
SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 82–97

MINIMIZING THE CONDITION NUMBER FOR SMALL RANK
MODIFICATIONS∗

CHEN GREIF† AND JAMES M. VARAH†

Abstract. We consider the problem of minimizing the condition number of a low rank modifi-
cation of a matrix. Analytical results show that the minimum, which is not necessarily unique, can
be obtained and expressed by a small number of eigenpairs or singular pairs. The symmetric and the
nonsymmetric cases are analyzed, and numerical experiments illustrate the analytical observations.
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1. Introduction. Let A ∈ R
n×n be a general matrix, and consider the problem

min
U,V

κ2(A + UV T ),(1.1)

where κ2 denotes the spectral condition number, and U, V ∈ R
n×k, so that UV T is a

rank-k matrix. The parameter k is prescribed along with the matrix A.
The problem of minimizing the condition number of a matrix has been studied

often, but not, as far as we know, very systematically. This is in contrast with the
problem of minimizing the spectral norm, or the maximum eigenvalue of a symmetric
matrix, over given parameterizations. These are much easier problems because the
2-norm is a convex function on the matrix space, as is the maximum eigenvalue on
the space of real symmetric matrices, making them amenable to convex optimization
techniques (specifically, semidefinite programming); see [1]. By contrast, the condi-
tion number is not convex on matrix space. In the case of symmetric positive definite
matrices, it is possible to transform a linearly parameterized condition number opti-
mization problem to a convex optimization problem in the semidefinite programming
framework (see [1, p. 203]), but when the matrices are symmetric indefinite or nonsym-
metric, the problem is more difficult. See [5, 8] for relatively early work on optimizing
preconditioners with specified sparsity patterns via eigenvalue optimization. A thor-
ough eigenvalue analysis of low rank perturbations of symmetric matrices is given in
the classic [9] and in other places. A recent paper [2] provides necessary and sufficient
conditions on when the singular values of a rectangular matrix can be reassigned, us-
ing low rank modifications. Low rank perturbations are used, for example, for stable
computation of eigenvalues of symmetric tridiagonal matrices using the divide and
conquer method [6].

In this paper we provide an analysis of the problem, discuss uniqueness and
existence, and derive results for minimizers in a variety of cases, including symmetric
semidefinite, symmetric indefinite, and general nonsymmetric matrices, for rank-1,
rank-2, and higher rank modifications.
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There are many reasons for studying condition number optimization, and the
recent availability of new approaches and code for solving nonsmooth optimization
problems may allow for a comprehensive experimental and theoretical study. Our
own original motivation arose from a search for effective preconditioners for sym-
metric indefinite systems. Of course, the condition number is only one factor in the
convergence of iterative solvers, and in fact low rank perturbations by their nature
have a limited effect on the spectrum due to the interlacing property which we discuss
in detail throughout the paper. Nevertheless, when the spectrum of a matrix does
not have an obvious structure, it may be useful to consider whether an approach of
condition number minimization is effective, at least for symmetric, or nonsymmetric
but normal, matrices.

The rest of the paper is structured as follows. In sections 2–5 we discuss the sym-
metric problem. First, in section 2 we introduce the interlacing property for rank-k
modifications and show how it can be proved using the Courant–Fischer min/max
representation. In section 3 we present our analytic results for semidefinite matrices
and show that a solution (not necessarily unique) can be obtained by using the eigen-
vectors corresponding to the smallest eigenvalues. In section 4 we extend our analysis
to the symmetric indefinite case and show that a solution can be obtained using the
eigenvectors that correspond to the largest and smallest eigenvalues in magnitude. In
section 5 we show that even if those eigenvectors are not known exactly, their approx-
imations may yield a nearly optimal solution. In section 6 we show that, using similar
techniques, we can deal with the nonsymmetric problem as well. In section 7 we give
an example of an application: preconditioning a saddle point system using condition
number minimization. We conclude with a short summary of our main observations.

2. The interlacing property. This section and sections 3–5 are devoted to the
symmetric version of problem (1.1):

min
V

κ2(A + V V T ),(2.1)

with A symmetric. We will assume throughout that the spectral decomposition of A
is given by

QTAQ = D,

with the columns of Q containing the eigenvectors of A:

Q = [q(1) q(2) . . . q(n)], i = 1, . . . , n.

First consider the rank-1 case. We can write the modified matrix as (A + γvvT )
with ‖v‖2 = 1. The following separation theorem, or interlacing property, is well
known (see, e.g., [3, p. 442]). Below we provide a proof based on the Courant–Fischer
result.

Theorem 2.1. If the eigenvalues of A are λn ≤ λn−1 ≤ · · · ≤ λ1 and those of
(A + γvvT ) are μn ≤ μn−1 ≤ · · · ≤ μ1, then for γ ≥ 0,

λn ≤ μn ≤ λn−1 ≤ μn−1 ≤ · · · ≤ λ1 ≤ μ1.

Proof. For γ ≥ 0, clearly μi ≥ λi for 1 ≤ i ≤ n. To show μn ≤ λn−1, use the
Courant–Fischer min/max representation (see [3, p. 394] or [9, p. 101])

λn−1 = max
y �=0

min
xT x=1
xT y=0

(xTAx).
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We have

μn = min
xT x=1

xT (A + γvvT )x ≤ min
xT x=1
xT v=0

xT (A + γvvT )x

= min
xT x=1
xT v=0

(xTAx) ≤ max
y �=0

min
xT x=1
xT y=0

(xTAx) = λn−1.

A similar argument works for the other eigenvalues, using Y with k columns and

λn−k = max
Y �=0

min
xT x=1
xTY =0

(xTAx).

This completes the proof.
A similar result holds for γ ≤ 0. Next, the rank-k case can be handled as a

succession of rank-1 modifications:

A + V V T = A +

k∑
j=1

v(j)v(j)T ,

where {v(j)} are the columns of V . Applying the separation theorem successively
gives, for example, λn ≤ μn ≤ λn−k.

More generally, when A is indefinite, one would like to treat indefinite rank-k
modifications

A + V EV T = A +

k∑
j=1

ejv
(j)v(j)T ,

where E = diag(±1). This can also be handled as a succession of rank-1 modifications.

Suppose A1 = A + v(1)v(1)T . Then its eigenvalues {μj} satisfy

λn ≤ μn ≤ λn−1 ≤ · · · ≤ μ2 ≤ λ1 ≤ μ1.

Now let A2 = A1 − v(2)v(2)T . Its eigenvalues {τj} satisfy

τn ≤ μn ≤ τn−1 ≤ · · · ≤ τ2 ≤ μ2 ≤ τ1 ≤ μ1.

Hence we have ⎧⎨
⎩

τn ≤ λn−1,
λn ≤ τn−1 ≤ λn−2 ≤ · · · ≤ λ3 ≤ τ2 ≤ λ1,
λ2 ≤ τ1.

Similar inequalities hold in the general rank-k case: if E has p positive and m
negative coefficients, then in general the eigenvalues {τj} of (A + V EV T ) satisfy

λj+m ≤ τj ≤ λj−p.

The proof is a straightforward extension of the above argument and is omitted for the
sake of brevity.
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The above results provide natural bounds on the eigenvalues of small rank mod-
ifications, which we exploit in the following sections.

3. The symmetric positive semidefinite case. Having introduced interlac-
ing results, we now move on to focus on the problem of minimizing the condition
number.

3.1. Rank-1 modifications. Consider the problem of minimizing the spectral
condition number of a rank-1 modification of a positive semidefinite matrix A:

min
v

κ2(A + vvT ) = min
v

μ1(v)

μn(v)
.

By scaling v, we can express this alternatively as

min
‖v‖2=1
γ≥0

κ2(A + γvvT ).

The case γ ≤ 0 can be handled analogously.
Theorem 3.1. Let A be positive semidefinite with eigenvalues 0 ≤ λn ≤ · · · ≤ λ1

and at most one zero eigenvalue. Then

min
‖v‖2=1
γ≥0

κ2(A + γvvT ) =
λ1

λn−1

and is achieved for v = q(n), the eigenvector corresponding to λn, and for γ in the
range λn−1 − λn ≤ γ ≤ λ1 − λn.

Proof. We can easily see that λ1/λn−1 is a lower bound using the interlacing
property: we can do no better than keep μ1 = λ1 and increase μn to λn−1, giving
κ2 ≥ λ1

λn−1
.

Since A is symmetric, its eigenvectors {q(i)} are orthonormal. Hence (A+γq(n)q(n)T )
has eigenvalues λn + γ, λn−1, . . . , λ2 and λ1. Thus, as long as λn−1 ≤ λn + γ ≤ λ1,
the extreme eigenvalues are λ1 and λn−1, so we have equality.

Remark. The eigenvalues of the modified matrix (A+γvvT ) are generally denoted
in ordered form as μn ≤ μn−1 ≤ · · · ≤ μ1. However, when v = q(n) as in the proof
above, only one of these eigenvalues differs from the original set λn ≤ · · · ≤ λ1. In this
case it is convenient to refer to that eigenvalue λn + γ as μn (and hence μi = λi for
i �= n) even though the resulting set {μn, . . . , μ1} may not be ordered. The interlacing
property holds, of course, but since γ is such that λn + γ could be larger than λn−1,
the {μi} would have to be renumbered to be properly ordered. We make use of this
slight abuse of notation later in section 4.

Finally, note that κ2(γ) ≡ κ2(A + γvvT ) has a “flat spot” at its minimum. Of
course, one could also consider γ < 0, which may reduce the condition number further.

3.2. Rank-k modifications. For the rank-k case, we consider minV κ2(A +
V V T ) over all n× k matrices V . If we again scale the columns of V , we can express
this as

min
‖vj‖2=1

κ2(A + V EV T ) = min
‖vj‖2=1
γj≥0

κ2(A + γ1v1v
T
1 + · · · + γkvkv

T
k ).(3.1)
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Theorem 3.2. Let A be positive semidefinite with eigenvalues 0 ≤ λn ≤ · · · ≤ λ1

and at most k zero eigenvalues. Then

min
V

κ2(A + V EV T ) =
λ1

λn−k
.

This minimum is achieved for V = [q(n) · · · q(n−k+1)], and the range of values for
E = diag(γ1, . . . , γk) is given by

⎧⎪⎨
⎪⎩

λn−k − λn ≤ γ1 ≤ λ1 − λn ;
...

λn−k − λn−k+1 ≤ γk ≤ λ1 − λn−k+1.

(3.2)

Proof. Again from the interlacing property, λ1/λn−k is a lower bound. Then for
V as above, the eigenvalues of (A+V EV T ) are λn+γ1, . . . , λn−k+1+γk, λn−k, . . . , λ1.
Thus we must ensure that each transformed eigenvalue is in the closed interval
[λn−k, λ1], which is equivalent to requiring (3.2).

We remark that in this rank-k case, one might also consider instead of (3.1),

min
‖vj‖2=1

γ≥0

κ2(A + γV V T ),

with only one scaling factor γ. Then the above result again applies, but the range
of γ is more restrictive. For the transformed eigenvalues to lie in [λn−k, λ1], we need
λn + γ ≥ λn−k and λn−k+1 + γ ≤ λ1, or λn−k − λn ≤ γ ≤ λ1 − λn−k+1. This range is
nonempty only if λn−k+1 − λn ≤ λ1 − λn−k, which will certainly be true for k small
enough.

These results show that to optimize the condition number of a rank-k modifica-
tion, one should choose vectors {vj} close to the eigenvectors of A associated with the
smallest eigenvalues. In section 5 we will consider the effect of using approximations
to these eigenvectors. Note also that solutions to the minimization problem are not
necessarily unique: there is a range of values for which the minimum is obtained.

4. The symmetric indefinite case. When A is indefinite, we first consider the
rank-1 case:

min
‖v‖2=1

γ

κ2(A + γvvT ).(4.1)

Here γ may be positive or negative. We will keep the ordering of the eigenvalues
the same as before (even though some may now be negative) and make the following
definitions and assumptions:

D1. We will assume throughout that n > 2. (The case n = 2 is trivial.)
D2. Denote by {σj} the singular values of A, σ1 ≥ · · · ≥ σn ≥ 0. Of course these

are simply the moduli of the eigenvalues.
D3. Let |λm| = minj |λj |. That is, m denotes the index of the smallest eigenvalue

in magnitude. Thus σn = |λm|.
D4. Assume without loss of generality that the largest eigenvalue in magnitude is

λn, so that σn = −λn ≥ λ1. (If not, we can use −A in place of A.)

D5. Finally, since κ2(A) = σ1

σn
= |λn|

|λm| , we call λn and λm the active eigenvalues

of A.
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The following lemma presents a lower bound for the condition number. Later (in
Theorem 4.3) we will show that this bound can actually be attained.

Lemma 4.1. Let A be indefinite and satisfy the above assumptions. Then

min
‖v‖2=1
γ≥0

κ2(A + γvvT ) ≥ σ2

σn−1
.

Proof. The mapping A → (A + γvvT ) transforms the eigenvalues from {λi} to
{μi}. Since γ ≥ 0 we have μi ≥ λi for each i. In trying to minimize the resulting
condition number, we must take into account the interlacing property. Thus, we can
do no better than the following:

(i) transform λn to μn = −σ2 = min(λn−1,−λ1);
(ii) transform λm to μm = λm−1 (whether λm is positive or negative);
(iii) leave the other eigenvalues unchanged, i.e., μi = λi, i �= n,m.

The resulting matrix will have condition number

max(λ1, |λn−1|)
min(|λm+1|, |λm−1|)

=
σ2

σn−1
,(4.2)

which completes the proof.
Remark. The case γ ≤ 0 does not change the result, since a similar argument

gives a lower bound of max(|λn|,λ2)
min(|λm+1|,|λm−1|) . It is worse (greater) than that above, since

by one of our assumptions −λn ≥ λ1.
We now wish to show that we can actually attain the lower bound by appropriate

choice of v (and γ). We have γ ≥ 0 and thus we can incorporate it into v, so that
(4.1) becomes

min
v

κ2(A + vvT ).(4.3)

First consider A diagonal, A = diag(di), dn ≤ · · · ≤ 0 ≤ · · · ≤ d1, with active
eigenvalues dn and dm. Now take a vector v with nonzero components only in positions
n and m. Denote them by vn and vm. Then (A + vvT ) is identical to A except for
the 2 × 2 block formed by rows and columns m and n. This block is

(
dm + v2

m vnvm
vnvm dn + v2

n

)
,

and its eigenvalues μ are the roots of

μ2 − (dn + dm + v2
m + v2

n)μ + dndm + dnv
2
m + dmv2

n = 0.(4.4)

So the eigenvalues of (A + vvT ) are μi = di if i �= n,m and the roots of (4.4) if
i = n,m. Let us denote the latter by μn and μm, so that dn is transformed to μn and
dm to μm. Although μn ≥ dn and μm ≥ dm, they can otherwise be chosen anywhere
without violating the interlacing theorem, as again the {μi} here are not necessarily
ordered.

Evaluating the quadratic equation (4.4) gives two linear equations for the two
unknowns v2

m and v2
n. Fortunately, this linearity, which does not hold in general for
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cases where v has more than two nonzero components, allows us to make a few useful
analytical observations. The linear equations are(

dn − μn dm − μn

dn − μm dm − μm

)(
v2
m

v2
n

)
=

(
(μn − dn)(dm − μn)
(μm − dn)(dm − μm)

)
.(4.5)

We denote the linear system (4.5) by

Bw = c

and note that the solution w must have nonnegative components, which restricts the
possible choices for μn and μm. The case of a homogeneous linear system is trivial,
since it implies that μn = dn and μm = dm, which means none of the eigenvalues
change. We therefore have the following result.

Lemma 4.2. If μn and μm are chosen so that μn ≤ dm ≤ μm, then the solution
w to Bw = c has nonnegative components with at least one of them positive.

Proof. From (4.5) it is easy to see that det(B) = (dm − dn)(μm − μn) �= 0 if
dm �= dn and μm �= μn. It is sufficient to consider dn < dm < d1, since nonsharp
inequalities can be trivially handled separately. By D1–D5 we have dn ≤ −d1. Direct
computation gives

w = B−1c =
1

dm − dn

(
(μm − dm)(dm − μn)
(dn − μm)(dn − μn)

)
.

Thus w1 ≥ 0 if μn ≤ dm ≤ μm. Moreover, w2 ≥ 0 if dn ≤ μn and dn ≤ μm, but this
is ensured since by interlacing the mapping A → (A+ γvvT ) transforms the {di} into
algebraically equal or larger eigenvalues, {μi}.

We can therefore choose μn and μm anywhere, subject to the above stated re-
striction, and are now ready to show that the lower bound presented in Lemma 4.1
can actually be attained.

Theorem 4.3. Let A be indefinite, satisfying D1–D5. Then

min
‖v‖2=1

γ

κ2(A + γvvT ) = min
v

κ2(A + vvT ) =
σ2

σn−1
.

Proof. Since A is symmetric, it can be diagonalized, and so it is reasonable
to start by considering a diagonal A as above. In this case we have maxi �=n |di| =
σ2 = max(d1, |dn−1|), and mini �=m |di| = σn−1 = min(|dm−1|, |dm+1|). Thus, by
Lemma 4.2 we need only ensure that μn and μm do not become active. We must
have σn−1 ≤ |μn|, |μm| ≤ σ2, and μn ≤ dm ≤ μm. To ensure both of these, choose
μn negative, −σ2 ≤ μn ≤ −σn−1, and μm positive, σn−1 ≤ μm ≤ σ2. Indeed any
such choice will result in κ2(A + vvT ) = σ2/σn−1, giving a two-parameter family of
solutions.

Now, for nondiagonal A, suppose QTAQ = D, diagonal. Then, defining u = QT v
we have

QT (A + vvT )Q = D + (QT v)(vTQ)

= D + uuT .

So, we first solve for u using the above described procedure, giving un and um. We
then form

v = Qu = umq(m) + unq
(n).
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The similarity transformation does not change the 2-norm, and hence not the con-
dition number. It follows that minimizing κ2(A + vvT ) is equivalent to minimizing
κ2(D + uuT ), and the proof is complete.

There are many reasonable choices for μn and μm so that μn ≤ dm ≤ μm and
σn−1 ≤ |μn|, |μm| ≤ σ2. For example, one could choose the median singular value
σ∗ = σn/2 or σ(n+1)/2 and pick

μn = −σ∗, μm = σ∗.

It is also worth mentioning that Theorem 4.3 applies to A positive definite, with the
resulting modified matrix indefinite.

For the indefinite rank-k case, that is,

A + V EV T = A +

k∑
j=1

ejv
(j)v(j)T ,(4.6)

where E = diag(ej) = diag(±1), we first extend the lower bound of Lemma 4.1 as
follows.

Lemma 4.4. Let A be indefinite and V EV T a rank-k modification. Then

min
V,E

κ2(A + V EV T ) ≥ σk+1

σn−k
.

Proof. Using (4.6) to express A+V EV T as a sequence of k rank-1 modifications,
we apply Lemma 4.1 at each step. Notice that each step can be positive or negative,
and the result “peels off” the top and bottom singular values at each step.

Now, to show that the bound can again be attained, we choose a particular
sequence of rank-1 modifications with appropriate sign.

Theorem 4.5. Let A be indefinite and V EV T a rank-k modification. Then

min
V,E

κ2(A + V EV T ) =
σk+1

σn−k
.

Proof. For A diagonal, we apply a sequence of 2 × 2 rank-1 modifications as
in Theorem 4.3, choosing ej = +1 if the largest eigenvalue at that step is negative
(and thus transforming eigenvalues into algebraically equal or larger eigenvalues), and
ej = −1 if the largest eigenvalue is positive (and thus the eigenvalues are mapped into
algebraically equal or smaller eigenvalues). To ensure that we “peel off” the top and
bottom singular values at each step, we need only choose the transformed eigenvalues
μn and μm so that σn−k ≤ |μn|, |μm| ≤ σk+1. For a nondiagonal A, we again have to
multiply by the eigenvector matrix Q.

Example 4.6. Take A = diag(−9,−5,−1, 0, 1, 5, 9) and ask for the best rank-1
and rank-2 modifications. For the first step, the active eigenvalues can be taken to be

−9 and 0. Lemma 4.2 gives v(1)T = (2.49, 0, 0, 1.67, 0, 0, 0) and e1 = 1. The resulting

matrix A1 = A + v(1)v(1)T has eigenvalues (−5,−5,−1, 1, 5, 5, 9), and κ2(A1) = 9.
Notice for this example that in this first step, we could choose μn and μm anywhere
in the range 1 = σn−1 ≤ |μn|, |μm| ≤ σ2 = 9.

For the second step, we take active eigenvalues 9 and −1. We get e2 = −1

and v(2)T = (0, 0, 1.55, 0, 0, 0, 0, 2.37). The resulting matrix A2 = A1 − v(2)v(2)T has
eigenvalues (−5,−5,−5, 1, 5, 5, 5), and κ2(A2) = 5. Notice that we do not have to
rediagonalize A1 since the second set of active eigenvalues is distinct from the first.
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Fig. 4.1. The condition number of the modified matrix for a range of values of vn and vm.

In Figure 4.1 we plot κ2(A + vvT ) for 0 ≤ vm, vn ≤ 4 . Notice the “flat spot”
in this graph, where κ2 = 9, that is, a two-dimensional range where the minimum
condition is attained. Finally, the solution V = [v(1) v(2)] is by no means unique.
However, it does have the minimum number of nonzero components.

5. The effect of perturbations. From the analysis so far, it is clear that to
minimize the condition number of the modified matrix, one needs to know particular
eigenvectors. Of course, for a large matrix, these are not known explicitly and are often
expensive to compute. This raises the question of approximations: what effect will
inexact knowledge of the eigenvectors have on the condition number of the modified
matrix?

We consider here only the simple case of a semidefinite A (with eigenvalues {λi}
and eigenvectors {q(j)}) modified by a rank-1 matrix. Following Theorem 3.1, we
choose the modification v = q(n) and consider

C(γ) = A + γq(n)q(n)T .(5.1)

If G is defined as the interval λn−1−λn ≤ γ ≤ λ1−λn, then for γ ∈ G, λmin(C) = λn−1

and λmax(C) = λ1, so κ2(C) is minimized.
Now suppose we allow perturbations in q(n), caused, for example, by inexact

approximation. Then we have the following result.
Theorem 5.1. Suppose γ ∈ G and

A + γuuT , u = q(n) + εw,

where ε 	 1 and ‖w‖2 = 1. Then

κ2(A + γuuT ) = κ2(C) + O(ε2),(5.2)

where C = C(γ) is as given in (5.1).
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Proof. Define F = γ(q(n)wT + wq(n)T ). Then we have

A + γuuT = A + γ(q(n) + εw)(q(n) + εw)T(5.3)

= C(γ) + εγ(q(n)wT + wq(n)T ) + ε2wwT

= C + εF + ε2wwT .

The eigenvalues of C = C(γ) are λ1, . . . , λn−1, and λn + γ. Now let γ be fixed
and consider the eigenvalues of the first-order perturbation C + εF . For any specific
eigenvalue λj(C), let

λj(ε) = λj(C + εF ) = λj(C) + ελ′
j + O(ε2).

Assuming each eigenvalue is simple, recall that (see, e.g., [9, Chap. 2])

λ′
j =

q(j)TFq(j)

q(j)T q(j)
.

We have two cases:
(i) j = n: λ′

n = γq(n)T (q(n)wT + wq(n)T )q(n) = 2γwT q(n).

(ii) j �= n: λ′
j = γq(j)T (q(n)wT + wq(n)T )q(j) = 0.

Hence

λn(ε) = λn(C) + O(ε), λj(ε) = λj(C) + O(ε2) for j �= n.

Thus from (5.3) the same is true for the full perturbation A + γuuT .
Finally then, if γ is chosen inside G, so that the extreme eigenvalues of C are λ1

and λn−1, then under perturbation in the vector u = q(n) + εw, (5.2) follows.
Theorem 5.1 shows, then, that the effect of a first-order perturbation in the

eigenvector is only second-order in the condition number. Thus, an approximation
to the eigenvector that can be computed rapidly can be useful for the purpose of
obtaining a nearly optimal condition number.

Example 5.2. Consider the discrete Laplace operator using finite difference dis-
cretizations on a uniform, two-dimensional grid. It is well known that if Neumann
boundary conditions are employed, the matrix has nullity 1 with a vector of constants
as its null-space. We set a grid of 32 points in each direction; the resulting matrix is
1024 × 1024. The Lanczos algorithm (without reorthogonalization) is applied using
four dimension sizes: k = 4, 8, 16, 32. The initial guess is random. We compute ap-
proximations to the null vector of the matrix using the Ritz vector associated with
the smallest Ritz value. As is evident from Table 5.1, the condition number of the
modified matrix using the approximation to the null vector is close to that of the
modified matrix using the exact null vector, with the relative error decreasing as ε
decreases. A precise assessment of the error is more involved and would require the
evaluation of the magnitude of the term multiplied by ε2 in Theorem 5.1. Never-

theless, for n large enough examining the relative error, |κ2(A+q(n)q(n)T )−κ2(A+uuT )|
κ2(A+q(n)q(n)T )

(given in the last column of the table) illustrates the quadratic dependence on ε, as
predicted by Theorem 5.1. For example, between k = 16 and k = 32 the value of ε
goes down by a factor of approximately 3.43 while the relative error decreases by a
factor of approximately 17.5.
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Table 5.1

Effect of perturbations for a discrete Laplace operator with Neumann boundary conditions. The
approximations to the null vector are generated using the Lanczos algorithm. In the table, q(n) is a
normalized vector of constants (i.e., a null vector of A) and u is the approximation to it generated
by the Lanczos procedure.

k λn ‖Au‖2 ε ≡ ‖u− q(n)‖2 κ2(A + q(n)q(n)T ) κ2(A + uuT ) Rel. error

4 3.541e-003 0.099821 0.053903 11.66 11.72 5.1e-003
8 3.482e-004 0.018074 0.039415 50.55 50.63 1.6e-003
16 3.637e-005 0.0043127 0.025597 206.17 206.30 6.3e-004
32 1.629e-006 0.00080484 0.007465 828.69 828.72 3.6e-005

6. Extension to nonsymmetric matrices. We now move to consider the non-
symmetric case. For rank-1 modifications, the nonsymmetric case could be trans-
formed into a problem of minimizing the condition number of a symmetric rank-2
modification of the 2n× 2n symmetric matrix

G =

(
0 A
AT 0

)
.

But in fact much can be said about the nonsymmetric problem by working on it
directly. Consider a nonsymmetric matrix A, with singular values σ1 ≥ · · · ≥ σn ≥ 0,
and its unsymmetric rank-1 modification A + uvT , with singular values τ1 ≥ · · · ≥
τn ≥ 0. Using the interlacing result for symmetric matrices given in section 2, one
can formulate a separation theorem for these singular values as well.

Theorem 6.1. The singular values {τj} of A + uvT are related to the singular
values {σj} of A as follows:

⎧⎨
⎩

σ2 ≤ τ1,
σk+1 ≤ τk ≤ σk, 1 < k < n,
0 ≤ τn ≤ σn−1.

(6.1)

Consequently, a lower bound for κ2(A + uvT ) is given by

κ2(A + uvT ) =
τ1
τn

≥ σ2

σn−1
.(6.2)

Proof. Using the Courant–Fischer min/max result for ATA,

σ2
n−k = max

Y �=0
min

xT x=1
xTY =0

(xTATAx)

for Y an n× k matrix. Consider, for example, τn−1:

τ2
n−1 = max

y �=0
min

xT x=1
xT y=0

xT (A + uvT )T (A + uvT )x

= max
y �=0

min
xT x=1
xT y=0

xT
(
ATA + ATuvT + vuTA + v(uTu)vT

)
x.

Thus, taking y = v,

τ2
n−1 ≥ min

xT x=1
xT v=0

(xTATAx) ≥ min
xT x=1

(xTATAx) = σ2
n.
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Moreover,

τ2
n−1 ≤ max

v,y �=0
min

xT x=1
xT y=0

xT v=0

(xTATAx) ≤ max
y �=0
z �=0

min
xT x=1
xT y=0

xT z=0

(xTATAx) = σ2
n−2.

A similar result holds for each intermediate singular value τk, 1 < k < n. For the
extreme values τ1 and τn, one achieves only one-sided inequalities; thus τ1 ≥ σ2 and
0 ≤ τn ≤ σn−1. Using these last two inequalities gives (6.2).

Now we show that this bound can be attained. For A = D = diag(σ1, . . . , σn), we
proceed as in section 4: consider (D+uvT ) with u and v having nonzero components
only in the first and last places, corresponding to the extreme singular values σ1, σn.
Then (D + uvT ) is diagonal, with singular values σ2, . . . , σn−1, except for the 2 × 2
block (

d1 + u1v1 u1vn
unv1 dn + unvn

)
.

Notice that we want to choose u and v so the singular values of this 2×2 block are well
inside the interval [dn, d1]. Choosing u = v does not work, as a positive solution of
the analogue of (4.5) results in singular values outside this interval. Thus we need to
make the block nonsymmetric but simple enough that the singular values are readily

calculated. One approach is to make the block look like
(

a b
−b a

)
, whose (double)

singular values are (a2 + b2)1/2. For this to happen, we must have{
unv1 = −u1vn,
d1 + u1v1 = dn + unvn.

(6.3)

We have two constraints for four unknowns. One way to proceed is to let u1, un be
arbitrary, and then (6.3) gives

v1 =
−u1

u2
1 + u2

n

· (d1 − dn), vn =
un

u2
1 + u2

n

· (d1 − dn)(6.4)

and

a =
u2

1dn + u2
nd1

u2
1 + u2

n

, b =
u1un

u2
1 + u2

n

· (d1 − dn).(6.5)

Notice that the expression for a is a weighted average of d1 and dn and thus can
be made to equal any value in [dn, d1] by appropriate choice of u1, un.

Theorem 6.2. Let A be an n × n nonsymmetric matrix (n > 2) with singular
values σ1 ≥ · · · ≥ σn ≥ 0. Then

min
u,v

κ2(A + uvT ) =
σ2

σn−1
.

Proof. To show that the bound (6.2) can be attained, use A’s singular value
decomposition A = UDV T , D = diag(σ1, . . . , σn). Then apply the above technique
for some value of τ∗, σn−1 ≤ τ∗ ≤ σ2. From (6.5) we have

u2
1 =

d2
1 − (τ∗)2

d2
1 − d2

n

, u2
n =

(τ∗)2 − d2
n

d2
1 − d2

n

,(6.6)

and v1, vn are given by (6.4). Notice that u2
1 + u2

n = 1.
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This gives (D + uvT ) with singular values σ2, . . . , σn−1, and τ∗ (twice). Finally,

U(D + uvT )V T = A + (Uu)(V v)T = A + ũṽT

has minimal condition. Since the 2-norm is invariant under orthogonal transforma-
tions, the condition numbers of D + uvT and A + ũṽT are minimized at the same
time.

Notice that ũ and ṽ are linear combinations of the extreme singular vectors of
A. In our code we use τ∗ = σn/2 or σ(n+1)/2, the median singular value. Again
the solution is not unique. The rank-k case can be handled as a sequence of rank-1
modifications, as in previous sections.

Example 6.3. The 5 × 5 matrix

A =

⎛
⎜⎜⎜⎜⎝

−0.1693 0.9417 −0.5721 −0.1761 0.3667
−0.3900 0.9802 0.2870 0.4891 −0.5749
0.7487 0.5777 −0.3599 −0.4641 0.6785
−0.9700 −0.1227 0.9202 −0.1202 0.2576
0.5359 −0.0034 0.4533 0.8668 −0.7325

⎞
⎟⎟⎟⎟⎠

was generated randomly, and we sought to minimize the condition number of a rank-1
modification. The singular values of A are 1.8910, 1.5398, 1.4567, 0.6648, 0.1610. Using
our analytical observations and our strategy for choosing τ∗ to be the median singular
value, the resulting modified matrix has singular values 1.5398, 1.4567, 1.4567, 1.4567,
0.6648. By construction, then, we obtain three equal singular values. The optimal
condition number is 2.3163. Next, we use the MATLAB command fminsearch to find
a solution, and get the same minimal value, now with singular values 1.5446, 1.5446,
1.1185, 0.6648, 0.6647. Thus, the solution is indeed nonunique.

7. Example: Saddle point system preconditioning. Consider the numeri-
cal solution of a large and sparse saddle point linear system whose associated matrix
is

K =

(
A B
BT 0

)
,

where A is n × n and B is n × m, with m < n. Popular preconditioners have a
2 × 2 block diagonal structure, with their (1,1) block approximating the (1,1) block
of the original saddle point matrix, and their (2,2) block approximating the Schur
complement. Motivated by this, let us make a connection to the analysis presented
in the previous sections by considering the preconditioner

M =

(
A + V V T 0

0 ±BT (A + V V T )−1B

)
,

where V is n × k. The ± signs in front of the (2, 2) block suggest two options. It
makes sense to consider such a preconditioner if solving a system with A + V V T , a
rank-k modification of A, is significantly easier than solving for A. (Notice that A
could be singular even if K is not.) Thus, we could aim to select a rank-k matrix V
that minimizes the condition number of A + V V T .

This approach is computationally delicate for the following reasons. First, V is
dense in general, whereas the original saddle point matrix is assumed sparse. In terms
of storage, if we are to store V explicitly it will require nk entries. Note that A+V V T
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need not be stored explicitly when iterative solvers are used. If A has � nonzero entries
per row on average, then the storage requirements for the (1, 1) block increase from
n� for A to n(�+k) for A+V V T . In terms of computational cost, since a decisive cost
factor in the (implicit) inversion of the (1,1) block are matrix-vector products, the
overhead for the cost of multiplying a vector by A + V V T compared to multiplying
by A is the addition of two matrix-vector products with n × k matrices. In other
words, the overhead here is O(nk) floating point operations per iteration. Another
potential difficulty is the computation of V , which may be expensive to the extent of
dominating the cost of solution of the linear system. Here the observations in section
5 come to our aid, since Theorem 5.1 implies that computing V can be done inexactly
(likely at a substantially lower cost), while still obtaining a nearly optimal condition
number. Finally, to make this approach more practical, inexact inner iterations for
solving A + V V T could be applied throughout the iteration.

The sign in front of the (2, 2) block affects the structure of the preconditioned
eigenvalues as follows. If it is a positive sign, then the preconditioner is positive
definite. In this case the eigenvalues of the preconditioned matrix are real, and a
minimum residual solver employing short recurrence relations (such as MINRES) can
be applied. If, on the other hand, the sign in front of the (1, 1) block is negative,
then the preconditioner is no longer positive definite but its inertia is closer to the
inertia of the original saddle point matrix. Furthermore, it can be shown that at least
m+n−k of the eigenvalues of the preconditioned matrix are complex with unit norm.

Let ν be an eigenvalue of the preconditioned matrix M−1K, with associated
eigenvector (x, y), and denote

M = A + V V T .

Then (
A B
BT 0

)(
x
y

)
= ν

(
M 0
0 ±BTM−1B

)(
x
y

)
.

Since we are assuming that M−1K is nonsingular, we must have ν �= 0. Observing
that (

M 0
0 ±BTM−1B

)−1 (
A B
BT 0

)

=

(
M 0
0 ±BTM−1B

)−1 [(
M B
BT 0

)
−
(

V V T 0
0 0

)]
,

we now proceed as follows. If the positive sign in front of the (2, 2) block of M is
selected, it follows that the preconditioned matrix is a rank-k modification of a matrix
which by [7] has precisely three distinct nonzero eigenvalues: 1 and (1±

√
5)/2, with

algebraic multiplicities n−m, m, and m, respectively. Thus, for k < min(m,n−m),
M−1K has eigenvalues 1, (1±

√
5)/2 of algebraic multiplicities at least n−m−k, m−k,

and m − k, respectively. If, on the other hand, the negative sign is chosen, the
preconditioned matrix is a rank-k modification of a matrix with eigenvalues 1 and
1±ı

√
3

2 , with the same algebraic multiplicities as above. Here ı =
√
−1.

Substituting y = 1
ν (BTM−1B)−1BTx and defining x̃ = M1/2x, we have (ν2I −

νK−P )x̃ = 0, where K = M−1/2AM−1/2, P = P 2 = M−1/2B(BTM−1B)−1BTM−1/2

is an orthogonal projector. In our case

K = M−1/2AM−1/2 = M−1/2(M − V V T )M−1/2 = I −M−1/2V V TM−1/2 = I − Ṽ Ṽ T ,
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Fig. 7.1. Eigenvalues of the preconditioned matrix for cvxqp1 (on the left) and convergence of
preconditioned MINRES (on the right). The right-hand side vector b was generated by setting the
solution as a vector of constants, such that ‖b‖2 = 1.

where Ṽ = M−1/2V , and we can rewrite our quadratic eigenvalue problem as

((ν2 − ν)I + νṼ Ṽ T ∓ P )x̃ = 0.(7.1)

We can say more if A is symmetric positive semidefinite with nullity k. Let V be an
n×k orthogonal matrix representing the null-space of A. Since MV = (A+V V T )V =
V , it follows that the columns of V are eigenvectors of M with multiple eigenvalues
1. By the analysis of section 3, V is a minimizer for problem (2.1). Since MV = V
we have M1/2V = V , and hence Ṽ = V . Thus, (7.1) takes the form

((ν2 − ν)I + νV V T ∓ P )x̃ = 0.

We can thus express the eigenvalue problem in terms of an orthogonal projector onto
a space related to the range of B and the null vectors of A.

Example 7.1. We used the cvxqp1 matrix from the CUTEr test collection [4] in
its “raw” form, i.e., without taking into account the constraint settings in the context
of an optimization problem, for testing the preconditioning approach suggested in
this section. The matrix has a 1000 × 1000 (1,1) block, whose rank is 986. The size
of B is 1000 × 500. For this experiment, the matrix V contains the 14 eigenvectors
corresponding to the zero eigenvalues. We have applied the preconditioner with a
positive sign selected for its (2, 2) block. The eigenvalues of the preconditioned matrix
are given in Figure 7.1 on the left and validate the eigenvalue analysis of this section
and the algebraic multiplicities of the three clusters of eigenvalues. Convergence
graphs for MINRES are given in Figure 7.1 on the right.

Computing the null vectors exactly in this case would be costly and storing all
of them would require more storage than that required for the matrix of the linear
system. In practice adjustments such as inexpensive approximation of the null vectors
and inexact inversion of A + V V T have to be made. Nevertheless, the substantial
savings in iteration counts may indicate the viability of this approach.

8. Conclusions. We have considered the problem of minimizing the condition
number of a matrix that is subject to low rank modifications. For symmetric ma-
trices, the standard interlacing property of eigenvalues can be applied and for the
nonsymmetric case an analogous property of the singular values can be used. There
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is nonuniqueness, but a solution can be obtained using active eigenvectors or singular
vectors of the matrices, which correspond to extremal eigenvalues (in the symmetric
case) or singular values (nonsymmetric case). There is a large “flat spot” of values
that can be used to obtain the minimum. In the symmetric indefinite case the two
equations that need to be solved to find a possible minimizer are linear, even though
the general setting of the problem is nonlinear. For the nonsymmetric case there are
more degrees of freedom, and in fact we have four equations with two unknowns.
We exploited this freedom by computing the vectors using a particular shifted skew-
symmetric matrix for which the singular values are available analytically.
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