is dense in [ - 2(c - cm), 2(c - cm)] as h \rightarrow 0, we have

\widehat \rho (\omega ) = lim
h\rightarrow 0

\biggl\{ 
max
x\in \scrI h

\bigl\{ 
max

\bigl( 
| \lambda +(x, \omega )| , | \lambda  - (x, \omega )| 

\bigr) \bigr\} \biggr\} 
= max

x\in [ - 2(c - cm),2(c - cm)]

\bigl\{ 
max(| \lambda +(x, \omega )| , | \lambda  - (x, \omega )| )

\bigr\} 
,

where \lambda  - (x, \omega ) and \lambda +(x, \omega ) are the roots of the quadratic in \lambda ,

(\lambda + \omega  - 1)2 = \omega 2 x
2

\Lambda 2
\lambda .

Expanding this quadratic shows it is the same as the one we obtained for \mu H(\omega ).

Having established the above connection, we can now import known results about
the behavior of SOR with complex \omega as a solver in order to analyze the present
situation with smoothing.

Theorem 5.3. Let \mu H(\omega ) be defined by (5.3). Then we have

(5.9) \mu H(\omega ) = max

\bigm| \bigm| \bigm| \bigm| \bigm| \omega (c - cm)

\Lambda 
\pm 
\sqrt{} 
(1 - \omega ) +

\omega 2(c - cm)2

\Lambda 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

,

where the maximum is taken over the positive and negative values of the \pm sign.
Moreover, the choice

\omega ub =
2

1 +
\sqrt{} 

1 - 4 (c - cm)2

\Lambda 2

minimizes \mu H(\omega ), and we have

\mu H(\omega ub) = | 1 - \omega ub| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1 - 
\sqrt{} 
1 - 4 (c - cm)2

\Lambda 2

1 +
\sqrt{} 
1 - 4 (c - cm)2

\Lambda 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Proof. By Proposition 5.2, it suffices to prove the same statements for \widehat \rho (\omega ). How-

ever, this analysis has already been done in [21]. To prove (5.9), the key result is [21,

Lemma 4.1], which requires that \widehat \scrL h obey property A and the spectrum of the Jacobi

iteration matrix \widehat \scrJ h obey

(5.10) \sigma ( \widehat \scrJ h) \subseteq [ - \zeta h, \zeta h] \subset \BbbC and \pm \zeta h \in \sigma ( \widehat \scrJ h) for some \zeta h \in \BbbC ,

where [ - \zeta h, \zeta h] denotes the line segment joining \pm \zeta h \in \BbbC . If this requirement is
satisfied, the largest-magnitude eigenvalue of the SOR iteration matrix may be found,
independently of \omega , by substituting the value \delta h = \pm \zeta h into Young's relation (5.7)

and solving for \lambda h. In our situation \widehat \scrL h indeed satisfies property A, and (5.10) is
obeyed with \zeta h = \delta \ast h satisfying (5.8). Substituting \delta \ast h into (5.7) and square-rooting
both sides yields

\lambda \ast 
h \pm 2\omega 

(c - cm)

\Lambda 
cos(2\pi h)(\lambda \ast 

h)
1
2 + (\omega  - 1) = 0,
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where \lambda \ast 
h denotes the largest-magnitude eigenvalue of the SOR iteration matrix. Using

continuity to take h to 0 yields

\mu H(\omega ) = lim
h\rightarrow 0

max

\bigm| \bigm| \bigm| \bigm| \bigm| \omega (c - cm) cos(2\pi h)

\Lambda 
\pm 
\sqrt{} 
(1 - \omega ) +

\omega 2(c - cm)2 cos2(2\pi h)

\Lambda 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

,

which is equivalent to the claimed expression.
The expressions for \omega ub and \mu H(\omega ub) then follow from [21, Theorem 4.1], once

again using continuity to take h to 0.

The relaxation parameter \omega ub reduces, in the case of \Lambda = 2c \in \BbbR , where c is given
by (3.6), to the parameter of the same name found by Yavneh in [34, Theorem 2.1]
when analyzing RB-SOR in the real case. In that case, \omega ub is an upper bound on
the optimal real relaxation parameter \omega opt \in (1, \omega ub). In our setting, since \BbbC has no
natural ordering, it no longer makes sense to talk about upper bounds; however, we
have stuck with this notation for the sake of consistency with [34].

The expression for \mu H(\omega ub) given above also reduces, under the same assumptions,
to the lower bound for the optimal smoothing factor noted in [34, Corollary 2.2]---in
our case it remains a lower bound. Yavneh also noted in [34] similarities between
the expressions he derived and optimal relaxation parameters and convergence rates
of SOR as a solver, but stopped short of deriving an explicit connection, as we have
done in Proposition 5.2.

However, while in the real case [34] it was found that \omega ub gives a good approxi-
mation of the true optimal relaxation parameter \omega opt, we will see that in the complex
case, this is no longer true in general.

5.2. The case of \vec{}\bfittheta low frequency. In this section we analyze \mu L(\omega ) given by

(5.3). If \vec{}\theta is low frequency, then we have

\widetilde Q(\vec{}\theta ) =

\biggl[ 
0 0
0 1

\biggr] 
.

It follows that
\mu L(\omega ) = max

\vec{}\theta l.f.
\rho ( \widetilde Q(\vec{}\theta )\widetilde S(\vec{}\theta )\nu ) 1

\nu = max
\vec{}\theta l.f.

| s(\nu )22 (\vec{}\theta )| ,

where s
(\nu )
22 (\vec{}\theta ) denotes the (2,2) component of the matrix \widetilde S\nu (\vec{}\theta ). We restrict our

attention to \nu = 1, 2, but our approach generalizes to higher values of \nu .
First, consider \nu = 1. In this case we obtain after some algebra

\mu L(\omega ) = max
\vec{}\theta l.f.

\bigm| \bigm| \bigm| \bigm| \bigm| 1 + \omega 

\Biggl( 
1 +

x(\vec{}\theta )

\Lambda 

\Biggr) \Biggl( 
\omega 
x(\vec{}\theta )

2\Lambda 
 - 1

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| ,
where \vec{}\theta being low frequency means that \vec{}\theta \in [ - \pi 

2 ,
\pi 
2 ]

d. Since every cosine in x(\vec{}\theta )
given by (3.5) must now be nonnegative, we have x([ - \pi 

2 ,
\pi 
2 ]

d) = [0, 2c], so that

(5.11) \mu L(\omega ) = max
x\in [0,2c]

\bigm| \bigm| a0 + a1x+ a2x
2
\bigm| \bigm| ,

where c is defined in (3.6) and

(5.12) a0 = 1 - \omega , a1 =
\omega 

\Lambda 

\Bigl( \omega 
2
 - 1
\Bigr) 
, a2 =

\omega 2

2\Lambda 2
.
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490 L. ROBERT HOCKING AND CHEN GREIF

Now, for \nu = 2 we obtain

(5.13) \mu L(\omega ) = max
x\in [0,2c]

\sqrt{} 
| a0 + a1x+ a2x2 + a3x3 + a4x4| ,

where

a0 = \omega 2  - 2\omega + 1, a1 =  - \omega 

\Lambda 

\bigl( 
\omega 2  - 3\omega + 2

\bigr) 
,

a2 =
2\omega 2

\Lambda 2
(1 - \omega ) , a3 =

\omega 3

2\Lambda 3
(\omega  - 2) , a4 =

\omega 4

2\Lambda 4
.

(5.14)

We can now derive an expression for \mu L(\omega ). The proof of the theorem that
follows is straightforward and relies on the simple observation that the condition for
critical points of the magnitude of a complex-valued function f of a real variable x is
Re
\bigl( 
f d

\=f
dx

\bigr) 
= 0, which trivially follows from the identity | f | 2 = f \=f .

Theorem 5.4. Let \mu L(\omega ) be defined by (5.3), and assume \nu \in \{ 1, 2\} . Let p2(x)
and p4(x) denote the quadratic and quartic functions from (5.11) and (5.13), with
coefficients given by (5.12) and (5.14). Then we have

\mu L(\omega ) =

\Biggl\{ 
maxx\in X1 | p2(x)| if \nu = 1,

maxx\in X2

\sqrt{} 
| p4(x)| if \nu = 2,

(5.15)

where X1 denotes the real roots of the cubic

0 = Re(a0\=a1) + (2Re(a0\=a2) + | a1| 2)x+ 3Re(a1\=a2)x
2 + 2| a2| 2x3

falling in the interval [0, 2c] together with the endpoints of said interval, and X2 de-
notes the same for the degree-seven polynomial

0 = Re(a0\=a1) +
\bigl( 
2Re(a0\=a2) + | a1| 2

\bigr) 
x

+ 3Re (a0\=a3 + a1\=a2)x
2 +

\bigl( 
4Re(a0\=a4 + a1\=a3) + 2| a2| 2

\bigr) 
x3

+ 5Re (a1\=a4 + a2\=a3)x
4 +

\bigl( 
6Re(a2\=a4) + 3| a3| 2

\bigr) 
x5 + 7Re(a3\=a4)x

6 + 4| a4| 2x7.

5.3. Computation of smoothing factors and optimal relaxation parame-
ters. Given Theorems 5.3 and 5.4, the smoothing factor \mu (\omega ) may be computed from
(5.4). Figure 2 shows a plot of \mu (\omega ) so computed when \scrL h is the differential operator
associated with the isotopic Helmholtz equation (2.3) with \alpha = 0.5, and k(\vec{}x) \equiv k a
constant and \nu = 1. The case kh = 4\pi 

5 is shown in Figure 2(a). Notice that \mu (\omega )
seems to have a single local minimum which is also the global minimum---this is also
the case for a considerable number of other values of kh that we tried, and for varying
degrees of anisotropy in the anisotropic case (2.1). Although minimizing (5.4) ana-
lytically appears intractable, this suggests that the problem is well suited to efficient
numerical minimization. We found that computing the optimal \omega opt numerically us-
ing the MATLAB fminsearch function with initial guess \omega 0 = \omega ub given by Theorem
5.3 is highly effective. This is illustrated in Figure 2(b), where we have zoomed in on
a region of Figure 2(a) and superimposed \omega ub and \omega opt, as well as intermediate steps
in the optimization (in this case, only five iterations were required for convergence).
In some cases, such as kh = \pi 

5 , \omega opt and \omega ub are so close that optimization is barely
necessary. That said, given that iterations are extremely cheap, we allow a relatively
large maximum number of iterations.
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(a) Isocontours of \mu (\omega ). (b) Minimization iterates.

Fig. 2. The surface \mu (\omega ) for RB-SOR applied to the isotropic Helmholtz equation (2.3) with
\alpha = 0.5, kh = 4\pi /5, and \nu = 1. The surface is depicted in (a). The convergence of the numerical
minimization procedure is illustrated in (b), where we use \omega ub as an initial guess to compute \omega opt.
Convergence is reached within five iterations; see the nearly horizontal line cutting through the figure,
with the value of the smoothing factor quickly decreasing from approximately 0.87 to less than 0.55.

(a) \omega -JAC. (b) RB-SOR.

Fig. 3. Path in \BbbC traced out by the optimal complex relaxation parameter of multigrid applied
to the isotropic Helmholtz problem (2.3) with \alpha = 0.5, and k(\vec{}x) \equiv k constant for d = 2, for kh \geq 0.
Points of interest corresponding to the optimal relaxation parameters on the top four finest grids
are marked (assuming kh = \pi 

5
on the finest grid).

With a little algebra, it follows from Theorems 4.2, 5.3, and 5.4 that as | \Lambda | \rightarrow \infty ,
we have \omega opt \rightarrow 1 for both \omega -JAC and RB-SOR. In Figure 3 we visualize this by
plotting the path in \BbbC traced out by the optimal relaxation parameters of \omega -JAC
and RB-SOR for this problem for kh \geq 0. As kh \rightarrow \infty we have \omega opt \rightarrow 1 for both
smoothers, as in this case | \Lambda | \rightarrow \infty as kh \rightarrow \infty .

D
ow

nl
oa

de
d 

04
/1

4/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

492 L. ROBERT HOCKING AND CHEN GREIF

We have observed that it is not enough to do smoothing analysis and derive
optimal relaxation parameters on the top grid in the multigrid hierarchy; rather we
should do local Fourier analysis separately on all grids and use different relaxation
parameters on different grids. In the case of vertex-centered multigrid with a direct
disretization on coarse grids, the computational molecule on coarse grids will also be
a 2d+1 point star of the form (1.5). The only difference is that any occurrences of h
in the stencil on the fine grid will on the \ell th coarse grid have to be replaced with 2\ell h
(the case \ell = 0 denoting the finest grid).

We also consider cell-centered discretizations using d-dimensional piecewise con-
stant interpolation P (defined for d = 2, 3 in [27] and which may be straightforwardly
generalized), restriction given by R = 1

2d
PT , and using a Galerkin coarse grid oper-

ator based on R and P . Note that the Galerkin coarse grid operator incorporates a
rescaling [2], [29, p. 524]. As has been observed in [27], in this case for 2d + 1-point
stencils of the form (1.5), the sparsity pattern is preserved by the Galerkin coarse grid
operator. Moreover, one may readily show that if on the fine grid the imaginary part
of the operator is confined to the diagonal, the same is true on all coarse grids. Thus,
our optimal relaxation parameters may be applied separately on all grids, as in the
case of vertex centered multigrid with a direct discretization.

5.4. Variable coefficients and universal lookup table. For constant coef-
ficient PDEs discretized with stencils of the form (1.5), the procedure described in
section 5.3 is sufficient for computing \omega opt in negligible time. For variable coefficient
problems, however, we in general want to use different relaxation parameters at dif-
ferent grid points, and this approach is no longer adequate. In order to handle this
case, we observe that the smoothing factors in Theorems 5.3 and 5.4 are a function
of only three quantities: c > 0 and cm > 0 given by (3.6) and the stencil diagonal
\Lambda \in \BbbC . Moreover, we can always rescale (1.3) so that the row-sum of the off-diagonal
matrix elements is equal to 1 in magnitude. This fixes c = 0.5 and leaves us with \mu opt

and \omega opt as a function of cm > 0 and \Lambda \in \BbbC only. Writing \Lambda = rei\phi , we conclude that
\omega opt and \mu opt can be written in the form

(\omega opt, \mu opt) = F (r, cm, \phi )

for some function F : \BbbR 3 \rightarrow \BbbC \times \BbbR which may be computed using the procedure in
section 5.3. To cover all cases of interest, it is sufficient to sample F on a finite box
in \BbbR 3, because cm and \phi are bounded while r \gg 1 represents a highly diagonally
dominant and hence trivial scenario. We can thus precompute a universal lookup
table from which the pair (\omega opt, \mu opt) may be efficiently computed for any PDE with
stencil of the form (1.5) regardless of the dimension of the PDE or the specific values
of \Lambda and c1, c2, . . . , cd. This is a key feature in our ability to efficiently solve problems
with variable coefficients; see section 6.

6. Numerical experiments. In our numerical experiments we choose to pri-
marily focus on the anisotropic Helmholtz equation (2.1) in two and three dimensions.
We consider

(6.1)  - 
d\sum 

j=1

\epsilon juxjxj  - k2(\vec{}x)(1 - i\alpha )u = g(\vec{}x),

where each \epsilon j is positive,
\sum d

j=1 \epsilon j = d, and d \in \{ 2, 3\} . Equation (6.1) is a special
case of (2.1); the nonnegative constant \alpha is the dissipation of the medium. As before,
k(\vec{}x) : \Omega \rightarrow [0,\infty ) is a positive real function on \Omega and g(\vec{}x) is a source term.
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6.1. Experimental setup. We discretize (6.1) using second-order centered dif-
ferences on a uniform grid Gh with mesh spacing h and Dirichlet boundary conditions.
Unless specified otherwise, our domain is [0, 1]d, with N interior gridpoints along each
dimension. We will consider vertex-centered and cell-centered multigrid; unless spec-
ified otherwise vertex-centered multigrid is used.

Our multigrid code was written in MATLAB. All intergrid transfer operators
are standard full-weighting and bilinear or trilinear interpolation (for vertex-centered
multigrid), and piecewise-constant interpolation and its scaled transpose (for cell-
centered multigrid). All experiments use multigrid F-cycles. For constant coefficient
experiments, our coarsest grid consists of a single point. For variable coefficients, our
coarsest grid has N = 15 points along each axis (vertex-centered multigrid) or N = 16
points (cell-centered multigrid). We measure the convergence rate of multigrid as the
average reduction factor in the norm of the residual over the final ten iterations. As
a stopping criterion, we run until the initial residual norm is decreased by 10 - 10 or
until a maximum number of iterations has been reached. As a right-hand side, for
every experiment we have considered both a point source and a random right-hand
side generated by applying the matrix from (1.3) to a random solution vector. We
report the results of the random right-hand side. The results are averaged over ten
runs of multigrid.

In order to avoid the pollution effect [1], constraints must be imposed on the size
of kh. In the special case of isotropic Helmholtz, namely \epsilon 1 = \epsilon 2 = \cdot \cdot \cdot = \epsilon d = 1,
this is rather straightforward. The local wavenumber k(\vec{}x) is given in terms of the
spatially varying speed of sound c(\vec{}x) and wave frequency f by k(\vec{}x) = 2\pi f

c(\vec{}x) . This

implies that the wavelength \lambda is given locally by

(6.2) \lambda (\vec{}x) =
c(\vec{}x)

f
=

2\pi 

k(\vec{}x)
.

In order to maintain an accurate discrete solution, one requires that the number of
points per wavelength nw obeys nw \geq m, where m is an integer number that may
depend on the order of the discretization. For the isotropic case this, combined with
(6.2), translates into the requirement

(6.3) kMh \leq 2\pi 

m
, where kM = max

\vec{}x\in Gh

k(\vec{}x).

Going back to the anisotropic case, the wavelength is now direction dependent.
The transformation of variables xj =

\surd 
\epsilon jx

\prime 
j for j = 1, . . . , d turns (6.1) back into an

isotropic Helmholtz equation in the transformed coordinate system; in the original
coordinate system, along each xj-axis the wavelength is thus stretched by a factor
of

\surd 
\epsilon j . It thus follows from this and (6.2) that in this case the requirement (6.3)

becomes

(6.4) kMh \leq 
\surd 
\epsilon m

2\pi 

m
, where kM = max

\vec{}x\in Gh

k(\vec{}x) and \epsilon m = min(\epsilon 1, . . . , \epsilon d).

In [10, p. 1472], a second-order discretization is considered and m is taken to be within
the range of 10 to 14. In this section, we use m = 10.

6.2. Experimental comparison of relaxation parameter selection strate-
gies. As a first experiment we consider the anisotropic Helmholtz equation (6.1) in
two dimensions with \alpha = 0.5, k(\vec{}x) \equiv k, \epsilon 1 \equiv \epsilon , and \epsilon 2 \equiv 2 - \epsilon constant. Various values
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(a) \omega -JAC. (b) RB-SOR.

Fig. 4. Convergence curves of multigrid F (1,1) cycles with \omega -JAC and RB-SOR smoothing for
the anisotropic Helmholtz problem (6.1) in two dimensions with \epsilon 1 = 1/3, \epsilon 2 = 5/3, and \alpha = 0.5,
using three different strategies for the selection of the relaxation parameter(s). In the legend, \omega \ell real
and complex are based, respectively, on selecting optimal real and complex relaxation parameters on
all grids, and ``scan"" means we perform an exhaustive scanning strategy.

of \epsilon \leq 1 are considered. We use an N \times N grid with N = 28  - 1 = 255, and select
k so that kh =

\surd 
\epsilon \pi 5 on the finest grid (that is, so that (6.4) is satisfied). A random

right-hand side is used. The strategy that we advocate is performing LFA on all grids
and selecting the optimal complex relaxation parameter for each grid separately. For
each level \ell = 0, . . . , n, choose \omega \ell \in \BbbC minimizing the \ell th grid smoothing factor \mu \ell .
We have confirmed experimentally that this adaptive approach significantly improves
upon the cheaper approach of performing LFA on the top grid only (that is, choose
a single \omega \in \BbbC so that \mu 0, the smoothing factor on the finest grid, is minimized), and
the additional (modest) computational overhead pays off.

To demonstrate the effectiveness of our approach, we compare it with the tradi-
tional strategy of using a real \omega . For fairness of comparison, we use a similar adaptive
strategy here: we perform LFA on all grids with a real relaxation parameter. For each
level \ell = 0, . . . , n, we choose \omega \ell \in \BbbR minimizing \mu \ell .

To further demonstrate the effectiveness of our adaptive approach, we include
results based on performing the impractical strategy of exhaustive scanning, which
attempts to find the best single relaxation parameter \omega ---to be used on all grids---by
brute force. Specifically, we run multigrid for 20 iterations each \omega on a dense 100\times 100
grid subdividing [0, 2] \times [ - 1, 1] \subset \BbbC , feed the best \omega into the minimization routine,
and keep the result if it is better than the best \omega sampled in the grid.

For RB-SOR, we compare with two additional strategies. The first is a base case
where we replace RB-SOR with red-black Gauss--Seidel (that is, set \omega = 1 on all
levels). The second is to use \omega ub from Theorem 5.3 as an approximation for \omega opt \in \BbbC 
minimizing \mu \ell on each level \ell . This was shown to be highly effective in the real case
[34], so it is natural to ask whether it remains so in our setting. For the case of \omega -JAC,
we also compare with the relaxation parameter \omega = 0.5 as in [9].

Figure 4 illustrates multigrid convergence curves for a fixed choice of \epsilon and dif-
ferent strategies, while Table 1 gives the multigrid convergence rate as well as the
smoothing factor on the top four grids for various values of \epsilon and different numbers of
relaxation sweeps \nu and for \omega -JAC and RB-SOR smoothing with the various strate-
gies described above. A pattern that we see emerge is that in most cases all strategies
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do well on the finest grid, but have more difficulty on coarser grids; we speculate that
this is due to a loss of diagonal dominance.

Our proposed strategy stands out in its ability to keep the smoothing factor small
on the coarser grids. For RB-SOR, using optimal real relaxation parameters on all
grids leads to serious increase in the smoothing factors on lower grids, resulting at
best in significantly reduced performance and at worst in divergence. In fact, this
strategy appears to do no better than red-black Gauss--Seidel.

For \omega -JAC in the isotropic case \epsilon = 1, our strategy is still better but the effect
is less pronounced, suggesting that \omega -JAC is less sensitive to the choice of relaxation
parameter in this case; this has also been observed in [9, p. 1476].

For the anisotropic case, we observe that \omega -JAC appears to have much more
difficulty than RB-SOR. For the latter, in this case using \omega ub as an approximation for
\omega opt is insufficient, but using it as an initial guess for a minimization procedure on all
grids as proposed in section 5.3 yields excellent convergence results.

Table 1
RB-SOR and \omega -JAC performance for model problem (6.1) in two dimensions with \alpha = 0.5, \epsilon 1 =

2 - \epsilon 2 = \epsilon , and varying values of \epsilon and \nu , and a random right-hand side. The experimental multigrid
convergence rate \rho and smoothing factors \mu \ell for \ell = 0, 1, 2, 3 are given for a few different relaxation
parameter selection strategies. The convergence rate \rho is averaged over ten runs of multigrid with
different random right-hand sides. Our grid is 255 \times 255, so that the number of unknowns is
2552 = 65025.

RB-SOR

Strategy \epsilon \nu \mu \nu 
0 \mu \nu 

1 \mu \nu 
2 \mu \nu 

3 \rho 
1 1 0.307 0.617 0.920 0.092 0.550

RB-GS (\omega = 1) 1/3 2 0.551 0.838 5.595 0.217 > 1
1/10 2 0.921 0.978 1.262 3.834 > 1
1 1 0.181 0.606 0.792 0.060 0.609

\omega \ell = argmin\omega \in \BbbR \mu \ell (\omega ) 1/3 2 0.172 0.758 1.000 0.209 > 1
1/10 2 0.404 0.884 1.000 1.000 > 1
1 1 0.372 0.667 1.186 0.226 0.369

Exhaustive scanning 1/3 2 0.757 0.854 1.191 0.642 0.828
1/10 2 0.937 0.959 1.053 0.826 > 1
1 1 0.194 0.878 0.820 0.091 0.497

\omega \ell = (\omega ub)\ell 1/3 2 0.165 0.813 2.138 0.115 > 1
1/10 2 0.347 0.551 1.415 1.289 > 1

Our proposed strategy 1 1 0.180 0.512 0.409 0.048 0.347
1/3 2 0.160 0.505 0.426 0.033 0.415

\omega \ell = argmin\omega \in \BbbC \mu \ell (\omega ) 1/10 2 0.326 0.540 0.701 0.380 0.657

\omega -JAC

Strategy \epsilon \nu \mu \nu 
0 \mu \nu 

1 \mu \nu 
2 \mu \nu 

3 \rho 
1 2 0.604 0.778 0.813 0.326 0.595

\omega = 0.5 (proposed in [9]) 1/3 2 0.866 0.956 1.514 0.595 > 1
1/10 2 0.960 0.989 1.125 1.952 > 1
1 2 0.423 0.703 0.812 0.017 0.525

\omega \ell = argmin\omega \in \BbbR \mu \ell (\omega ) 1/3 2 0.761 0.922 1.000 0.425 > 1
1/10 2 0.923 0.978 1.000 1.000 > 1
1 2 0.441 1.078 1.083 0.163 0.440

Exhaustive scanning 1/3 2 0.819 0.892 2.502 0.909 0.821
1/10 2 0.963 0.979 1.049 1.822 > 1

Our proposed strategy 1 2 0.423 0.664 0.452 0.016 0.421
1/3 2 0.761 0.889 0.891 0.315 0.765

\omega \ell = argmin\omega \in \BbbC \mu \ell (\omega ) 1/10 2 0.922 0.967 0.972 0.891 0.955

6.3. LFA versus two-grid analysis. Given that more accurate predictive tools
such as two-grid or three-grid analysis exist, it is natural to ask if we would do
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496 L. ROBERT HOCKING AND CHEN GREIF

(a) Squared LFA smoothing factor \mu (\omega )2. (b) Two-grid spectral radius \rho 2G(\omega ).

Fig. 5. Comparison of the two-grid spectral radius as a function of relaxation parameter \omega with
the squared smoothing factor as a function of \omega , for the anisotropic Helmholtz problem (6.1) with
\epsilon 1 = \epsilon , \epsilon 2 = 2 - \epsilon for \epsilon = 1

3
, with kh = 2

5
\pi , \alpha = 0.5, and \nu = 2.

Table 2
Comparison of the use of optimal LFA relaxation parameters on each grid with optimal two-grid

relaxation parameters on each grid for the anisotropic Helmholtz problem (6.1) in two dimensions
for various values of \epsilon and \nu , assuming RB-SOR smoothing, using a random right-hand side. In
the case of LFA, the \nu th power \mu \nu 

\ell of the smoothing factor is provided for \ell = 0, 1, 2 (that is, the top

three grids). For the two-grid case, the spectral radius \rho 2G\ell is provided for the same values of \ell . In
both cases, the (average) multigrid convergence rate \rho and number of iterations (Iter) to converge
are provided.

LFA Two-grid
\epsilon \nu \mu \nu 

0 \mu \nu 
1 \mu \nu 

2 Iter \rho \rho 2G0 \rho 2G1 \rho 2G2 Iter \rho 
1 1 0.18 0.51 0.41 20 0.35 0.26 0.53 0.39 20 0.35

1/3 2 0.16 0.51 0.43 24 0.42 0.25 0.53 0.42 18 0.32
1/10 2 0.35 0.54 0.70 41.3 0.66 0.44 0.61 0.70 36.4 0.62

better deriving relaxation parameters minimizing these two- or three-grid spectral
radii rather than minimizing LFA smoothing factors, and if so how much better?
While a full answer is beyond the scope of the current work, we attempt to provide
some insight in Figure 5 and Table 2. In Figure 5 we have taken the anisotropic
Helmholtz problem (6.1) with \epsilon 1 = \epsilon , \epsilon 2 = 2  - \epsilon for \epsilon = 1

3 , with kh = 2
5\pi , \alpha = 0.5,

\nu = 2 and plotted, as a function of relaxation parameter \omega , both the square of the
LFA smoothing factor1 and two-grid spectral radius (computed numerically using a
300\times 300 grid of Fourier modes). We observe remarkable similarity in this case, which
is representative of the situation for other examples we tried as well. The optimal
relaxation parameter for LFA is given by \omega LFA

opt = 1.312  - 0.262i, while for two-grid

it is \omega 2G
opt = 1.304 - 0.350i. The square of the optimal LFA smoothing factor is given

by \mu (\omega LFA
opt )2 = 0.506. The optimal two-grid spectral radius is \rho 2G(\omega 2G

opt) = 0.524
whereas the two-grid spectral radius using the optimal LFA relaxation parameter

1Because the convention for LFA smoothing factors is to incorporate a power of 1
\nu 

in order
to measure the error reduction per smoothing sweep---whereas two-grid spectral radii do not do
this---the smoothing factor must be raised to the power of \nu in order to compare the two objects.
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is \rho 2G(\omega LFA
opt ) = 0.586. Thus, the optimal relaxation parameters predicted by LFA

and two-grid analysis are in this case remarkably similar, but LFA appears slightly
optimistic. Using the optimal LFA relaxation parameter as an approximation for the
optimal two-level relaxation parameter results in a modest increase in the two-level
spectral radii.

In Table 2, we take the same setup as the previous experiment (section 6.2) but
compare the use of optimal LFA relaxation parameters on each grid with optimal two-
grid relaxation parameters on each grid. We note that the greatest differences appear
to be for highly anisotropic problems with small complex shifts. The magnitude
of the shift appears to be particularly important. In particular, on the third grid
where the shift is relatively large---the shift on the \ell th grid is proportional to 22\ell h2---
we have very close agreement. While the optimal two-grid relaxation parameters
exhibit some modest gains in the anisotropic case, their computation is prohibitive
and hence impractical---numerical computation of the two-grid spectral radius based
on maximizing over a d-dimensional grid of Fourier modes, with M grid points along
each dimension, involves computing the spectral radius of O(Md) matrices of size
2d \times 2d. By contrast, LFA relaxation parameters come at a negligible cost.

6.4. Experimental validation for a 3D model problem with constant
coefficients. In this experiment we consider (6.1) in three dimensions with \epsilon 1 = \epsilon ,
\epsilon 2 = \epsilon 3 = 1

2 (3 - \epsilon ), and \alpha = 0.5.
We fix our relaxation parameter selection strategy to be optimal LFA complex

relaxation parameters computed separately on each grid, the utility of this strategy
having already been demonstrated in sections 6.2 and 6.3. Our goal in this example
is to demonstrate that multigrid obtains h-independent convergence rates and to
compare the efficiency of \omega -JAC to RB-SOR smoothing. To that end, we compute
multigrid convergence rates as well as the number of iterations and runtime required
for convergence, for increasing values of N . The right-hand side is random. The
results are shown in Table 3. In almost every case (the exception is \epsilon = 1/5 with \omega -
JAC smoothing), the convergence rate as well as iterations required for convergence
are effectively constant, while the running time goes up by roughly a factor of eight
each time N doubles---this is to be expected in three dimensions.

6.5. Experimental validation for a 2D problem with variable coeffi-
cients. In this experiment, we consider a generalized version of the problem (6.1)
in two dimensions, with \epsilon 1 and \epsilon 2 now functions of \vec{}x \in [0, 1]2 and the constraint
\epsilon 1 + \epsilon 2 = 2 dropped. Specifically, we take a random right-hand side, fix \alpha = 0.5 and
\nu = 2, and consider

(6.5) \epsilon 1 = 1 + \epsilon sin(2\pi x), \epsilon 2 = 1 + \epsilon sin(2\pi y).

Our focus in this example is on demonstrating convergence, and as such, we study
the convergence behavior for the relatively large value kh = \pi 

5 . We note that in reality,
in order to avoid the pollution effect [1], we would need to restrict kh to adhere to a
constraint similar to (6.3), which would make convergence faster.

Both \omega -JAC and RB-SOR smoothing are considered for various grid sizes N .
However, we now use a spatially varying relaxation parameter based on freezing coef-
ficients. For \omega -JAC, the explicit formula (4.6) from Theorem 4.2 allows us to efficiently
precompute a spatially varying \omega opt(\vec{}x) on each grid level. For RB-SOR, the same is
accomplished by applying trilinear interpolation to the universal lookup table de-
scribed in section 5.4. Results are given in Table 4. We observe that while multigrid
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Table 3
RB-SOR and \omega -JAC performance for the anisotropic Helmholtz problem (6.1) in three dimen-

sions with \alpha = 0.5, \epsilon 1 = \epsilon , and \epsilon 2 = \epsilon 3 = 1
2
(3 - \epsilon ) and a random right-hand side. Different mesh

sizes and different values of \epsilon are considered. The experimentally observed multigrid convergence
rate \rho , number of iterations to converge (Iter), and time (t) in seconds to converge are given. Re-
sults are averaged over ten runs of multigrid with different random right-hand sides. For RB-SOR,
we use \nu = 1 if \epsilon = 1 and \nu = 2 otherwise. For \omega -JAC, \nu = 2 is used irrespective of \epsilon . We use
an N \times N \times N grid where N = 2\ell  - 1 and consider 6 \leq \ell \leq 8. The finest grid considered is
255\times 255\times 255, so that the number of unknowns is approximately 1.65 million.

RB-SOR

\epsilon = 1 \epsilon = 1/3 \epsilon = 1/5
\ell \rho Iter t (s) \rho Iter t (s) \rho Iter t (s)
6 0.42 23 3.5 0.40 20 5.7 0.49 26.4 6.8
7 0.42 23 31.0 0.40 21 54.5 0.52 28 71.2
8 0.42 23 281.4 0.41 21 495.9 0.52 28 651.2

\omega -JAC

\epsilon = 1 \epsilon = 1/3 \epsilon = 1/5
\ell \rho Iter t (s) \rho Iter t (s) \rho Iter t (s)
6 0.59 37 6.3 0.85 109 18.6 0.90 176 30.9
7 0.59 37 54.5 0.86 111 166.8 0.93 214 320.1
8 0.58 36 457.9 0.86 110.8 1447.0 0.93 228 2890.3

convergence rates are not as stable as in the constant coefficient case, they do appear
to indicate a satisfactory level of scalability. RB-SOR significantly outperforms \omega -
JAC, yielding reasonable convergence rates even in the highly anisotropic case \epsilon = 0.9
(for which \omega -JAC diverges).

Table 4
RB-SOR and \omega -JAC performance for model problem (6.1) in two dimensions with variable

coefficients (6.5). The experimentally observed multigrid convergence rate \rho , number of iterations
to converge (Iter), and time (t) in seconds to converge are given. Results are averaged over ten runs
of multigrid with different random right-hand sides. For both smoothers, we fix \nu = 2 and consider
different values of \epsilon . We use an N \times N grid where N = 2\ell  - 1 and consider 7 \leq \ell \leq 12. Divergence
is denoted by DIV.

RB-SOR

\epsilon = 0.5 \epsilon = 0.7 \epsilon = 0.9
\ell Iter \rho t (s) Iter \rho t (s) Iter \rho t (s)
7 22 0.388 0.3 32.8 0.559 0.4 51.3 0.706 0.7
8 25 0.431 1.0 39 0.598 1.7 55.1 0.728 2.4
9 27 0.455 5.2 45 0.641 9.1 56.4 0.737 11.4
10 28 0.468 24.6 48 0.671 42.1 56.8 0.739 50.8
11 29 0.485 107.0 49 0.644 182.4 57 0.739 210.7
12 30 0.473 459.7 54 0.658 832.3 57 0.732 907.4

\omega -JAC

\epsilon = 0.5 \epsilon = 0.7 \epsilon = 0.9
\ell Iter \rho t (s) Iter \rho t (s) Iter \rho t (s)
7 62.6 0.768 0.9 116.9 0.850 1.7 DIV > 1 DIV
8 69.5 0.798 3.7 130 0.875 7.0 DIV > 1 DIV
9 71.7 0.809 16.6 139.3 0.889 32.8 DIV > 1 DIV
10 74.2 0.815 73.1 143.2 0.895 141.2 DIV > 1 DIV
11 74.3 0.817 303.9 143 0.895 572.3 DIV > 1 DIV
12 74.4 0.818 1267.4 144 0.897 2474.0 DIV > 1 DIV

6.6. The Marmousi problem. In our experiments we have thus far considered
vertex-centered multigrid applied to problems with constant or smoothly varying co-
efficients. As a final experiment, we show how our framework may be applied---using

D
ow

nl
oa

de
d 

04
/1

4/
21

 to
 1

42
.1

03
.2

9.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL COMPLEX RELAXATION PARAMETERS IN MULTIGRID 499

Fig. 6. The wavenumber k(\vec{}x) for the Marmousi problem [4], rescaled to take on a maximum
value of 1 (units in the x and y directions are in kilometers).

cell-centered multigrid---to a well-known benchmark problem with jumping coeffi-
cients. Specifically, we consider the 2D isotropic Helmholtz problem (2.3) with k(\vec{}x)
given by the Marmousi dataset [4], illustrated in Figure 6. The Marmousi dataset
is a 3km deep by 9km wide geophysical dataset typically used for seismic imaging
modelling---we take our units as kilometers and discretize the rectangle [0, 9] \times [0, 3]
using a uniform 3N \times N grid for increasing values of N (we have h = 3/N in this
case), and each time rescale k(\vec{}x) so that its maximum value kM obeys kMh = \pi 

5 (that
is, the worst case value still meeting the accuracy constraint (6.3)). As in our other
experiments, we use a random right-hand side.

Vertex-centered multigrid using \omega -JAC smoothing in conjunction with a Galerkin
coarse grid operator based on operator-dependent prolongation [6] has been observed
in the literature to have difficulties in obtaining a convergent second-order scheme
for \alpha < 0.5; see, e.g., [9, sect. 4.3]. In [30] it was shown that ILU smoothing with a
fourth-order scheme can handle the case \alpha = 0.4.

Here we use cell-centered multigrid using piecewise-constant interpolation and a
Galerkin coarse grid operator, as discussed in section 5.3. This approach has been
observed to be well suited to problems with jumping coefficients [27]. An advantage
in our case is that this leads to stencils of the form (1.5) on all grids, so that our
framework applies on every level, as noted in section 5.3. We consider \alpha = 0.5 and
\alpha = 0.4.

Table 5
Cell-centered multigrid with RB-SOR smoothing for the isotropic Helmholtz problem (2.3) in

two dimensions, with k(\vec{}x) given by the Marmousi dataset defined on the rectangle [0, 9]\times [0, 3] and
illustrated in Figure 6, discretized on a uniform 3N \times N grid where N = 2\ell with 7 \leq \ell \leq 11. The
experimentally observed multigrid convergence rate \rho , number of iterations to converge (Iter), and
time (t) in seconds to converge are given. Results are averaged over ten runs of multigrid with
different random right-hand sides. We fix \nu = 2 and consider \alpha = 0.5 and \alpha = 0.4.

\alpha = 0.5 \alpha = 0.4
\ell Iter \rho t (s) Iter \rho t (s)
7 33 0.553 1.2 58.4 0.722 2.1
8 31.6 0.538 5.1 49 0.683 7.7
9 30 0.521 20.2 42.7 0.652 28.5
10 30 0.528 82.9 40.7 0.634 112.7
11 30 0.534 338.9 41 0.642 466.6

As evident from Table 5, in our setting we are able to obtain fast scalable con-
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vergence for a second-order scheme using RB-SOR smoothing, while avoiding the
computational overhead of operator-dependent prolongation and maintaining a con-
sistent sparsity pattern on all grids.

7. Conclusions and future work. We have considered optimal complex relax-
ation parameters minimizing smoothing factors of multigrid with damped Jacobi and
red-black SOR smoothing in arbitrary dimensions. Most of our efforts are focused
on the challenging case of RB-SOR. We have generalized work done in [34] for the
real case, and have shown that the complex case reveals significant new analytical
challenges. Our analysis is based on deriving a connection between the performance
of RB-SOR as a smoother and a solver; a similar connection for the real case was
noted in [34], but was neither proved nor used as an analytical tool.

In Theorem 5.3 we have derived an approximate optimal relaxation parameter
\omega ub generalizing the approximate optimal relaxation parameter in [34]. However, its
relationship with the true optimal parameter \omega opt is subtle; while in the real case it is
sufficient to use \omega ub as a proxy for \omega opt, in the complex case we use \omega ub as an initial
guess for a minimization routine run to find \omega opt.

We have demonstrated the utility of complex relaxation parameters for a number
of model problems, using vertex-centered and cell-centered multigrid, including prob-
lems in three dimensions and problems with variable coefficients. For the latter, a
universal lookup table allows us to efficiently precompute spatially varying relaxation
parameters.

One of our central conclusions is that complex relaxation parameters should be
used for problems with complex coefficients. Numerical experiments with anisotropic
Helmholtz equations appear to confirm this view---we show that for RB-SOR, using
the optimal LFA complex relaxation parameter on each grid level yields significantly
faster convergence compared to using the optimal real relaxation parameter.

Our framework seems well suited for cell-centered multigrid with a Galerkin coarse
grid operator based on piecewise-constant interpolation and its transpose, where the
sparsity pattern of the stencil is preserved on coarse grids and the complex shift
remains confined to the diagonal. We have demonstrated fast convergence in this
case for the well-known Marmousi benchmark problem with jumping coefficients.

A shortcoming of our work is that it cannot be applied to the case where a Galerkin
coarse grid operator is used in conjunction with vertex-centered discretization. In this
case, the stencil on coarse grids will no longer be a 2d + 1-point star---rather it will
become a 3d-point box. Some work for 9-point symmetric stencils in the 2D real case
has been done in [35].

We have limited ourselves to the consideration of multigrid as a solver. A direction
for future research is the extension of our analysis to the case where multigrid is used
as a preconditioner for Krylov subspace methods.

A webpage containing MATLAB code with an implementation of the algorithms
described in this paper is available at http://www.cs.ubc.ca/\sim greif/Publications/
hg2020.html.
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