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Abstract. We characterize the spectral behavior of a primal Schur-complement-based block diagonal precondi-
tioner for saddle point systems, subject to low-rank modifications. This is motivated by a desire to reduce as much
as possible the computational cost of matrix-vector products with the (1,1) block, while keeping the eigenvalues of
the preconditioned matrix reasonably clustered. The formulation leads to a perturbed hyperbolic quadratic eigen-
value problem. We derive interlacing results, highlighting the differences between this problem and perturbed linear
eigenvalue problems. As an example, we consider primal-dual interior point methods for semidefinite programs, and
express the eigenvalues of the preconditioned matrix in terms of the centering parameter.
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1. Introduction. Consider the following saddle point system coefficient matrix:

E-! AT
(1.1) H:{ Ao }

We assume that E and A have dimensions n x n and m X n respectively, with m < n, that
E is symmetric positive definite, and that A has rank m. The use of the inverse in the (1,1)
block is purely notational, to highlight the fact that we exclude the semidefinite case. We
will, however, assume that E could be very ill-conditioned. Saddle point systems of the form
(1.1) arise in numerous applications, ranging from optimization [NWO06] to solution of PDEs
[ESWO5] to other areas, and their iterative solution has been subject to extensive study in the
last couple of decades; see [BGLOS5] for a comprehensive survey.

A key for the rapid convergence of an iterative method for a linear system of the form
Hzx = bis the availability of an effective preconditioner, which we will denote throughout by
K. Each step of an outer iteration for solving the preconditioned linear system K~ 'Hz =
Kb (using, say, MINRES [PS75]) requires the solution of an inner linear system whose
coefficient matrix is K. Therefore, convergence of the outer iteration is fast if the eigenvalues
of the preconditioned matrix K~1'H are clustered, but careful attention must be paid to the
conditioning and eigenvalue distribution of the matrix K itself, which determine the speed of
convergence of the inner iteration.

Consider the preconditioner

_[ETT+ATWTIA 0

(1.2) K = 0 w |

with W an m x m symmetric positive definite matrix. Here, we have set K11, the (1, 1)
block of K, to the primal Schur complement of the matrix obtained by replacing Hoo = 0
by the stabilizing negative definite matrix —W. A motivation for this is that even if E is
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ill-conditioned, by selecting an appropriate weight matrix W it is possible to make K1
relatively well conditioned. This will enable us to solve the inner systems efficiently using
the conjugate gradient method. For a discussion of preconditioning techniques based on
this and related approaches, their analysis, and application to boundary value problems, see
[PS03, BO06, GS06, Cao08].

In [GS06] it is shown that with K defined as in (1.2), the preconditioned matrix K—1H
has an eigenvalue 1 of algebraic multiplicity n, that the negative eigenvalues all lie between
—1 and 0, and that if H;; is allowed to be singular with nullity p (which is not the case in
the current paper) then p negative eigenvalues are exactly —1. This characterization of the
clustering of the eigenvalues shows that (1.1) can be solved within a small number of outer
iterations. The multiplicities of the eigenvalues of the preconditioned matrix hold regard-
less of the choice of the weight matrix W, and a good choice may help reduce the overall
computational cost, by efficiently solving the inner iterations associated with K.

This leads to the main question that we investigate in this paper. Suppose we want to
consider preconditioners of the type (1.2), ensuring that K1 is well conditioned even when
E is ill-conditioned, but at the same time we aim to reduce the cost of performing matrix-
vector products with K. This may occur when the construction of rows of A or their
multiplication with a vector entails a high computational cost. One way to address this is by
replacing W' in K1 by a simple, lower rank matrix V. Then, if V is diagonal and some of
its diagonal entries are zero, not all rows of A are used when forming matrix-vector products
with K. We would like to explore whether this is possible without degrading the condition
numbers and the spectral distributions of K11 and K~'H too much.

In Section 2 we set the stage for exploring this issue. We set V.= W !, and provide a
few new results on the eigenvalues of the preconditioned matrix, specifically exploring con-
nections to the eigenvalues of the dual Schur complement of (1.1). In Section 3 we present
a perturbed hyperbolic quadratic eigenvalue problem and derive new interlacing results. In
Section 4 we apply our results to primal-dual interior point methods for semidefinite pro-
gramming.

For notational convenience, the eigenvalues in the lemmas and theorems below are or-
dered as follows: eigenvalues of symmetric positive definite matrices are ordered in ascending
order; eigenvalues of symmetric indefinite problems are ordered in descending order.

2. Preconditioning with a low-rank weight matrix. Motivated by the arguments made
in the Introduction, consider the following block diagonal matrix, which generalizes (1.2), as
a preconditioner for (1.1):

E'+ATVA 0
2.1 K= 0 w |
where V, W are m x m symmetric matrices. Likewise, the (1, 1) block of the preconditioner
is now generalized to

K =E '+ ATVA.

We will choose W to be positive definite and V to be a positive semidefinite rank m — s
correction of W1 as follows:

(2.2) W!l=v+YTY,

where Y € R(m‘s)xm, 0 < s < m, with full row rank. If s = m, Y is “empty” and
V =Wl ie, (2.1) reduces to (1.2). The following lemma includes this case.

LEMMA 1. The preconditioned matrix K~YH has an eigenvalue ¢ = 1 of algebraic
multiplicity n — m + s. The corresponding eigenvectors are of the form (w, W1 Aw). If
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s = m then any set of n linearly independent vectors w € R™ qualify. Otherwise, a possible
set of eigenvectors (w, W~ Aw) is defined by n—m vectors w that are linearly independent
null vectors of A, and s additional null vectors of YA that are not null vectors of A, that is
w satisfies 0 # Aw € null(Y).
Proof. The eigenvalue problem for K—'H is
23) {E—l AT}{w}:w[E_l—i—ATVA O}{w}
' A 0 z 0 W z |

From the first block row we have

2.4) ((go ~1)E! + cpATVA>w — AT

If ¢ = 1, (2.4) simplifies to ATVAw = AT2. In this case, from the second block row of
(2.3) we have z = W1 Aw, and hence

(2.5) ATVAw = ATWAw.

We can readily see that there are vectors w # 0 that satisfy this equation, and therefore ¢ = 1
is indeed an eigenvalue of K~'H. Notice that if Aw # 0, then ATW~tAw # 0, since A
has full row rank. If V.= W~! then (2.5) holds for any w. Otherwise, under relation (2.2)
between V and W, (2.5) simplifies to (YA)?TYAw = 0. Since rank(Y) = m — s there are
s linearly independent vectors other than the null vectors of A that satisfy this relation, and
they are as stated in the lemma. 0

In the special case V.= W ! we can provide further insight. Let us first show that a
matrix we will need to invert later is nonsingular.

LEMMA 2. Suppose V.= "W~ and let © be an eigenvalue of K~ H. Then the matrix

T(p) = (¢ — DE™' + pATVA

is singular if ¢ = 1 and nonsingular otherwise.

Proof. First, note that since H is nonsingular, ¢ cannot be zero. Since K is symmetric
positive definite, K'/? exists and the eigenvalues of K~ 'H are identical to those of the
symmetric matrix K—1/2HK /2. The inertia of the latter is equal to the inertia of H, and
hence we must have that n eigenvalues ¢ are positive and m are negative. By Lemma [ the
multiplicity of the positive eigenvalue ¢ = 1 is n, and therefore all the remaining eigenvalues
(o must be negative.

If o = 1 then T = ATVA, which is singular since it is n x n but its rank is at most m.
If ¢ # 1 then we must have ¢ < 0 by the above inertia considerations, and 7" in this case is
negative definite, hence nonsingular. O

Theorem 1 below relates the eigenvalues of K~'H to the eigenvalues of the dual Schur
complement of (1.1),

(2.6) M = AEAT.

We start with a lemma.
LEMMA 3. Define

El=(p-1E!, V=¢V, M=AEAT
Then, if p # 1,

(AT 'AT)y ' =M1 4+ V.
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Proof. This follows readily from [Fle87], or can be obtained by using the Sherman-
Morrison formula; see also [GG03, BO06]. We have

T '=(E'+ATVA) ' =E—EAT(I+ VAEAT) 'VAE.
Thus
AT AT = A (E ~BAT(I+ VAEAT)*\?AE) AT
—M-MI+ VM) 'VM.

One can verify that T — (I + Vﬁ)*li\/ﬁ = I+ Vﬁ)*l. Finally, it is immediate to see
that M(I + VM)~ = (M~! + V)1, which completes the proof. O

Continuing on with considering V. = W1, the specific choice of a scalar multiple of
the identity allows us to relate the eigenvalues of K~'H to the eigenvalues of M; we denote
the latter by

2.7 O<mn <7< Ym

We have the following result.

THEOREM 1. Suppose V.= W1 = I, and let ; be the eigenvalues of M defined
in (2.6), ordered as in (2.7). Then, the eigenvalues of the preconditioned matrix K~"H are
given, in descending order, as follows:

(p]:l’ j:17...,n;
—B7;

(2.8)
—1 < nti =

Proof. The multiplicity of ¢ = 1 has been established in Lemma 1. Consider now
¢ # 1. The matrix multiplying w on the left hand side of (2.4), namely T(¢), is nonsingular
by Lemma 2. Multiplying (2.4) by T~ and using Aw = ¢'W z from (2.3), we obtain

(2.9) AT 'AT, = pW2.
By Lemma 3, (2.9) is equivalent to
(2.10) z= @(ﬁ_l + V)W

Substituting M- = (p—1)M™1L, V= @B, and W1 = 31, (2.10) is equivalent to

(2.11) plo =Mz = B(1 - ¢?)z,
or Mz = —%ﬁz. Thus v; = —#&fﬂ), which gives the second equation of (2.8). 0

It follows from Theorem 1 that the value of 5 may be used to control the eigenvalues.
The larger it is, the closer the negative eigenvalues given in (2.8) are to —1, and hence the
smaller the number of expected MINRES iterations. However, there is a tradeoff, because
the rate of convergence of the preconditioned inner iteration, namely the linear system solve
for K11, depends in a different way on . Let us make the assumption, valid in the case of
semidefinite programming discussed in Section 4, that the costs of multiplication of vectors
by E and E~! are comparable. Thus E provides a preconditioner for K11, and the spectrum
of EK;; = I+ EATVA controls the rate of convergence of the conjugate gradient method
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to solve systems whose coefficient matrix is K1;. When V is a multiple of the identity, the
characterization of this spectrum is straightforward.
LEMMA 4. Suppose that V = (1. Then n — m eigenvalues of

EK,; =I1+EATVA

are equal to 1, and the remaining m eigenvalues have the form 1 + B~;, j =1,...,m.
Proof. This is a consequence of the fact that the nonzero eigenvalues of the matrix
product (EATV)A equal the nonzero eigenvalues of the product A(EATV). d

Thus, the wish to make (3 large to speed up convergence of the outer MINRES iteration
conflicts with the desire to make 3 small to improve the rate of convergence of the inner
conjugate gradient iteration.

3. Interlacing for a quadratic eigenvalue problem. In this section we extend the re-
sults of Section 2 to the case where, instead of setting V to a multiple of the identity matrix,
we choose it to have lower rank; the multiplication of vectors by AT VA in the “inner” it-
eration is then less costly. We first make an easy generalization of Lemma 4 using standard
eigenvalue interlacing results, and then we go on to generalize Theorem | by extending the
interlacing results to the quadratic eigenvalue problem that arises.

The discussion that ensues shows that the eigenvalues of the preconditioned matrix can be
expressed in terms of a low-rank modification of a hyperbolic quadratic eigenvalue problem
(QEP). There is a rich mathematical theory for QEPs; see the excellent review [TMO1] and
the recent paper [GHTO8]. However, they are not as well understood as their linear eigenvalue
problem counterparts. For example, interlacing results for these problems are fairly scarce;
see [Ple06].

LEMMA 5. Suppose that 'V is diagonal with s diagonal values set to 3 and the other
m — s values equal to zero. Denote the eigenvalues of EK11 = I + EATVA by 05, § =

1,...,n, ordered in ascending order. Then we have
9 =1, ji=1,...,n—s;
1+ﬁ’7] S(snfsjtj Sl"‘rﬁ’ijrmfs; ]:17a5

Proof. This follows from the interlacing property for symmetric matrices ([(GV96, The-
orem 8.1.8],[Wil65, pp. 94-97]), because the matrix MV = AEATV isarank m — s
perturbation of SM. 0
This result includes Lemma 4 as the special case s = m. Likewise, the following result
includes Theorem 1 as the special case s = m.

THEOREM 2. Suppose W1 = BL. Let V be a diagonal matrix with s of its diagonal
values equal to 3 and the rest zero. Denote the eigenvalues of K~ H in this case by vj,
ordered in descending order. Then, for ( sufficiently large,

v; > 1, j=1....m—s;

v; =1, 5 5 j=m-—s+1,...,n;
—PYj+m—s —PYj .

—1l<—< ;< <0, =1,...,s;
Brjem—s+1 "= By 41 ’ ’

v; < —1, j=n+s+1,...,n4+m.

Proof. By Lemma 3 and equations (2.9)—(2.10), which hold for any choice of V, we
have a quadratic eigenvalue problem in v,

Bz = V((V — )M+ Z/V) z.
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The case s = m follows from Theorem 1. Below we present a proof for the case s = m — 1
(that is, V is a rank-1 change of W~1). Consider the spectral decomposition

M = UTU?, T =diag(71,...,Ym).
Note that W—1 — V is diagonal, with m — s nonzero elements, all equal to 5. We have
(Vﬂ(r—l AL —udT) — oDt - m)z —0,

where u is a column vector and Z = U7 z. This is a rank-1 change to the diagonal quadratic
eigenvalue problem

3.1) (<p2(r*1 4 BL) — oI} fﬂI>2:0,

()

which corresponds to the case V.= W ! after performing a step of diagonalization; cf. (2.11).
This case is covered by Theorem 1. It is straightforward to show that this quadratic eigenvalue
problem is hyperbolic [GHTO08, Definition 1.1].

By inertia considerations similar to those presented in the proof of Lemma 2 we must
have n positive and m negative eigenvalues. The existence and multiplicity n—m-+s =n—1
of the eigenvalue 1 follows from Lemma 1. Suppose now that v # 1, and consider the matrix
in (3.1), namely ®(v). It is singular if and only if % is an eigenvector of (3.1). But this is
covered by Theorem 1. If ® is nonsingular then

(3.2) 0 = det (V2(F_1 + AT —wu®) — vt — 51)
= det (ﬂ(r*l FAL) — T 51)
-1
x det (I - (1/2(1"71 +BI) — vt — ﬁI) VzuuT).

By our assumption, the first determinant on the right hand side of equation (3.2), which
is nothing but det(®(v)), is nonzero and hence the second determinant must be zero. For any
two vectors = and y we have det(I + xy”) = 1 + yT2 [Dem97, Lemma 5.1], and hence

det (I — (1/2(1"_1 +6I) — vt — ﬁI)ilzﬁuuT)
— 1T (ﬂ(r-l LA — D - 5I>_1u

m VQU?
1-2

j=1 VQ(’Yj_l_'_ﬂ)_V’Yj_l_ﬁ .

g(v)

The expressions in the denominator can be factored as

W)=V 48—y = B= (O + B+ B) (v—1), j=1,...,m.

Denoting the expression for the determinant by g(v), the poles of g are the roots of g;, namely
1 and the negative values given in (2.8). We have

LS wlv(vyt
S =3 Jv(vyy ™ +28) N
j=1 (((’yj_l +B)v+B) (v - 1))
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When v > 0 we have ¢’(v) > 0, since all quantities in the expression for ¢’ are positive.
Therefore, the only eigenvalue that is positive but is not equal to 1 must be larger than 1.

For negative v, we have ¢’'(v) < 0 if zryj_l + 28 > 0. From Theorem 1 it follows that
the m poles of the function g(v) are algebraically larger than —1. For v > —1 we have
V’yjfl + 20 > —’y;l + 203, and hence for 3 sufficiently large we have ¢’(v) < 0. Thus, the
subset of eigenvalues that are negative, {v; };‘iﬁ_l, are equal to or algebraically smaller than
their counterparts for V.="W~1, {o, ?iﬂ_l, and m — s = 1 of them are smaller than —1.

When m — s is larger than 1, the proof is obtained by considering a sequence of rank- 1
changes to a diagonal quadratic eigenvalue problem. The details are omitted for the sake of
brevity. a

200

1501

100

501

- 50,

-100-

-150-

-20 LL L ‘
L L L B “1 -098 -095 -094 -092 -09 -088

FI1G. 3.1. Left: a schematic illustration of the interlacing phenomenon for the quadratic eigenvalue problem,
with a rank-1 change. Most of the variation occurs near —1. Right: a close-up view of the interlacing of the negative
eigenvalues near —1.

For clarity, we provide a characterization of the function g(v), under the conditions stated
in Theorem 2, for a rank-1 change (that is, s = m — 1); see also Fig. 3.1.

e It has poles located at the eigenvalues of the problem described in Theorem 1. There
are m negative poles, and one positive pole at 1.

o It has a positive derivative for » > 0 and a negative derivative for v < 0.

e Between 0 and 1 it has no roots. We have that g(0) = 1, and for 0 < v < 1, g is
monotonically increasing and approaches co as v — 1.

e For v > 1 the function is monotonically increasing. For v — 1% we have g(v) —
—00. As v — o0, we have

glv) —1— —_—.
;%‘ 1"‘5

For (3 sufficiently large this value is positive and hence one root greater than 1 exists.
o All other roots are negative. Of them, m — 1 are between —1 and 0. One root is
smaller than the smallest pole. The smallest pole is larger than —1, but the root may
or may not be smaller than —1.
m u?

e Asv — —oo,againg(v) — 1 -3 1", T
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Fig. 3.2 illustrates the effect of a rank-3 modification on the spectrum of the precondi-
tioned matrix. Six eigenvalues of the preconditioned matrix ‘escape’ from the range where
the other eigenvalues are trapped: these are the three leftmost and three rightmost eigenvalues
shown in the panel on the right. The tradeoff is interesting: the outer MINRES iteration count
will increase by up to six steps, but every inner conjugate gradient step requires three fewer
inner products with rows of A and three fewer inner products with columns of A.

O pos eig of -H G pos eig of H
O poseigofH G pos eig of H
1 ; i
pos eig of K H pos i of -K™ H
5 k! H 000°%° x 1
pos eig o 500 pos eig of K H

008
200
000

8 1 16 il % 20 i 0 5 10 15 n Vi 0 kil

FIG. 3.2. Eigenvalues of a preconditioned matrix K= H, with n = 23 and m = 9, where A is randomly
generated, and E—1 = BT B with B randomly generated. Left: V. = L. Right: V is diagonal with 20 ones and 3
zeros.

4. Application to semidefinite programming. We discuss in this section the appli-
cability of the proposed preconditioning technique to nondegenerate semidefinite programs
(SDPs). Preconditioning of SDPs is an important and active research topic [Toh03, ZST10].

Let SV denote the Euclidean space of N x N real symmetric matrices with inner product
X oY =tr XY, and let X > O (respectively X > 0) mean that X is positive semidefinite
(positive definite). Consider the primal SDP

min CeX
XesN
4.1 such that Ay e X =by, k=1,...,m,
X =0,

where b € R™, C € SV, and the m data matrices A}, are linearly independent in S N,
The dual SDP is

maxycrm, zeSN bT%
4.2) such that Yoo ykAr+Z =C.
Z = 0.

In practice, the matrices X and Z almost always have a prescribed block-diagonal structure.
The results below all extend to the block diagonal case, but the necessary notation is quite
cumbersome. Note that SDP reduces to linear programming in the case that X and Z are
diagonal.

Under the assumption that the SDP has strictly feasible points, that is the primal SDP has
a feasible point X > 0 and the dual SDP has a feasible point (y, Z) with Z > 0, it is well
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known that the optimal values of the primal and dual SDP are the same, and that the central
path, which consists of triples (X*, y*, ZH) satisfying the primal and dual constraints as well
as the centering condition,

XPZH = ul,  for some pu > 0,

exists and converges to solutions of the primal and dual SDP as p | 0. Primal-dual interior-
point path-following methods generate iterates that approximately follow the central path to
find solutions to the primal and dual SDP [Tod01]. Widely used publicly available software
packages implementing these primal-dual methods include SDPT3, SDPA, and SeDuMi. In
contrast, dual-only path-following methods generate only the dual iterates (y, Z), motivated
by the fact that Z is generally much more sparse than the primal iterate X [BYZ00]. This is
because Z is a weighted sum of the data matrices C' and the Ay, all of which are generally
sparse. On the central path, X is a multiple of the inverse of Z, so it is generally dense.
See [DGO09] for a special case where X can be represented efficiently even though it is not
sparse.

For both classes of methods, the linear algebra bottleneck that stands in the way of solv-
ing large SDPs is as follows. Define

n= N2,
and let “vec” map an N x N matrix to a vector in R™ by stacking its columns. Let

(vec Ap)T
A=
(vec Am)T

The basic linear system that must be solved is

veeAX | [ E71 AT vee AX | [ f
S il R N [ el e Y

For primal-dual methods, the most commonly used formula for E is the Kronecker product
X ® Z~!, where X and Z are the current primal and dual iterates. The search direction
associated with this choice of E is sometimes called the “HKM” direction and is generally
considered more efficient than its primal-dual competitors, the “NT” and “AHO” directions
[TodO1]. It follows that the (1,1) block of His E™! = X! ® Z, and hence that the cost
of multiplications of vectors by E and E~! are similar, assuming the Cholesky factors of X
and Z are known (this is always the case, since these matrices cannot be accepted as iterates
of the optimization algorithm without checking their positive definiteness). In particular, the
preconditioned (1,1) block of (2.1)is EK1; = I+ (X! ® Z)"'ATVA and matrix-vector
products with this can be computed efficiently using the identity

(X' ® Z)vec(W) = vec(ZWX 1)

(using [HJ91, Lemma 4.3.1], as X = X7T).

The discussion above is for primal-dual methods, but for dual-only methods, simply
replace X by puZ 1.

One step of block Gauss elimination reduces the system (4.3) to the equivalent normal
equations (or Schur complement system)

(4.4) MAy = f,
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where f = AEf; — fo and M = AEAT. Thus, using E = X ® Z~!, we have
Mij:Mji:tI‘AiXAjZil, ].SZ,]STL

Note that M > 0 since X > 0 and Z > 0.

In the remainder of this section we develop some analysis that applies on the central
path. For any p > 0, since X* and Z* commute, there exists an orthogonal matrix Q* that
simultaneously diagonalizes them, with

4.5) Xt =Q" diag(\,...,\y) (Q")T, Zr=Q" diag(w},...,whk) (Q")T,
and M'w!' = p, i =1,..., N. Without loss of generality, assume that
NP> > and Wi <o <wh

Letting 42 | 0, we obtain (X#,y*, Z*) — (X, Z), which solves the primal and dual SDP
[KSH97]. We have the complementarity condition XZ = 0, and there must exist a (not
necessarily unique) orthogonal matrix () with

X = Q diag(Ai, ..., \n) Qr, Z=Q diag(@1,...,oN) Qr,

where \; and @;, the limits of \}' and w!', satisfy A\;&; = 0,4 = 1,..., N. Define
r = rank(X),

S0

(4.6) M>o >N > A== Ay =0.

It follows from the complementarity condition that Z has rank at most N — r. We make the
strict complementarity assumption that Z has rank equal to N — r, so

4.7 02@12"':5)7-<@7«+1S"'S@N.

This holds generically [AHO97], but more importantly, it seems to almost always hold for
SDPs that occur in practice. We then have the following trivial lemma.

LEMMA 6. Suppose that the strict complementarity assumption holds. Then the central
path eigenvalues satisfy
M=0(1), 1<i<r, M =0(), r+1<i<N,

3 3

as i ] 0.

Remark. Recall that the © notation signifies a stronger relation than big-O notation: a
function f(n) is ©(g(n)) if f is asymptotically bounded both above and below by g [GKP94,
p- 448].

Proof. The first equality holds because for i < r, A} — A; > 0as p | 0. The second
holds because for 7 > r,

A=

7 and Wl —@; >0 D
Wi

Let us partition Q = [Q1 Q2], where Q1 has 7 columns and @, has n — r columns. We
say that the SDP is primal nondegenerate if the matrices

QTAQ1 QT A,Q2 _
4.8) W . C k=12,....m,
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are linearly independent in S™, and dual nondegenerate if the matrices
(4.9) QT AQ1, k=1,2,...,m,

span the space S”. These conditions are well defined even if @ is not unique.
In what follows it is convenient to use the notation

z_rir+l)
5
The primal nondegeneracy condition implies that m < r2+ r(n—r), and the dual nondegen-
eracy condition implies that m > r2. Given the strict complementarity assumption, primal
nondegeneracy is equivalent to the dual SDP having a unique maximizer, that is, having no

other solutions in addition to (g, Z), and dual nondegeneracy is equivalent to the primal SDP
having a unique minimizer, that is, no other solutions in addition to X [AHO97]. Primal
and dual nondegeneracy are generic properties in the sense that randomly generated SDPs
with solutions will have both properties, and therefore unique primal and dual solutions, with
probability one. However, in practice it is very typical that SDPs are either primal or dual
degenerate.

Let B, = QT A, Q. From [HI91, Lemma 4.3.1], we have

vec By = (Q7 @ QT') vec A.
Thus
(vec By)T
B= : =AQ®Q).

(vec B,)T

Each column of B corresponds to an index pair (i,7) identifying two columns of @, with

1 < 4,7 < n. Note that there are (n — 1)2 duplicate columns (one for each pair ¢ # j).
Following [AHO98], we may partition

BII = [B; B, B3],
where IT is a permutation matrix and the columns in B, By and B3 correspond, respectively,
to index pairs (%, j) with both 7 and j < r, exactly one of ¢, j < r, and neither < r. The dual

nondegeneracy condition says that B; (which has 72 columns and m rows) has rank 72 (the

other (r — 1)2 columns are redundant), and hence that m > r2.
On the central path, the dual Schur complement matrix is

M* = A(XH ® (24 HAT = p TAXH @ XHAT = 7 'BH(A* @ AH)(BH)T,

where B¥ = A(Q" ® Q") and A* = diag(\[, ..., \y), using Q*, A" defined in (4.5). It
follows that

(4.10)  pM* =B (A @ AP)(BY)" + B (AL @ AD)(BS)" + BE (AL @ AD)(BE)T,

where AY = diag(Af,..., M), Ay = diag(A\,|,..., ) and, as long as IT is chosen
appropriately, B}, B4 and B respectively converge to By, By and B3 as p | 0. We then
have:

LEMMA 7. Suppose the strict complementarity and the dual nongeneracy assumptions
hold. Then M* has r? eigenvalues that are ©(u~1) and m — r? eigenvalues that are O(1).
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Proof. Following [AHO98], we consider the scaled dual Schur complement matrix
shown in (4.10) as p | 0. The second and third terms on the right-hand side converge to zero
by Lemma 6, while the first converges to By (A; ® A1) (B1)7, where Ay = diag(A1, ..., \).
The matrix B, has rank 72 by the dual nondegeneracy assumption, while A; ® A is a positive
definite diagonal matrix of order 2. It follows that 72 eigenvalues of the m x m matrix pM*
converge to positive numbers. The remaining eigenvalues converge to zero, and since the sec-
ond and third terms in (4.10) are O(u), these eigenvalues are O(u) by Lipschitz continuity.
Dividing by p gives the result. a

We are now ready to perform a spectral analysis for the preconditioned system K—'H
for SDP, assuming that the relevant matrices are evaluated on the central path. The first result
is a refinement of Theorem 1. Recall that the order of H in (4.3)is n +m = N2 + m.

THEOREM 3. Suppose that in (4.3),

E—l — (X/L)—l ® AS
and that in (2.1),
V=W1!l=pI=p"I

for some o > 0. Finally, assume that the strict complementarity and dual nondegeneracy
conditions hold. Then n eigenvalues of K~'H are equal to 1, r? eigenvalues ©; are —1 +
O(u*t), and m—r? eigenvalues p; are —1+0(u®). These eigenvalues are all algebraically
larger than —1.

Proof. The multiplicity of the eigenvalue one follows immediately from Theorem 1.
From Lemma 7, provided strict complementarity and dual nondegeneracy hold, for r? of the
eigenvalues of M* there exists a positive constant ¢; independent of 4 such that v; = %, and
hence by (2.8)

—cip~ (@D —¢

cu— @D £ ¢ potl

i =

Therefore for y sufficiently small we have r? eigenvalues ¢; that are —1 + ©(u®*1t). The
remaining m — 2 eigenvalues correspond to eigenvalues of M* that are O(1). By a similar
argument, these eigenvalues are —1 + O(u®). Furthermore, since p > 0, these eigenvalues
are all larger than —1. |

Next, we present a refinement of Theorem 2.

THEOREM 4. Suppose W' = GBI Let V be a diagonal matrix with s of its diagonal
values equal to 3 and the rest zero. Denote the eigenvalues of K~ H in this case by vj,
ordered in descending order. Suppose, as in the previous theorem, that the iterates follow the
central path, that the strict complementarity and dual nondegeneracy conditions hold, and
that 3 = O(u~%). Assume further that r> < s < m. Then, for u sufficiently small, there are

at least max(0, 72 + s — m) eigenvalues of K—H that are —1 + O(u®*1).

Proof. By Lemma 7, 2 eigenvalues y; of M* are ©(y~!) and the remaining m — 72 are
O(1). Suppose s = m. Then by Theorem 3 the algebraically smallest negative eigenvalues
are r2 eigenvalues that are —1+0(u®*1). Now suppose s = m— 1. By interlacing arguments
identical to the ones made in Theorem 2, % —1 of these eigenvalues are trapped between poles
of the same magnitude and hence are still of the same order. Since ¢’(¢) < 0 for ¢ < 0, the
remaining negative eigenvalue moves to the left under the perturbation implied by reducing s
to m — 1. However, it is not necessarily of the order —1 + ©(u®*1), since it is not trapped

by a pole of g on the left. The same arguments can be repeated for s < m — 1. a
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5. Conclusions and future work. We have studied the spectral properties of a primal
Schur-complement-based block diagonal preconditioner for saddle point systems, subject to
low-rank modifications. A motivation for this approach is the goal of performing matrix-
vector products with as few as possible rows of the constraint matrix, while maintaining the
effectiveness of the preconditioner. We have taken semidefinite programming as an example.
Our focus in this paper is on the analysis, and there is much to do to investigate the practi-
cality of the proposed approach. First, semidefinite programs are typically degenerate, and
in such cases, some of our analysis does not hold. Secondly, the strong connection between
the spectrum of the preconditioned matrix to that of the dual Schur complement requires a
comparison to alternatives that rely on the latter, namely normal equations solvers. Finally,
the approach that we have investigated is parameter-dependent, and it would be desirable to
explore choices that reduce the overall computational cost.
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results.
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