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a b s t r a c t

We consider iterative solvers for large, sparse, symmetric linear systems with a saddle-
point structure. Since such systems are indefinite, the conjugate gradient (CG) method
is not naturally designed for solving them. However, in the case of a maximally rank-
deficient leading block, we prove that there are two sufficient conditions that allow for
CG to be used. We show that the conditions are satisfied for a model time-harmonic
Maxwell problem. To support our analysis, we present several numerical experiments
for three-dimensional problems on complicated computational domains with constant
and variable coefficients.
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1. Introduction

Consider the regularized saddle-point system(
A BT

B −Q

)
  

K

(
u
v

)
=

(
f
0

)
, (1.1)

where A ∈ Rn×n, B ∈ Rm×n and Q ∈ Rm×m with m < n. In many situations we have Q = 0, however for some
PDE discretizations, using a symmetric positive semi-definite (SPSD) matrix Q ̸= 0 can be utilized as a stabilization
procedure. We focus our investigation on SPSD matrices A. In particular, we are interested in maximally rank-deficient
leading blocks that still yields to a nonsingular block matrix, K. For Q = 0, we require the following properties to ensure
(1.1) is invertible:

rank(A) = n − m, rank(B) = m, and ker(A) ∩ ker(B) = {0}.

For Q ̸= 0, the requirement on rank(B) can be relaxed.
In this paper, we derive two sufficient conditions that allow the use of the conjugate gradient (CG) method [1] to solve

an indefinite saddle-point system with a maximally rank-deficient leading block, A. Our work builds on [2], where the
authors developed an indefinite approximate inverse preconditioner for such problems. We expand this to consider the
family of block diagonal and block triangular preconditioners from [3,4].

An outline of the rest of the paper follows. In Section 2, we give a comprehensive literature review for the use of CG
for indefinite linear systems and outline our approach for this problem. In Section 3, we specifically construct the Krylov
subspace and derive two sufficient conditions that allow CG to be used. In Section 4, we consider a null-space decoupling
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of (1.1). We analyze the spectral structure of the preconditioned matrices in Section 5. In Section 6, we show a series of
three dimensional numerical experiments. Finally, we offer some concluding remarks in Section 7.

2. Literature review — conjugate gradient for indefinite linear systems

CG has been designed for symmetric positive definite (SPD) matrices. In particular, its derivation is based on minimizing
the energy norm of the error, which is well defined only for SPD matrices. However, given the high effectiveness of the
method, many extensions to other types of matrices have been considered. Applying CG to indefinite linear systems has
been extensively investigated in the past 40 years, ranging from early methods in [5,6] in the 70s to more recent attempts
such as [7] a few years ago. In the literature, some common approaches to the use of preconditioned or unpreconditioned
CG for indefinite problems are:

1. Additively split the indefinite system into two parts, one being symmetric positive definite, and define a generalized
CG algorithm;

2. Derive a nonstandard inner product with respect to which the preconditioned matrix is symmetric positive definite;
3. Preserve positivity of the eigenvalues of the preconditioned matrix.

In the pioneering work [5,6], the authors derive a generalized CG algorithm using a splitting approach. In [8], the
Bramble–Pasciak CG algorithm is developed for regularized saddle point systems of the form (1.1). The authors use
preconditioners of the form:(

A0 0
B I

)
,

where A0 is SPD. The preconditioned matrix is self-adjoint for the bilinear form defined by:

(x, y)H = xTHv where H =

(
A − A0 0

0 I

)
.

We note that A0 must be chosen such that A−A0 is also SPD. The linear system associated with the preconditioned matrix
can be solved by CG using the above defined inner product.

More recently, the authors in [9] showed that negating the second block row of a symmetric saddle-point matrix
obtains the property that the new nonsymmetric saddle-point matrix,

K1 = JK =

(
I 0
0 −I

)(
A BT

B −Q

)
=

(
A BT

−B Q

)
,

has a spectrum that is entirely contained in the right half plane (all its eigenvalues have nonnegative real parts). The
authors derive conditions by which K1 is diagonalizable with a real and positive spectrum. These are necessary and
sufficient conditions that guarantee positive definiteness with respect to a certain bilinear form.

The authors in [10–12] show that for a certain class of constraint preconditioners of the form

P1 =

(
G BT

B −Q

)
,

where G is SPD, the preconditioned matrix has positive eigenvalues. For example, for G = diag(A), the authors
in [11] proved that classical preconditioned CG is theoretically expected to converge if A is SPD. Thus, even though the
preconditioner and saddle-point matrix are indefinite, CG can still be used. A more general framework for constraint
preconditioners is offered in [13], where the authors derive projected preconditioned CG, and develop an effective way
to apply it without explicitly forming the null-space of the matrix of constraints.

For more examples that consider CG for nonpositive definite matrices we refer the reader to [14], where the authors
use a non-standard inner product in a similar way to [8]. Finally, see [7,15] for projected Krylov subspace methods.

In this work, we are interested in the class of regularized and unregularized saddle-point systems with a maximally
rank-deficient leading block. The mathematical structure of this setting allows us to exploit the properties of the
underlying Krylov subspace. For a preconditioner P , the subspace given by:

Kk(P−1K, r0) = span{r0, P−1K r0, . . . , (P−1K)k−1 r0}, (2.1)

where r0 is preconditioned initial residual. If K and P are both SPD then clearly it is possible to apply CG. In this work K is
indefinite, and thus, P−1K will not be SPD or even real positive. However, by explicitly forming the Krylov subspace and
exploiting the block structure of K and P , we derive two sufficient conditions for applying CG. Specifically, we simplify the
first block vector of (P−1K)kr0 such that it can be expressed as a product of SPD and SPSD matrices and force the second
block vector to 0. We can use CG even though the preconditioned matrix has both positive and negative eigenvalues and
it is also structurally nonsymmetric.
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3. Krylov subspace

In [3], the authors show that an ideal preconditioner for saddle-point systems of the form (1.1) with a maximally
rank-deficient leading block is the augmented preconditioner:(

A + BTW−1B 0
0 W

)
, (3.1)

where W is an arbitrary symmetric positive definite matrix.
Our goal is to find conditions on an approximation X to the augmented term, BTW−1B, such that we can use

preconditioned CG. We consider a preconditioner of the following form:

P =

(
A + X 0

0 W

)
,

where X is chosen such that A+ X is SPD. It is possible to use CG to solve (1.1) when the preconditioned matrix P−1K is
symmetrizable and its symmetrized version is positive definite. Considering a zero initial guess, the initial preconditioned
residual is given by:

r0 = P−1
(

f
0

)
=

(
(A + X)−1f

0

)
. (3.2)

To construct (2.1), an essential step is multiplication with the preconditioned matrix, which is given by:

P−1K =

(
A + X 0

0 W

)−1 (
A BT

B −Q

)
=

(
(A + X)−1A (A + X)−1BT

W−1B −W−1Q

)
.

Theorem 3.1. Given a symmetric indefinite block 2 × 2 matrix and symmetric positive definite preconditioner

K =

(
A BT

B −Q

)
and P =

(
A + X 0

0 W

)
,

assuming a zero initial guess, for the preconditioned residual r0 given in (3.2), the resulting multiplications with the
preconditioned matrices can be simplified as follows:

[P−1K]
i r0 =

(
[(A + X)−1A]

i(A + X)−1f
0

)
for i = 0, 1, . . . (3.3)

as long as the following conditions hold:

CT f = 0, (3.4a)

AC = 0, (3.4b)

where C = (A + X)−1BT .

Proof. The proof follows by induction. For i = 0 we have r0, and for i = 1 we have

P−1K r0 =

(
(A + X)−1A(A + X)−1f

W−1B(A + X)−1f

)
. (3.5)

Thus by condition (3.4a) we see that (3.5) holds for i = 1. Now assuming

[P−1K]
i−1r0 =

(
[(A + X)−1A]

i−1(A + X)−1f
0

)
, (3.6)

it readily follows that

[P−1K]
ir0 = [P−1K][P−1K]

i−1r0

=

(
(A + X)−1A (A + X)−1BT

W−1B −W−1Q

)(
[(A + X)−1A]

i−1(A + X)−1f
0

)

=

(
[(A + X)−1A]

i(A + X)−1f
W−1B(A + X)−1A[(A + X)−1A]

i−2(A + X)−1f

)

=

(
[(A + X)−1A]

i(A + X)−1f
0

)
,

where in the last step we used (3.4b). This completes the proof. □
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From (3.4b) in Theorem 3.1 it readily follows that the null-space of A is defined as C = (A+X)−1BT . Multiplying by A+X
we can express the approximation X in terms of BT and the null-space of A.

Corollary 3.1. To satisfy (3.4b) in Theorem 3.1, X must be chosen such that:

BT
= XC . (3.7)

Remark 3.1. In Theorem 5.1, we considered left preconditioning. However, for right preconditioning the preconditioned
matrix is KP−1 and the associated Krylov subspace would be

Kk(KP−1, r̃0) = span{r̃0, KP−1 r̃0, . . . , (KP−1)k−1 r̃0},

where r̃0 =

(
f
0

)
is unpreconditioned initial residual for a zero initial guess. Using the conditions (3.4) one can prove a

similar result to Theorem 3.1, that is:

[KP−1
]
i r̃0 =

(
[A(A + X)−1

]
if

0

)
for i = 0, 1, . . ..

Thus, it is possible to use CG with left or right preconditioning.

Remark 3.2. The matrix X does not necessarily have to be positive definite, for the conditions in (3.4) to be satisfied. For
example, if X = BTW−1B then C is defined as:

C = (A + BTW−1B)−1BT . (3.8)

In [2, Proposition 3.6] the authors show that if C is defined as in (3.8), then AC = 0. Thus, condition (3.4b) in Theorem 3.1
is automatically satisfied.

We now show that we are not restricted to the block diagonal preconditioner to enable the use of CG.

Proposition 3.1. Consider the upper and lower triangular preconditioners:

PU =

(
A + X BT

0 W

)
and PL =

(
A + X 0

B W

)
. (3.9)

Then

[P−1
∗

K]
k r0 =

(
[(A + X)−1A]

k(A + X)−1f
0

)
,

where ∗ denotes L or U, holds under the same conditions as in Theorem 3.1.

The proof follows by induction. The preconditioned matrices are

P−1
U K =

(
(A + X)−1A − (A + X)−1BTW−1B (A + X)−1BT

W−1B −W−1Q

)
;

P−1
L K =

(
(A + X)−1A (A + X)−1BT

W−1B − W−1B(A + X)−1A W−1B(A + X)−1BT
− W−1Q

)
,

and it follows that

[P−1
∗

K]
k r0 =

(
[(A + X)−1A]

k(A + X)−1f
0

)
,

where ∗ denotes L or U .

4. Null-space decoupling

Consider the saddle-point form of (1.1) with Q = 0. Since the null-space of A is of dimension m, there is matrix
C ∈ Rn×m whose columns form a linearly independent basis for the null-space of A. Using this null-space matrix, it is
possible to decouple the saddle-point system (1.1) by multiplying the first block row with CT to obtain:

CTBTv = CT f .

The solution procedure for (1.1) becomes:

CTBTv = CT f , (4.1a)

Au = f − BTv with Bu = 0. (4.1b)

The solution of (4.1) is unique if and only if BC is nonsingular and A is positive definite on the null-space of B.
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To aid discussion of the null-space decoupling, we introduce a Helmholtz-type decomposition similar to [2]. The
intersection of the null-spaces of A and B is zero, thus:

ker(A) ⊕ ker(B) = Rn. (4.2)

This decomposition provides key insights into the null-space decoupling of (1.1). Using (4.2) we write the primary variable
solution

u = uA + uB

where uA ∈ ker(A) and uB ∈ ker(B).
Using [2, Proposition 3.6] and [2, Theorem 3.5], there exists a formulation of the null-space of A such that W = BC is

SPD, which allows the use of CG. From the Helmholtz-type decomposition (4.2), we can write (4.1b) as:

AuB = f − BTv with BuA = 0.

Since uA ∈ ker(A) then BuA ̸= 0 unless uA = 0. Thus the decoupled system becomes

CTBTv = CT f and AuB = f − BTv. (4.3)

Since A is positive definite on the null-space of B, then it is possible to use a CG-type solver for the second equation in
(4.3). In practice, since A is singular, one may apply a null-space method, which amounts to applying CG on:

ZTAZuB = ZT f where BZ = 0.

We note that a null-space matrix Z does not need to be explicitly constructed; see [13].
We conclude this section with a few comments for the case when CT f = 0. In this setting (dim(null(A)) = m), it is

very common that the secondary variables, v, arise from a Lagrange multiplier formulation (1.1); see for example [16,17]
for the mixed formulation of Maxwell’s equations and [18] for norm minimization problems with equality constraints.
Thus, the construction of f is often independent of the secondary variables, which leads to CT f = 0 for these sorts of
formulations. Thus, the solution to (4.1a) is zero and then the solution to (4.3) becomes:

AuB = f . (4.4)

Considering a preconditioner of the form A + X for (4.4) would form the same block Krylov subspace defined in (3.3)
where v = 0.

For a non-zero v, the discussion around (4.3) may indicate that the condition (3.4a) might be relaxed for the
preconditioned saddle-point system.

5. Eigenvalue analysis

We now analyze the ideal forms of the preconditioner where we do not use the approximation X but rather the
augmented term BTW−1B. We will consider the upper block triangular preconditioner:

PU =

(
A + BTW−1B BT

0 W

)
.

Extension to block diagonal and block lower triangular can easily be done using the same techniques.

Theorem 5.1. The preconditioned matrix P−1
U K has eigenvalue λ = 1 with algebraic multiplicity n − m and eigenvalue

λ =
1±

√
5

2 with algebraic multiplicity m− l for each eigenvalue, where l = Dim(Null(A))Q. The corresponding eigenpairs (λ, x)
are:

λ = 1, x = (uB, 0), and λ =
1 ±

√
5

2
, x = (uA, vQ ),

where uB ∈ Null(B), uA ∈ Null(A), and vQ ∈ Null(Q ).

Proof. The corresponding generalized eigenvalue problem is given by:(
A BT

B −Q

)(
u
v

)
= λ

(
A + BTW−1B BT

0 W

)(
u
v

)
. (5.1)

Assume λ is such that (λW + Q ) is nonsingular. Such an assumption is valid, for example, for positive λ, because W and
Q are SPD and SPSD, respectively. Substituting v = (λW + Q )−1Bu into the first block row of (5.1), we obtain:

(1 − λ)Au + (1 − λ)BT (λW + Q )−1Bu = λBTW−1Bu.

From this, it follows immediately that if u ∈ Null(B) then λ = 1 is an eigenvalue.
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Table 1
Eigenpairs and algebraic multiplicities for the preconditioned matrices
P−1

D K and P−1
L K . We use the notation uB ∈ Null(B), uA ∈ Null(A),

vQ ∈ Null(Q ), and l = Dim(Null(Q )).
Preconditioned
matrix

Eigenvalue Eigenvector Algebraic
multiplicity

P−1
D K 1 (u, vQ ) n − l

P−1
D K −1 (uA, vQ ) m − l

P−1
L K 1 (uB, 0) n − m

P−1
L K 1+

√
5

2 (uA, vQ ) m − l
P−1

L K 1−
√
5

2 (uA, vQ ) m − l

Fig. 1. Eigenvalue distribution of the preconditioned matrix P−1
U K using randomly generated blocks with n = 100, m = 20, and l = 5.

Now, assume that λ ̸= 1 and Bu ̸= 0. Substituting Bu = (λW + Q )v into (5.1) gives:

(λ − 1)Au + (λ2
+ λ − 1)BTv + λBTW−1Qv = 0.

Thus by setting u ∈ Null(A), and v ∈ Null(Q ), we have λ =
1±

√
5

2 . □

From Theorem 5.1 it follows that if Q = 0, we have the full spectrum of the preconditioned matrix, with just three
distinct eigenvalues that have high algebraic multiplicities.

Corollary 5.1. For the non-regularized saddle-point form of (1.1), with Q = 0, P−1
U K has eigenvalue λ = 1 with algebraic

multiplicity n − m and eigenvalues λ± =
1±

√
5

2 with algebraic multiplicities m.

Proposition 5.1, given below, outlines the algebraic multiplicities of eigenvalues and their corresponding eigenvectors
for block diagonal and block lower triangular preconditioners. The full eigenvalue analysis for these preconditioners is
omitted since it is very similar to what we show in Theorem 5.1.

Proposition 5.1. Consider the preconditioners

PD =

(
A + BTW−1B 0

0 W

)
and PL =

(
A + BTW−1B 0

B W

)
.

Then the eigenpairs and algebraic multiplicities of the preconditioned matrices are given in Table 1.

In Fig. 1 we show an example of the eigenvalue distribution of the preconditioned matrix.

6. Numerical experiments

In this section we use the time-harmonic Maxwell equation in mixed form [4,19] to illustrate our findings. The
continuous problem is given as follows:

∇ × ν ∇ × b + ∇r = f in Ω

∇ · b = 0 in Ω,
(6.1)
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Table 2
Krylov solver test: time and iteration results for using one iterations of the preconditioner with FCG, MINRES and GMRES. The viscosity for these
tests is ν = 1e−2.

FCG MINRES GMRES

ℓ DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
3 4913 0.06 14 2.4/1.4 0.07 13 3.0/1.9 0.07 12 3.0/1.9
4 35,937 0.70 14 2.7/1.7 0.72 13 3.6/1.9 0.78 13 3.5/2.1
5 274,625 5.82 13 3.1/2.2 7.42 14 3.9/2.9 7.57 13 3.9/2.8
6 2,146,689 61.78 15 3.3/2.1 60.36 12 4.2/2.8 78.06 14 4.2/2.9
7 16,974,593 580.22 14 3.9/2.5 601.85 13 4.5/2.9 712.28 13 4.9/2.9

where b is the magnetic field and r is the Lagrange multiplier associated with the divergence constraint on the magnetic
field. The constant ν is the magnetic viscosity. This model is well understood and gives rise, upon finite element discretiza-
tion, to a symmetric system; see [4,20]. It also arises in coupled electromagnetic flows such as magnetohydrodynamics;
see [21,22] and the references therein.

We consider a finite element discretization of (6.1) which uses Nédélec elements for the magnetic field and nodal
elements for the multiplier variable. See [4,20] for more details. Upon discretization, A, B and BT are defined to be
the discrete curl–curl, magnetic gradient and magnetic divergence operators, respectively. Thus, the null-space of A is
the discrete gradient operator and has dimension m. The resulting discretization of (6.1) falls into the class of saddle-
point systems with a maximally rank-deficient leading block. We note that a sparse construction of the discrete gradient
operator for first order Nédélec elements is possible [20, Section 2].

In [4] it was shown that the vector mass matrix and scalar Laplacian are appropriate choices for X and W , respectively.
We now show that for these choices, the conditions (3.4a)–(3.4b) in Theorem 3.1 hold. In [4, Proposition 2.2] the authors
prove the identity

BT
= XC,

where we recall that BT and C are the magnetic divergence and discrete gradient operators, respectively. Thus, by
Corollary 3.1, (3.4b) holds. Typically, the right-hand-side is divergence-free for physical applications; see [16,22]. Since C is
the null-space operator of the curl–curl matrix, CT is a discrete divergence operator. Hence, the divergence-free condition
(3.4a) holds.

Therefore, for the Maxwell problem of the form (6.1) the conditions (3.4a)–(3.4b) hold and enable the use of CG with
either a block diagonal, upper or lower block triangular preconditioner.

Let us consider a 3D example with a smooth solution on Ω = [0, 1]3. The analytical solution is set to be

b(x, y, z) =

(
− exp(x + y + z) sin(y) + exp(x + y + z) sin(z)

xy exp(x + y + z) − yz exp(x + y + z)
− exp(x + y + z) sin(x) + exp(x + y + z) sin(y)

)
r(x, y, z) = 0.

(6.2)

Then the source terms f in (6.1) and inhomogeneous boundary conditions are defined from the analytical solution. By
construction, we have ensured that the right-hand-side is divergence-free. We use this setup as a basis for all numerical
experiments and outline any alterations (e.g., the domain or multiplier variable) we make for the specific example.

In each experiment we use a tolerance of 1e−6 for the outer Flexible CG (FCG) iteration [23]. For the inner solves
(A+X and W ), we use the auxiliary space preconditioner of [24]. This entails a CG solve for A+X and W with a tolerance
of 1e−3 for each. In the subsequent tables we use the following notation:

• ℓ: mesh level;
• DoFs: number of degrees of freedom for Magnetic field plus the multiplier variables;
• Time: solution time;
• it: number of outer iterations;
• it1: number of inner CG/Auxiliary Space iterations for A + X;
• it2: number of inner CG/Auxiliary Space iterations for W .

6.1. Krylov subspace solver test

The first numerical experiment we consider is to test the robustness and performance of FCG compared to other Krylov
subspace methods. We set this inner tolerance to be 1e−4 and test against MINRES [25] and GMRES [26]. The results are
shown in Table 2. We observe that the iteration counts are similar for all three methods tested, and FCG is slightly superior
in terms of computational time. Given that the cost of single iterations is lower for FCG compared to MINRES, and given
that the memory consumption of FCG is significantly lower than that of GMRES, we conclude that FCG is the most effective
method of the three, although not by a significant margin.
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Table 3
Block preconditioner test: time and iteration results using the block diagonal (P), block upper triangular (PU) and block lower triangular (PL)
preconditioners with ν = 1e−2.

P PU PL

ℓ DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
2 729 0.01 12 1.8/1.0 0.01 13 1.7/1.1 0.01 13 1.7/1.1
3 4,913 0.07 14 2.3/1.4 0.05 13 2.2/1.5 0.05 13 2.1/1.6
4 35,937 0.64 14 2.5/1.7 0.57 14 2.5/1.7 0.56 14 2.5/1.7
5 274,625 5.95 14 2.7/1.7 6.11 16 2.6/1.6 5.41 14 2.6/1.8
6 2,146,689 56.92 14 2.9/1.8 60.92 16 2.9/1.7 59.89 16 2.9/1.7
7 16,974,593 574.34 14 3.3/2.3 589.14 16 3.2/2.2 569.86 16 3.2/2.1

Table 4
Divergence-free vs. non-divergence-free right-hand-side: time and iteration results using the block
diagonal preconditioner, P , for divergence and non-divergence free right-hand-sides with ν =1e−2.

Divergence Free Non-divergence Free

l DoFs Time it it1/it2 Time it it1/it2
2 729 0.01 12 1.5/0.9 0.01 12 1.5/0.9
3 4,913 0.06 14 2.3/1.4 0.06 14 2.3/1.4
4 35,937 0.64 14 2.5/1.7 0.64 14 2.5/1.7
5 274,625 7.41 14 2.7/1.7 7.41 14 2.7/1.7
6 2,146,689 55.02 14 2.9/1.8 55.02 14 2.9/1.8
7 16,974,593 544.91 14 3.3/2.3 644.91 14 3.3/2.6

6.2. Block preconditioner test

Let us now consider preconditioned CG with diagonal and upper/lower triangular preconditioners. The results are
given in Table 3. From Theorem 3.1 and Proposition 3.1, we have shown that the Krylov subspace for both the diagonal
and block triangular preconditioners are same. Thus we would expect the number of iterations for FCG to converge to
be identical. From the table, we can see that the block diagonal preconditioner preforms slightly better with respect to
the outer FCG iterations. We have shown that the preconditioner with the exact augmented term (X = BTW−1B) has two
distinct eigenvalues for the preconditioned matrix, whereas for the block triangular preconditioner we have three distinct
eigenvalues for the preconditioned matrix. This may explain the slight difference in performance.

6.3. Divergence and non-divergence free right-hand-side

Let us now consider divergence and non-divergence free right-hand-sides. The results are given in Table 4. We observe
that there is almost no difference in the iteration results between the divergence and non-divergence free right-hand-side
solution. This shows that even though our analysis requires a divergence-free right-hand side, in practice the solver is
robust with respect to right-hand side vectors that violate this condition. We do not have a theoretical justification for this.
If the right-hand-side is not divergence free then term (3.5) does not vanish and the construction of the Krylov subspace
is significantly more involved. In that case, there is no easy way to discern algebraic structure and proceed with deriving
results such as (3.3) in Theorem 3.1. However, in Section 4 we showed that it is possible to decouple such saddle point
systems into two SPD linear systems, and those systems can be solved with CG even if the divergence constraint is not
satisfied. Therefore, we suspect that the divergence-free condition can be relaxed in practice.

6.4. Variable coefficients

We now let the magnetic viscosity be defined as:

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/a if x < 0.5 and y < 0.5 and z < 0.5,
1/2a if x > 0.5 and y < 0.5 and z < 0.5,
1/3a if x < 0.5 and y > 0.5 and z < 0.5,
1/4a if x > 0.5 and y > 0.5 and z < 0.5,
1/5a if x < 0.5 and y < 0.5 and z > 0.5,
1/6a if x > 0.5 and y < 0.5 and z > 0.5,
1/7a if x < 0.5 and y > 0.5 and z > 0.5,
1/8a otherwise,

where a is a constant. Tables 5 and 6 show iteration and timing results for the block diagonal and triangular precon-
ditioners for various values of a. We can see from Table 5 that as a increases then the number of outer FCG iterations
increase but the inner Auxiliary Space iterations seem relatively constant, with only a slight increase going through the
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Table 5
Variable coefficients: time and iteration results using the block diagonal preconditioner, P , for various different values of a.

a = 10 a = 100 a = 1000

ℓ DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
2 729 0.01 14 1.9/0.9 0.02 32 1.4/0.9 0.06 71 0.9/0.6
3 4,913 0.10 15 2.3/1.5 0.18 38 2.0/1.3 0.36 98 1.4/1.2
4 35,937 0.71 15 2.8/1.7 1.51 39 2.2/1.6 3.23 110 1.8/1.5
5 274,625 6.46 15 3.0/1.9 13.96 40 2.6/1.7 34.18 116 2.2/1.6
6 2,146,689 63.63 15 3.8/1.9 132.51 40 2.9/1.8 328.45 116 2.4/1.8
7 16,974,593 581.03 15 3.9/2.2 1306.93 40 3.3/2.3 3267.59 122 2.7/2.3

Table 6
Variable coefficients: time and iteration results using the block diagonal and triangular preconditioners for a = 100.

P PU PL

ℓ DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
2 729 0.02 32 1.4/0.9 0.01 32 1.3/0.8 0.02 34 1.3/0.9
3 4,913 0.18 38 2.0/1.3 0.15 38 1.9/1.3 0.14 38 1.8/1.3
4 35,937 1.51 39 2.2/1.6 1.43 39 2.3/1.6 1.43 40 2.1/1.6
5 274,625 13.96 40 2.6/1.7 14.62 41 2.6/1.7 14.64 41 2.4/1.7
6 2,146,689 132.51 40 2.9/1.8 147.63 41 3.0/1.8 150.59 43 2.9/1.8
7 16,974,593 1306.93 40 3.3/2.3 1557.95 42 3.4/2.4 1572.68 44 3.2/2.3

Fig. 2. Fichera corner domain for mesh level, ℓ = 1.

levels. For a = 10 or 100 the outer FCG iterations remain approximately constant but for a = 1000 the outer iterations
start to degrade slightly. Table 6 shows the iteration and timing comparisons between the block diagonal and triangular
preconditioners for a = 100. Again, we see that the outer iteration FCG iterations appear to be slightly better for the block
diagonal preconditioner than the block triangular versions. We also note that solve time for the triangular versions are
higher, especially for the larger mesh levels. This is due to the extra multiplications with B or BT for the block triangular
preconditioners.

6.5. Fichera corner problem

For our next numerical illustration, we consider the same exact solution in (6.2), however the domain will be a cube
missing a corner. That is, the domain is Ω = (−1, 1)3/[0, 1) × [0, 1) × [0, 1) with local refinement in the corner. A
visualization of this domain is given in Fig. 2. We investigate how the magnetic viscosity effects the iterations on such a
domain. Table 7 presents the results. The table shows that as the magnetic viscosity decreases the number of outer FCG
iterations increase. As with the previous example, inner Auxiliary Space iterations appear to be scalable.

6.6. Gear domain

For our final experiment, we consider the same exact solution in (6.2) however with a quasi-uniform 3-dimensional
gear as the domain. The domain is bounded in Ω = [−1, 1] × [−1, 1] × [0, −0.2]. A visualization of this domain is given
in Fig. 3.
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Table 7
Fichera corner: time and iteration results using the block diagonal preconditioner, P , for various different values of ν.

ν =1e−1 ν =1e−2 ν =1e−3

ℓ DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
1 14,636 0.41 13 3.8/2.0 0.73 31 3.7/2.3 1.69 80 3.9/2.6
2 111,315 3.84 13 4.4/2.5 7.23 31 4.2/3.0 17.01 81 4.5/3.4
3 869,397 45.74 13 5.9/2.7 85.37 32 5.2/3.3 181.89 72 5.0/3.6
4 6,874,601 614.06 15 8.1/3.4 1027.89 31 6.4/3.7 2248.88 69 6.4/4.2

Table 8
Gear domain: time and iteration results using the block diagonal preconditioner, P , for various different values of ν.

ν =1e−1 ν =1e−2 ν =1e−3

ℓ DoFs Time it it1/it2 Time it it1/it2 Time it it1/it2
6 16,680 0.23 8 2.2/1.4 0.41 19 2.6/1.5 0.83 42 2.3/1.4
7 106,940 2.62 10 4.0/2.0 4.70 21 4.2/2.5 9.08 44 3.0/2.3
8 774,871 69.85 10 8.8/2.5 77.25 17 5.2/3.2 173.12 46 4.4/3.7
9 5,950,932 1387.91 10 17.2/4.5 1554.78 18 10.2/5.1 3227.96 48 7.8/6.0

Fig. 3. Gear domain for mesh level, ℓ = 5.

Table 8 shows iteration and timing results for the constant coefficients. From the table we can see that as we decrease
ν the outer FCG iterations increase slightly but appear to remain constant with respect to the mesh size. For this example,
the inner iterations are starting to increase slightly more every mesh level. However, the number of iterations are relatively
small and still give a fast solution procedure.

7. Conclusions

In this work, we have proven that there are two sufficient conditions which enable the use of the conjugate gradient
method (CG) for a nonsingular saddle-point system with a maximally rank-deficient leading block. We have shown that
these conditions are satisfied by the properties of the mixed time-harmonic Maxwell problem.

We have presented several non-trivial large-scale three-dimensional numerical experiments of the Maxwell problem
with variable coefficients on complicated domains.

We have also shown that for block triangular preconditioners, which are nonsymmetric, it is still possible to use CG
under the same conditions as the block diagonal preconditioner.

CG is known to be the method of choice for symmetric positive definite matrices. The memory requirements are
modest and the cost of iterations is lower compared to its competitors. It is thus beneficial to have CG as an option
in nonsymmetric settings, under the conditions we have stated. For the Maxwell problem considered here, the block
diagonal preconditioner appears to be slightly more effective than the triangular versions.

The condition (3.7) in Corollary 3.1 is rather restrictive and it would be desirable to relax it. Approaches such as the
one in [2, Proposition 4.3] may be used.

Finally, the maximal rank deficiency of the leading block is key for our numerical and theoretical results. However, it
is rather restrictive and it would be desirable to be able to apply CG for a wider class of problems; see for example [2,
Section 5.2]
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