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Abstract
We develop structure-preserving incomplete LU type factorizations for precondition-
ing centrosymmetric matrices and use them to numerically solve centrosymmetric
and nearly centrosymmetric linear systems arising from spectral methods for partial
differential equations. Our algorithm builds in part on direct solution techniques previ-
ously developed for this type of linear systems, featuring double-cone factorizations.
We illustrate our findings on discretizations of model problems involving the Poisson,
diffusion, Helmholtz, and biharmonic equations in one, two, and three dimensions.
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1 Introduction

A matrix A = (ai j ) ∈ R
n×n is centrosymmetric if it is symmetric about its center:

ai, j = an+1−i,n+1− j , 1 ≤ i, j ≤ n. (1)
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It has been shown [1] that A ∈ R
n×n is centrosymmetric if and only if JAJ = A,

where J ∈ R
n×n is a matrix with ones along the antidiagonal and zeros elsewhere

J =
⎡
⎢⎣

1
. . .

1

⎤
⎥⎦ ∈ R

n×n .

The matrix J is called a flip matrix or the reverse identity matrix.
The family of centrosymmetric matrices includes a number of important types that

arise in a variety of applications, e.g., in the numerical solution of partial differential
equations (PDEs), signal processing, and Markov processes [2–4]. Two instances of
centrosymmetric matrices are symmetric Toeplitz and symmetric circulant matrices.
Numerical methods for solving problems involving such matrices have been exten-
sively explored in the literature; see [5, 6], for example. Various preconditioners have
been proposed for solving symmetric systems involving Toeplitz matrices; see [7–10].
Ng et al. [11] proposed a recursive-based preconditioned conjugate gradient method
for symmetric positive definite ill-conditioned Toeplitz systems. Fast algorithms for
centrosymmetric Toeplitz-plus-Hankel matrices are discussed in [12–14]. Notice that
if T is symmetric Toeplitz, then JT is a centosymmetric Hankel matrix. Tian and Gu
[15] introduced economical iterative methods for centrosymmetric M-matrices.

An important early observation related to the block structure of centrosymmetric
matrices is the following similarity transformation [1]. IfA ∈ R

n×n is centrosymmet-
ric, where n = 2k, then it has the form

A =
[
A JC J
C J AJ

]
,

where A,C, J ∈ R
k×k . This matrix can be block-diagonalized via an orthogonal

similarity transformation

A = U
[
A + JC 0

0 A − JC

]
UT , U = 1√

2

[
I I
J −J

]
, (2)

where I ∈ R
k×k . Note that since U is orthogonal, the spectrum of A consists of the

union of the spectra of A ± JC . The case of the dimension n being an odd number is
slightly more involved notation-wise but is otherwise analogous.

The set Cn of n × n centrosymmetric matrices is an algebra: If A,B ∈ Cn and
a ∈ R, then A + B, AB, aA ∈ Cn . If A ∈ Cn , so is AT . If A ∈ Cn is invertible, then
A−1 ∈ Cn , and each diagonal block in (2) is invertible. Suppose n is even, thenA ∈ Cn
isHermitian (resp. skew-Hermitian, normal, positive definite) if and only if A+JC and
A − JC are Hermitian (resp. skew-Hermitian, normal, positive definite). Analogous
results hold when n is odd. See [1, 16, 17] for various properties of centroymmetric
matrices. Also see [18–20] for attributes of structured matrices.

The development of direct solvers for centrosymmetric linear systems has led to
computational gains. Early work was published by Andrew [21] almost five decades
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ago. Instead of solving the original centrosymmetric system, he solved two linear sys-
tems half the size, which require only about half the total storage and a quarter of the
total computational time. See [22, 23] for additional details. Recently, a new factor-
ization for centrosymmetric matrices was introduced by Burnik [24]. He proposed an
algorithm for factoring a centrosymmetric matrix as a product of a centrosymmetric
orthogonal matrix Q and a centrosymmetric matrix X with a special structure called
double-cone. Steele et al. [25] introduced a different algorithm for computing the
QX factorization based on the similarity transformation (2). Perturbation analysis and
conditions for uniqueness of the QX factorization are derived by Lv and Zheng [26].

Of particular interest to us are centrosymmetric matrices that arise in spectral meth-
ods for solving PDEs. The latter are known to efficiently solve problems involving
regular geometry with spectral accuracy, provided the solution is smooth. They require
fewer degrees of freedom to achieve a given accuracy compared to other methods such
as finite-difference approximations [27, 28]. The matrices come in a few distinct fla-
vors, depending on the number of space dimensions and the specific PDE. In this paper,
we consider the Poisson, diffusion, Helmholtz, and biharmonic equations in one, two,
and three dimensions. As described later, some of the corresponding linear systems
are dense while others are sparse. In some dense cases, certain additive components
are sparse. Thus, there is a rich structure here, which may be exploited to design fast
solvers.

We note that matrices arising from spectral methods are typically not very large,
thanks to the extreme accuracy that those methods offer. And yet, preconditioned
iterative solvers are still potentially useful, especially for three-dimensional problems,
for a variety of reasons related to the typical advantages that iterative methods offer,
for example, the ability of those methods to compute a solution to a low accuracy
and the ability to exploit the availability of a good initial guess. Matrices arising in
spectral methods are typically ill-conditioned, and this poses a challenge for any type
of numerical solvers.

We derive incomplete LU type factorizations that preserve the structure and take
advantage of a fast matrix–vector product proposed by Melman [29] and Fassbender
and Ikramov [30]. We then apply preconditioned iterative solvers for various spectral
differentiation matrices. For the Poisson and Helmholtz equations, we apply pre-
conditioners defined by incomplete double-cone factors of the matrices arising from
Chebyshev and Legendre collocation methods. The biharmonic equation produces a
dense matrix due to the mixed derivatives, and we approximate this part by a finite-
difference scheme based on collocation points and combine it with the other (sparse)
parts of the matrix. We then use the incomplete factorization of this approximation as
a preconditioner for the linear system.When the matrix is symmetric positive definite,
we apply preconditioned conjugate gradient (PCG); otherwise, we apply a generalized
minimum residual (GMRES). Our proposed preconditioners show promise in terms
of speed of convergence and overall computational cost. We explore the feasibility of
these techniques on an extensive set of centrosymmetric and nearly centrosymmet-
ric matrices arising from the important class of spectral methods for the numerical
solution of PDEs.

An outline of the remainder of this paper follows. In Sect. 2, we discuss centrosym-
metric matrices that arise in spectral collocation methods. In Sect. 3, the double-cone
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factorization is described, andwe explain how to apply it to derive an incomplete LUor
Cholesky factorization. GMRES (PCG in SPD cases) with proposed preconditioners
are applied to diffusion and variable-coefficient biharmonic equations. Section4 offers
comprehensive numerical experiments that validate our claims. Finally, in Sect. 5, we
draw some conclusions.

2 Spectral differentiationmatrices

Consider the linear boundary value problem

Lu = f in (−1, 1), (3)

with homogeneous Dirichlet boundary conditions. Let P0
N denote the space of poly-

nomials of degree at most N vanishing at ±1. Let x0, . . . , xN denote Chebyshev
Gauss-Lobatto nodes with x0 = 1, xN = −1 and x j descending zeros of T ′

N (x),
where 1 ≤ j ≤ N −1 and TN is the N th Chebyshev polynomial. Spectral collocation,
also known as pseudospectral approximation, seeks a polynomial uN ∈ P0

N such that
the approximate solution uN of (3) satisfies the equation exactly at the collocation
points.

Given any set of distinct collocation points {x j }Nj=0 on [−1, 1], let � j be the
Lagrange interpolant, a polynomial of degree N , so that � j (xk) = δ jk . Then, uN

can be expressed as

uN (x) =
N−1∑
j=1

uN (x j )� j (x). (4)

Substituting this in (3) gives the collocation equations LuN (x j ) = f (x j ), for 1 ≤
j ≤ N − 1. Differentiating (4) m times leads to

u(m)
N (xk) =

N−1∑
j=1

uN (x j )�
(m)
j (xk), 1 ≤ k ≤ N − 1.

The first-order spectral differentiation matrix D ∈ R
(N+1)×(N+1) has entries

Djk = d�k(x j )

dx
, 0 ≤ j, k ≤ N .

Then, D(m) = DD · · · D = Dm , for m ≥ 1, where

D(m)
jk = dm�k(x j )

dxm
, 0 ≤ j, k ≤ N ,

is the mth spectral differentiation matrix; see Theorem 3.10 [28]. For Chebyshev col-
location, explicit formulas for D and D2 can be found in the literature [28]. Notice that
D2 and D4, the second- and fourth-order spectral differentiationmatrices respectively,
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are centrosymmetric as long as the collocation points are symmetric about zero, as is
the case for Chebyshev and Legendre points.

Let A ⊗ B denote the Kronecker product of matrices A and B.

Proposition 1 If A ∈ R
n×n and B ∈ R

m×m are centrosymmetric, then A ⊗ B is
centrosymmetric.

Proof Let Jn denote the flip matrix of size n. Then

(Jn ⊗ Jm)(A ⊗ B)(Jn ⊗ Jm) = (Jn AJn ⊗ Jm B Jm) = A ⊗ B.

Therefore, A ⊗ B is centrosymmetric.

We consider the following PDEs and the associated centrosymmetric linear systems
arising from applying spectral discretization:

• 2D Poisson equation (sparse): Consider the Poisson equation with homogeneous
Dirichlet boundary conditions in the square domain (−1, 1)2. The second-order
spectral differentiation matrix is

Â2DP = −([[D2]] ⊗ IN−1) − (IN−1 ⊗ [[D2]]). (5)

Here, IN−1 denotes the identity matrix of size N − 1 and [[D2]] is a matrix that is
obtained from D2 by removing the first and last rows and columns. The condition
number of this matrix is O(N 4); see [31].

• 2D biharmonic equation (sparse+dense): Consider the biharmonic equation with
homogeneous Dirichlet boundary conditions in the square domain (−1, 1)2. The
fourth-order spectral differentiation matrix is

Â2DB = (B ⊗ IN−1) + (IN−1 ⊗ B) + 2([[D2]] ⊗ [[D2]]), (6)

where B is a spectral approximation of the fourth derivative, taking into account
the boundary conditions. Consider Y (x) = (1 − x2)Z(x), with Z(±1) = 0.
Then, Y (±1) = Y ′(±1) = 0 and Y ′′′′(x) = (1 − x2)Z ′′′′(x) − 8x Z ′′′(x) −
12Z ′′(x). Therefore, a spectral approximation of the fourth derivative, imposing
the boundary conditions, is given by

B = (M [[D4]] − 8V [[D3]] − 12[[D2]]) M−1,

whereM andV are (N−1)×(N−1) diagonalmatriceswith diagonal entries 1−x2i
and xi , respectively. Thismatrix is extremely ill-conditioned, the condition number
is O(N 8). See [32]. Since the matrix consists of a summation of two matrices, a
sparse matrix (B ⊗ IN−1) + (IN−1 ⊗ B), and a dense matrix 2([[D2]] ⊗ [[D2]]),
we refer to it as “sparse+dense.”
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• 3D Poisson equation (sparse): Consider the Poisson equation with homogeneous
boundary conditions in the cubic domain (−1, 1)3. The 3D second-order spectral
differentiation matrix is

Â3DP = − ([[D2]] ⊗ IN−1 ⊗ IN−1) − (IN−1 ⊗ [[D2]] ⊗ IN−1)

+ (IN−1 ⊗ IN−1 ⊗ [[D2]]). (7)

• 3D Helmholtz equation (sparse): Consider the indefinite Helmholtz equation

− (� + k2)u = f , in (−1, 1)3, (8)

where k is a constant called wave number. We assume homogeneous Dirichlet
boundary conditions. The spectral discretization of this equation gives

Â3DH = Â3DP − k2 I(N−1)3 . (9)

• 2D diffusion equation (sparse): Consider the anisotropic diffusion equation

− ∇ · (a(x, y)∇u) = f (x, y), in (−1, 1)2, (10)

with homogeneous Dirichlet boundary conditions and a(x, y) ∈ C∞ such that
0 < k1 ≤ a(x, y) ≤ k2. Ignoring the boundary conditions, the spectral matrix for
this operator is

A2DPV = −(D ⊗ IN+1)S(D ⊗ IN+1) − (IN+1 ⊗ D)S(IN+1 ⊗ D), (11)

where S is a diagonal matrix

S = diag(vec(Z) ), (12)

with Zi j = a(xi , y j ), 0 ≤ i, j ≤ N , xi and y j are the Chebyshev Gauss Lobatto
points; vec(Z) is the vector representation of Z . ForA2DPV to be centrosymmet-
ric, the diagonal matrix S must be centrosymmetric. Notice that the Chebyshev
(Legendre) collocation points are symmetric about the origin. Assuming a(x, y)
is even in x and in y, then

a(x0, y0) = a(xN , yN ), a(x1, y0) = a(xN−1, yN ), . . . , a(xN , y0) = a(x0, yN ),

a(x0, y1)=a(xN , yN−1), a(x1, y1)=a(xN−1, yN−1), . . . , a(xN , y1)=a(x0, yN−1),

...

a(x0, yN ) = a(xN , y0), a(x1, yN ) = a(xN−1, y0), . . . , a(xN , yN ) = a(x0, y0),

and therefore, S is centrosymmetric. To implement the boundary conditions, we
remove appropriate rows and columns from the matrix. The new matrix, which
we denote by Â2DPV , is still centrosymmetric.
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• 2D variable-coefficient biharmonic equation (sparse+dense):

�(a(x, y)�u) = f (x, y) in � = (−1, 1)2

u = 0 on ∂�

∂u

∂ν
= 0 on ∂�,

(13)

where a(x, y) ∈ C∞(�) such that 0 < k1 ≤ a(x, y) ≤ k2. It is not straightforward
to apply the spectral collocation method to the biharmonic operator with variable
coefficient, especially imposing the boundary conditions. Without considering the
boundary conditions, the spectral differentiation matrix for this operator is

A2DBV = (D2 ⊗ IN+1)S(E ⊗ IN+1) + (IN+1 ⊗ D2)S(IN+1 ⊗ E)

+ (D2 ⊗ IN+1)S(IN+1 ⊗ E) + (IN+1 ⊗ D2)S(E ⊗ IN+1),
(14)

where S is given by (12) and E is a spectral approximation of the second derivative,
taking into account both boundary conditions. Same as for the diffusion equation,
we assume a(x, y) is even in x and in y, so that S is centrosymmetric. Notice that
usually, the second-order derivative needs just boundary conditions u(±1) = 0.
Let Y (x) = (1−x2)Z(x), with Z(±1) = 0. Therefore, Y (±1) = Y ′(±1) = 0 and
Y ′′ = (1−x2)Z ′′−4x Z ′−2Z , leading to E = (MD2−4V D−2I ) M−1 as a spec-
tral approximation of the second derivative imposing both boundary conditions,
where M and V are diagonal matrices with diagonal entries 1− x2i and xi , respec-
tively. Notice that in (14), we have two different types of spectral second-derivative
matrices, D2 and E . The reason is that the solution satisfies both boundary condi-
tions, but �u does not satisfy any boundary condition. Finally, to implement the
boundary condition u = 0 (corresponding to Z(±1) = 0), we remove the appro-
priate rows and columns of the matrix (14). The resulting matrix, which we denote
by Â2DBV , is centrosymmetric but dense. This matrix has a structure similar to
the discrete 2D biharmonic case; it consists of a summation of a sparse matrix and
a dense one; therefore, we call it sparse+dense.

• Poisson equation with Dirichlet boundary conditions (sparse, SPD): Consider the
one-dimensional problem −u′′ = f (x) with homogeneous boundary conditions,
u(±1) = 0. Multiplying both sides by the Lagrange polynomial � j for 1 ≤ j ≤
N − 1 and integrating by parts, we obtain

∫ 1

−1
u′�′

j =
∫ 1

−1
f � j .

Using a quadrature formula involving Legendre collocation points, an approxima-
tion of this equation is

N∑
k=0

u′(xk)�′
j (xk)ρk =

N∑
k=0

f (xk)� j (xk)ρk, 0 ≤ 1 ≤ N − 1.
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This is equivalent to

N∑
k=0

(Duh)k Dkjρk = f (x j )ρ j , 1 ≤ j ≤ N − 1,

where uh is the vector containing the approximate solution at collocation points.
Since the solution vanishes at the end points, we redefine uh by removing its first
and last components. Then, the matrix form of above equation is

[[DTWD]] uh = [[W ]] fh,

where W is a diagonal matrix with diagonal entries ρ j and fh is f evaluated at
the interior collocation points. Define C = [[DTWD]], then the above calculation
shows−[[D2]] = C [[W ]]−1. Thematrix C is symmetric positive semidefinite and
its condition number is O(N 3) [31].
The Legendre spectral method for the PDE

−�u = f (x, y) in � = (−1, 1)2

u = 0 on ∂�,
(15)

leads to ( − ( IN−1 ⊗ [[D2]]) − ( [[D2]] ⊗ IN−1)
)
uh = fh .

Let Ŵ := [[W ]]. Multiplying the above equation by Ŵ−1/2 ⊗ Ŵ−1/2, we obtain

(
(IN−1 ⊗ M) + (M ⊗ IN−1)

)
vh = (Ŵ 1/2 ⊗ Ŵ 1/2) fh, (16)

where M = Ŵ−1/2CŴ−1/2 and vh = (Ŵ 1/2 ⊗ Ŵ 1/2)uh . Observe that M is
SPD, since C is SPD and by Sylvester’s theorem for congruent transformation,
the number of positive eigenvalues of M is the same as the number of positive
eigenvalues of C. Therefore,

A2DPS = (IN−1 ⊗ M) + (M ⊗ IN−1), (17)

is SPD, centrosymmetric and sparse.
• Neumann problem (sparse, SPD): We first consider the 1D Neumann problem

−u′′ + u = f (x), u′(−1) = u′(1) = 0.

Multiply the ODE by the Lagrange polynomial � j for 0 ≤ j ≤ N and integrate
by parts to obtain ∫ 1

−1
(u′�′

j + u� j ) =
∫ 1

−1
f � j ,
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apply a quadrature formula involving Legendre collocation points, to obtain an
approximation of this equation

N∑
k=0

(
u′(xk)�′

j (xk) + u(xk)� j (xk)
)
ρk =

N∑
k=0

f (xk)� j (xk)ρk, 0 ≤ j ≤ N .

This is equivalent to

N∑
k=0

(Duh)k Dkjρk + (uh) jρ j = f (x j )ρ j , 0 ≤ j ≤ N ,

where uh is the vector containing the approximates solution at collocation points.
The matrix form of the above equation is (DTWD + W )uh = W fh . Therefore, a
symmetric Legendre spectral method for the 2D Neumann problem

−�u + u = f (x, y) in � = (−1, 1)2

∂u

∂ν
= 0 on ∂�,

(18)

leads to the discrete problem [31]

(
(B ⊗ W ) + (W ⊗ B) + (W ⊗ W )

)
uh = (W ⊗ W ) fh, (19)

where B = DTWD. Notice that

A2DPN = (B ⊗ W ) + (W ⊗ B) + (W ⊗ W ), (20)

is SPD, centrosymmetric and sparse.
• Poisson equationwith Robin boundary conditions (sparse, SPD, nearly centrosym-
metric): We apply the Legendre-Galerkin method to the problem

−�u = f (x, y) in � = (−1, 1)2

∂u

∂ν
+ a(x, y)u = 0 on ∂�,

(21)

where a(x, y) ≥ k > 0 and a(x, y) is bounded and sufficiently smooth. The weak
form of this PDE is

∫
∂�

auv +
∫

�

∇u · ∇v =
∫

�

f v, ∀v ∈ H1(�).

The associated bilinear form is coercive. Replacing v = �p(x)�q(y) for 0 ≤
p, q ≤ N and using a quadrature formula with Legendre collocation points, we
obtain the system A2DPR uh = (W ⊗ W ) fh , where

A2DPR = C + (B ⊗ W ) + (W ⊗ B), (22)
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where B = DTWD, and the matrix C is the diagonal matrix

C = diag(vec(Z) ), (23)

and Z is an (N + 1) × (N + 1) matrix

⎡
⎢⎢⎢⎢⎢⎣

a(x0, y0) a(x1, y0) . . . a(xN−1, y0) a(xN , y0)
a(x0, y1) 0 . . . 0 a(xN , y1)

...
...

...
...

a(x0, yN−1) 0 . . . 0 a(xN , yN−1)

a(x0, yN ) a(x1, yN ) . . . a(xN−1, yN ) a(xN , yN )

⎤
⎥⎥⎥⎥⎥⎦

.

The matrixA2DPR is sparse but not centrosymmetric unless a is even in x and y.
It is nearly centrosymmetric in the sense that it is centrosymmetric except along
the diagonal.

• Helmholtz equation with Robin boundary conditions (sparse, nearly centrosym-
metric): We consider the 2D Helmholtz equation with Robin boundary conditions

− (� + k2)u = f (x, y) in � = (−1, 1)2

∂u

∂ν
+ a(x, y)u = 0 on ∂�,

(24)

where k is a positive constant. Using the weak form of this PDE, the spectral
discretization of this equation is given by

A2DHR = C + (B ⊗ W ) + (W ⊗ B) − k2(W ⊗ W ), (25)

where B = DTWD and C is defined by (23). This matrix is sparse, symmetric
and nearly centrosymmetric.

3 An incomplete double-cone factorization

In the sequel, we use standard notation for floor �a� and ceiling 
a� of a real number
a. The remainder of an integer n divided by an integer k is denoted by (nmod k).

Definition 1 Let n ≥ 3. For a given k, 1 ≤ k ≤ 
n/2� − 1, consider the following
two-column sub-matrix of A = (ai j ) ∈ R

n×n,

⎡
⎢⎣
ak+1,k ak+1,n−k+1

...
...

an−k,k an−k,n−k+1

⎤
⎥⎦ .

The matrix A is called a vertical double-cone, or v-double-cone, if every two-column
sub-matrix of A has all zero entries for each 1 ≤ k ≤ 
n/2� − 1.
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Definition 2 Let n ≥ 3. For a given k, 1 ≤ k ≤ 
n/2� − 1, consider the following
two-row sub-matrix of A = (ai j ) ∈ R

n×n ,

[
ak,k+1 · · · ak,n−k

an−k+1,k+1 · · · an−k+1,n−k

]
.

The matrix A is called a horizontal double-cone, or h-double-cone, if every two-row
sub-matrix of A has all zero entries for each 1 ≤ k ≤ p, where p = 
n/2� − 1.

We call a matrix “double-cone” if it is either v-double-cone or h-double-cone. This
definition extends the one given by Burnik [24] to horizontal double-cone matrices.

Example 1 Examples of matrices that have a double-cone nonzero structure are

A1 =

⎡
⎢⎢⎣

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎦ , A2 =

⎡
⎣

∗ ∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗

⎤
⎦ , A3 =

⎡
⎢⎢⎢⎣

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

⎤
⎥⎥⎥⎦ ,

where A1 and A2 are v-double-cone and A3 is h-double-cone.

For a nonsingular matrix A, the LU factorization generates a unit lower triangular
matrix L , an invertible upper triangular matrix U , and a permutation matrix P such
that PA = LU . Solving a linear system Ax = b via the LU factorization costs
2

3
n3 − n2 + O(n), where n is the dimension of the matrix [33, 34].

In the following, we show how to construct double-cone factorization for cen-
trosymmetric matrices. For a nonsingular A ∈ Cn with n even, each diagonal block
in the similarity transformation (2) of A is nonsingular. Then, there are unit lower
triangular matrices L1 and L2 and nonsingular upper triangular matrices U1 and U2
such that

P1(A + JC) = L1U1, P2(A − JC) = L2U2,

where P1 and P2 are permutation matrices. Thus,

A = U
[
A + JC 0

0 A − JC

]
UT = U

[
PT
1 L1U1 0
0 PT

2 L2U2

]
UT

= U
[
PT
1 0
0 PT

2

]
UTU

[
L1 0
0 L2

]
UT U

[
U1 0
0 U2

]
UT = QT X Y ,

where

Q = U
[
P1 0
0 P2

]
UT = 1

2

[
P1 + P2 (P1 − P2)J

J (P1 − P2) J (P1 + P2)J

]
, (26)

is an orthogonal centrosymmetric matrix since the permutation matrices P1 and P2
are orthogonal. The matrix X is defined as

X = U
[
L1 0
0 L2

]
UT = 1

2

[
L1 + L2 (L1 − L2)J

J (L1 − L2) J (L1 + L2)J

]
. (27)
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It is centrosymmetric h-double-cone since L1 and L2 are lower triangular matrices.
The matrix Y is given by

Y = U
[
U1 0
0 U2

]
UT = 1

2

[
U1 +U2 (U1 −U2)J

J (U1 −U2) J (U1 +U2)J

]
, (28)

and it is centrosymmetric v-double-cone. If n is odd, then the notation is a bit more
cumbersome, but the same process can be followed.

We conclude that for a centrosymmetric matrix A ∈ Cn , applying the LU factor-
ization to each diagonal block of (2) leads to a factorization of the form

QA = XY ,

where Q is centrosymmetric orthogonal, and X and Y are centrosymmetric double-
cones. We call this the double-cone factorization, or XY factorization, of a centrosym-
metric matrix. Since A is nonsingular, both X and Y are nonsingular. Therefore, the
solution of the linear system Az = b can be computed by solving Xw = b̂, where
b̂ = Qb, followed by Y z = w. These linear systems involve double-cone matrices
and can be solved by using a modified backward substitution [24].

The double-cone factorization to solve a centrosymmetric system requires 1
6n

3 +
O(n2) flops, which is asymptotically four times faster than solving by a standard LU
factorization. This is the same speed up as the approach suggested by Andrew in [16].

Example 2 We consider the matrix from the Chebyshev collocation discretization of
the 1D Helmholtz equation −u′′ − 10u = f with homogeneous Dirichlet boundary
conditions and with six Chebyshev Gauss Lobatto points. Then,

A =

⎡
⎢⎢⎢⎢⎣

52.66 −24.39 6.66 −3.60 2.66
−13.10 7.33 −9.33 2.66 −1.55
2.66 −8.00 2.66 −8.00 2.66

−1.55 2.66 −9.33 7.33 −13.10
2.66 −3.60 6.66 −24.39 52.66

⎤
⎥⎥⎥⎥⎦

,

and the XY factorization is given by QA = XY , where

Q =

⎡
⎢⎢⎢⎢⎣

1.00 0 0 0 0
0 0.50 0.70 −0.50 0
0 0.70 0 0.70 0
0 −0.5 0.70 0.50 0
0 0 0 0 1.00

⎤
⎥⎥⎥⎥⎦

,
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and

X =

⎡
⎢⎢⎢⎢⎣

1.00 0 0 0 0
−0.08 1.00 0 0 0.14
−0.18 −0.19 1.00 −0.19 −0.18
0.14 0 0 1.00 −0.08
0 0 0 0 1.00

⎤
⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎣

52.66 −24.39 6.66 −3.60 2.66
0 −4.76 1.43 −4.63 0
0 0 −10.14 0 0
0 −4.63 1.43 −4.76 0

2.66 −3.60 6.66 −24.39 52.66

⎤
⎥⎥⎥⎥⎦

.

It is straightforward to adapt the proposed factorization to centrosymmetric sym-
metric positive definite matrices. Notice that the number of flops for solving such an
SPD system using the Cholesky factorization is half of the flop count using LU fac-
torization, that is, 1

3 n
3 + O(n2), where n is the size of the matrix [35]. Here, we will

develop a special form of double-cone factorization to solve a centrosymmetric SPD
linear system. The algorithm is same as general centroisymmetric matrices, except we
replace the LU factorization for each diagonal block in the similarity transformation
of the matrix by a Cholesky factorization. The result is a factorization of the form
XXT , where X is a centrosymmetric double-cone. We call it the XXT factorization.

LetA ∈ Cn be SPD with n even. Consider the similarity transformation ofA given
by (2). Recall that if A is SPD, then the diagonal blocks A ± JC are SPD. Then,
there are lower triangular matrices L1 and L2 with positive diagonal entries such that
A + JC = L1LT

1 and A − JC = L2LT
2 , (pivoting is not necessary for Cholesky

factorization). Therefore,

A = U
[
A + JC 0

0 A − JC

]
UT = U

[
L1LT

1 0
0 L2LT

2

]
UT

= U
[
L1 0
0 L2

]
UT U

[
LT
1 0
0 LT

2

]
UT = X XT ,

where X is a centrosymmetric h-double-cone matrix

X = U
[
L1 0
0 L2

]
UT = 1

2

[
L1 + L2 (L1 − L2)J

J (L1 − L2) J (L1 + L2)J

]
. (29)

The case where the size of thematrix n is odd follows almost exactly the same steps,
with small modifications. It can be checked that solving an SPD centrosymmetric
system by using double-cone XXT factorization takes 1

12n
3 + O(n2) flops.

Iterative methods such as Krylov subspace methods, combined with effective
preconditioners, are efficient for systems of linear equations involving large sparse
matrices. Different preconditioners have been proposed for spectral differentiation
matrices in the literature. These include preconditioners based on finite difference
approximations [36–38], finite-element methods [39, 40], integration precondition-
ers [41, 42], and Kronecker product approximation preconditioners [43, 44]. Most of
these preconditioners were tested on 1D and 2D Poisson equations, and some were
applied to the Helmholtz equation and other PDEs. The effectiveness of incomplete
LU factorizations [45, 46] as preconditioners is illustrated in Canuto et al. [27] for
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a finite-difference discretization based on a Chebyshev collocation nodes to the 2D
Poisson equation.

There are relatively few papers on efficient preconditioners for the system aris-
ing from the biharmonic equation with homogeneous Dirichlet boundary conditions
in square domains using spectral methods. This corresponding matrix is extremely
ill-conditioned. Funaro and Heinrichs [47] analyzed the Legendre and Chebyshev
spectral collocation for the 1D fourth-order biharmonic equation and proposed a
finite-difference preconditioner for the system based at collocation nodes. They also
introduced a preconditioner by squaring the second-order centered finite-difference
matrix of the Laplacian. Heinrichs [48] solved the 2D problem by splitting it into a
system of two equations with the Laplace operator. The new system is solved by a
Chebyshev collocation method preconditioned by a finite-difference scheme.

Incomplete LU factorizations (ILU) [46] are widely used as preconditioners for
large and sparse systems. They come in a few distinct types. We consider (i) ILU(0),
which is based on prescribing the sparsity pattern of the factors ahead of time, and (ii)
ILUTP, where the nonzero pattern is determined dynamically throughout the compu-
tation by discarding elements that are below a certain prescribed drop tolerance.

The standard ILU factorization, being intended for general matrices, does not take
advantage of centrosymmetry. In deriving a new structure-preserving preconditioner,
we compute the IXY(0) factorization or the IXYTP factorization of a centrosymmetric
A from the ILU(0) factorizations or the ILUTP factorizations, respectively, of the two
diagonal blocks in the similarity transformation (2). We expect savings in memory
requirements and computational work, since the computed factors are of blocks that
are half the size of the original matrix, resulting in a reduction in execution time. In
Fig. 1, the sparsity pattern of the 3D second-order spectral differentiation matrix and
its IXY(0) factorization are given. Notice that we only need to store one-half of those
entries due to centrosymmetry. We can see in Fig. 1 that X and Y have a sparsity
pattern that is different from that of the original matrix. This is due to the way in
which we compute X and Y in (27) and (28). The factors have the sparsity patterns of
the diagonal blocks, but we add or subtract them from each other, and therefore, some
extra nonzero elements are generated.
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Fig. 1 Sparsity pattern of 3D second-order Chebyshev spectral differentiation matrix and its IXY(0) fac-
torization
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For sparse centrosymmetric SPD matrices, we develop an incomplete double-cone
factorization that we call IXX in a manner similar to the IXY factorization: we com-
pute the incomplete Cholesky factorization (ICHOL) of the two diagonal blocks of
(2). Here, too, we consider two types: IXX(0) and IXXT. To take advantage of the
centrosymmetric structure of the matrices, we implement the Melman [29] and Fass-
bender and Ikramov [30] methods for fast matrix–vector products, which speed up
the calculations in PCG and GMRES. We also use the modified backward substitua-
tion proposed in [24] to solve double-cone centrosymmetric linear systems inside the
iterative solvers.

4 Numerical results

In this section,wedemonstrate the performance of the new incomplete factorizations as
preconditioners forKrylov subspace solvers.OurKrylov subspace solvers areGMRES
in the general nonsymmetric case and PCG in the SPD case. We conducted numerical
experiments using a Dell laptop with a 1.9 GHz Intel Core i7 CPU.

Details of parameters of PDEs used for numerical experiments are given in Table 1.
For the 2D diffusion equation and variable-coefficient biharmonic equation, we con-
sider the PDEs in two cases,

a1(x, y) = 1 + kx2y2, or a2(x, y) = 1 + kx2y4, (30)

where k is positive constant. Both functions are even in x and in y. The first one is
symmetric, (a1(x, y) = a1(y, x) ), while the second one is not. For the 2D Poisson
equation with homogeneous Robin boundary conditions, we consider a(x, y) = 2+x .
The corresponding matrices are either centrosymmetric or nearly centrosymmetric;
some are dense, while others are sparse.

Table 1 List of PDEs used for numerical experiments

Name PDE Exact solution Sparsity

1DP 1D Poisson equation sin(πx) Dense

2DP 2D Poisson equation sin(πx) sin(π y) Sparse

3DP 3D Poisson equation sin(πx) sin(π y) sin(π z) Sparse

2DPV 2D diffusion equation sin(πx) sin(π y) Sparse

2DPS 2D Poisson equation sin(πx) sin(π y) SPD sparse

2DPN 2D Neumann problem (1 − x2)2 cos(π y) SPD sparse

2DPR 2D Poisson equation with Robin BC ey(1 − x2)2(1 − y2)2 Sparse

1DB 1D biharmonic equation 1 + cos(πx) Dense

2DB 2D biharmonic equation (1 + cos(πx))(1 − y2)2 Sparse+dense

2DBV 2D biharmonic with variable coefficient sin2(πx) sin2(π y) Sparse+dense

3DH 3D Helmholtz equation sin(πx) sin(π y) sin(π z) Sparse
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Example (i). The 2D and 3D Poisson and diffusion equationsWe solve the 2D and
3DPoisson and 2Ddiffusion problems and examine the performance of the incomplete
factorization preconditioners. For this example, we also define a cross-Jacobi precon-
ditioner, which consists of the diagonal and anti-diagonal entries of A and preserves
centrosymmetry. We compare it against a standard Jacobi preconditioner.

Figure 2 shows the convergence of GMRES for the linear systems with the 2D and
3D second-order Chebyshev differentiation matrices; the dimensions of the matrices
are 400×400 and 8000×8000, respectively. For ILUTP and IXYTP, a drop tolerance
of 10−3 is used, and the iteration counts are significantly lower than for ILU(0) and
IXY(0), respectively. GMRES needs 134 iteration to converge in the 2D case, while
with the IXYTP or ILUTP factors as preconditioners GMRES converges in fewer
than four iterations. For the 3D case, GMRES needs 213 iteration to converge, while
with the IXYTP or ILUTP factors as preconditioners, it converges in six iterations.
The cross-Jacobi and Jacobi preconditioners perform identically to each other but
require many more iterations compared to the incomplete factorization and are not
competitive.

In Table 2, we compare the convergence of GMRES for solving the 2D and 3D
Poisson equations with preconditioners given by the ILU(0), IXY(0), ILUTP, and
IXYTP factorizations, with different values of “tol,” the drop tolerance used in ILUTP
and IXYTP. The density factor is defined as

dLU = nnz(L) + nnz(U ) − n

nnz(A)
, (31)

for an LU factorization, where nnz(L) denotes the number of non-zero elements in a
givenmatrix L and n is the size of thematrix. The density factor for other factorizations
is defined in a similar manner. For ILUTP and IXYTP, we need to choose a drop
tolerance judiciously to avoid having a nearly or completely filled-in factorization
approaching the density of LU or XY . The table shows that the drop tolerance 10−3

gives the best results.
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Fig. 2 Convergence of GMRES with the proposed preconditioner for 2D (left) and 3D (right) second-order
Chebyshev spectral differentiation matrices
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Table 2 Results of applying the ILU(0), IXY(0), ILUTP, and IXYTP factorizations (with different drop
tolerances) as preconditioners for GMRES. The definition of the parameter dixy(0) is given in (31) and
the text that follows, notice that dilu(0) = 1. The parameter Nilu(0) denotes the number of iterations in
GMRES preconditioned by ILU(0); Nixy(0), Nilutp , and Nixytp are similarity defined for IXY(0), ILUTP,
and IXYTP respectively

A dlu dixy(0) Nilu(0) Nixy(0) tol dilutp dixytp Nilutp Nixytp

10−2 0.61 0.88 8 7

2DP 9.79 1.85 19 17 10−3 1.72 2.64 4 4

10−4 3.45 5.13 3 2

10−2 1.10 1.86 9 8

2DPV 9.79 1.85 19 16 10−3 2.89 4.84 4 4

a = 1 + 10x2y2 10−4 5.75 7.66 3 3

10−2 0.47 0.66 10 10

3DP 131.38 1.88 22 21 10−3 1.86 3.05 6 6

10−4 6.06 9.81 4 4

Figure 3 shows the convergence of GMRES with the IXY(0) and IXYTP precon-
ditioners for the Chebyshev differentiation matrix arising from solving the diffusion
equation (10) for a(x, y) = 1 + 10x2y2. The results are compared with ILU(0),
ILUTP, cross-Jacobi, and Jacobi preconditioners. For the corresponding linear system
of dimensions 400 × 400, GMRES without a preconditioner needs approximately
209 iterations to achieve the desired reduction in relative residual norm. The IXYTP
factorization preconditioner with drop tolerance 10−3 has a density factor of 4.84,
and it converges in four iterations, while IXY(0) has a density factor of 1.85, and it
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Fig. 3 Convergence of GMRES with the proposed preconditioners for the 2D diffusion equation

123



Numerical Algorithms

0 20 40 60 80 100 120
Iteration number

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
re

si
du

al

3D Helmholtz equation with Dirichlet BC

ILU(10-3)
IXY(10-3)
ILUTP(10-4)
IXYTP(10-4)
tolerance

Fig. 4 Convergence of GMRES for the 3D Helmholtz equation

converges in 16 iterations to the same reduction in relative residual norm. The Jacobi
and the cross-Jacobi preconditioners are, again, not at all competitive, and we do not
pursue them further in the examples that follow.

Example (ii). 3D Helmholtz equationWe consider the Helmholtz equation (8) with
homogeneous boundary conditions in a 3D cubic domainwith different wave numbers.
Wefix N = 20, resulting in an indefinitematrix of size 8000×8000.WeuseChebyshev
collocation to obtain the linear system (9) associated with this PDE. The convergence
results for GMRES with IXYTP and ILUTP factors as preconditioners with drop
tolerance 10−3 and 10−4 are compared in Fig. 4. For this example, k2 = 1200 and the
condition number of the associated linear system are 5.06 × 104.

Table 3 shows the number of iterations needed for GMRES with the ILUTP and
IXYTP factorizations as preconditioners. We experiment with a few linear systems of
size 8000 × 8000 corresponding to different wave numbers, k. To test the robustness
of our solution approach, we aim to solve difficult instances of the problem: we select
values of k2 close to eigenvalues of the 3D discrete Laplacian spectral operator; the
coefficient matrices tested have a relatively large condition number. For this chal-
lenging problem, the results are mixed. For small wave numbers, IXY(0) and ILU(0)

Table 3 Condition numbers and
iteration counts for
ILUTP(10−4) and
IXYTP(10−4) factors applied as
preconditioners for iteratively
solving the 3D Helmholtz using
different wave numbers.
Condition numbers are very
sensitive to k; hence, we show 4
digits after the decimal point to
achieve a large condition number

k2 κ(A) Nilutp(10−4) Nixytp(10−4)

219.5988 3.68 × 109 62 53

2195.9064 1.65 × 1011 53 41

3362.1876 3.13 × 108 31 24
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perform well, but they mostly fail to converge as the wave numbers become larger, so
we deem them less reliable and do not present their results. The performance of ILUTP
and IXYTP with drop tolerance 10−4 is consistent, and convergence requires 18–62
iterations. We use full GMRES to highlight the effectiveness of preconditioning; since
the matrices are not large, this can be done without paying a prohibitive computational
cost or allocating a prohibitive amount of storage. We note that restarted GMRES(�)
with various values of � often led to large iteration numbers for all preconditioners for
several values of k that have been tested.We suspect this is due to the density of eigen-
values of the preconditioned matrix near 0. Without preconditioners (full), GMRES
does not converge even within several hundreds of iterations.

The comparison between ILUTP and IXYTP in Table 3 demonstrates robustness
of the proposed structure-preserving preconditioners for different wave numbers, pro-
vided that a tight drop tolerance is used. That said, the better performance here, while
encouraging, is accomplished at a high computational cost. The suboptimal perfor-
mance of preconditioned iterative solvers based on incomplete factorizations for large
wave numbers has been established in the literature [49]. Indeed, the Helmholtz prob-
lem is notoriously difficult.

Example (iii). 2D biharmonic equation Consider the fourth-order spectral differen-
tiation matrix with homogeneous boundary conditions, (6). The coefficient matrix is
the sum of a few sparse components and a dense cross derivative term, which makes it
dense overall, and hence, using an iterative approach is not straightforward. We pro-
pose three different types of preconditioners for this system. The first pair are the ILU
and IXY factors of the matrix corresponding to the squared spectral Poisson operator:
if L andU are the ILU factors of the Poisson discrete operator, the ILU preconditioner
of the biharmonic operator is defined as (LU )2. We denote this matrix by G. We shall
define the corresponding IXY preconditioner in an analogous manner. The second pair
of preconditioners are defined as ILU and IXY factors of the sparse part of Â2DB ,

C = (B ⊗ IN−1) + (IN−1 ⊗ B).

The third pair of preconditioners are defined as

M = (B ⊗ IN−1) + (IN−1 ⊗ B) + 2(D2
f d ⊗ D2

f d),

where D2
f d is the second-order finite difference scheme for Poisson operator with

nodes at the collocation points. Note that all three pairs are sparse, including M ,
which contains the mixed derivative term.

We test our problems with GMRES, using the factors of ILU(0), IXY(0), ILUTP,
and IXYTP, for the matrices G,C , and M . The density of the ILUTP factors for our
selection of the drop tolerance is a bit higher than the density of the ILU(0) factors, but
the number of iterations is significantly reduced. A similar observation can be made
for IXYTP vs. IXY(0).

Equilibration [34, 50] is an effective way to improve the conditioning of linear sys-
tems. We use the row and column equilibration algorithm by Knight et al. [51], which
preserves centrosymmetry.We have observed a significant reduction in condition num-

123



Numerical Algorithms

bers when we apply equilibration to linear systems involving spectral differentiation
matrices.

In our numerical experiments, we consider Â2DB with dimensions 324 × 324 and
condition number 3.30 × 106. A linear system of this size would be considered too
small to be solved using iterative solvers, but we believe that performing this small
experiment is useful, nonetheless, to illustrate a few general points and in particular the
excellent performance of the threshold-based incomplete factorization. The matrix is
equilibrated to improves its condition number to 7.97×104. Without a preconditioner
GMRES needs 185 iterations.We then runGMRESwith the proposed preconditioners
G, C and M . The numerical results indicate that of the three matrices tested, the
IXY(0) and ILU(0) factors of M converge within the fewest number of iterations,
followed by G and C . A comparison of convergence of GMRES, preconditioned by
the IXY(0) and IXYTP factorizations of G,C , and M , is given in Fig. 5. GMRES
preconditioned by the IXYTP factorization of M , with drop tolerance of 10−3, needs
seven iterations to achieve the same reduction in the relative residual. Notice that the
IXY(0) factors require half the memory of ILU(0) factors.

Example (iv). 2D biharmonic equation with variable coefficients Next, we solve
the linear system arising from applying spectral collocation to 2D variable-coefficient
biharmonic equation with homogenous Dirichlet boundary conditions. Without
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Fig. 5 Convergence of GMRESwith three different pairs of preconditioners for the 2D biharmonic equation
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considering the boundary conditions, the discretization leads to (14). The first
preconditioner we consider is the sparse part of A2DBV

C = (D2 ⊗ IN+1)S(E ⊗ IN+1) + (IN+1 ⊗ D2)S(IN+1 ⊗ E).

To implement the boundary conditions, we remove corresponding rows and columns
to boundary conditions from this matrix. The modified matrix is denoted by Ĉ . The
second preconditioner for this system is defined as

M = Ĉ + (D2
f d ⊗ IN−1)S(IN−1 ⊗ D2

f d) + (IN−1 ⊗ D2
f d)S(D2

f d ⊗ IN−1),

where D2
f d is the second-order finite-difference scheme for Poisson operator with

nodes at the collocation points.
Figure 6 shows the convergence of GMRES with the IXY(0) and IXYTP factors

of C and M as preconditioners for the linear system with the spectral differentia-
tion matrix arising from solving the 2D variable-coefficient biharmonic (13) with
a(x, y) = 1 + 10x2y2. The results are compared to ILU(0) and ILUTP. We solve the
system with a coefficient matrix of dimensions 400 × 400 and a condition number
around 5.94 × 107, which after equilibration decreases to 1.0 × 104. GMRES with-
out preconditioning needs around 224 iterations to achieve the desired reduction in
relative residual. The IXYTP factorization M with drop tolerance 10−4 is computed,
and the scheme converges within five iterations, while IXY(0) converges within 114
iterations to the same reduction in relative residual norm. The IXYTP factorization of
C with drop tolerance 10−4 yields convergence within seven iterations, while IXY(0)
converges in 58 iterations to the same reduction in relative residual norm.

In this example, as is the case in other examples, the static drop tolerance factor-
izations IXY(0) and ILU(0) are not competitive with the dynamic theshold-based
factorizations IXYTP and ILUTP, and it is the latter that we are advocating for.
Nonetheless, we include the results for the static patterns in order to illustrate the
viability of IXY(0) in comparison with ILU(0).
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Fig. 6 Convergence of GMRES with proposed preconditioners C and M for the 2D variable-coefficient
biharmonic equation
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Example (v). Symmetric Legendre spectral differentiation matrix (SPD cases),
Dirichlet, Neumann, and Robin boundary conditions The following examples concern
symmetric positive definite linear systems. The top left corner of Fig. 7 examines the
convergence of PCG preconditioned by IXX for the linear system given by (16). We
compare IXX(0) and IXXT with the analogous incomplete Cholesky factorization.
The matrix is 400 × 400. This is again a small example, and our main purpose here
is to examine the effect of losing the centrosymmetry property. The density factor of
the Cholesky factor is 9.79. Without preconditioning, PCG needs 131 iterations. The
density factor of the IXXT factor is 2.10, and the density factor of IXX(0) is 1.9. With
the IXXT factor as a preconditioner, PCG converges within five iterations, while with
the IXX(0) factorization as a preconditioner, PCG converges in 18 iterations.

The top right corner of Fig. 7 shows the convergence results for the system given
by the (19). The matrix is 400 × 400. The density factor of the Cholesky factor
is 9.79. Without preconditioning, PCG needs 186 iterations. The density factor of
the IXXT factor is 2.28, and the density factor of IXX(0) is 1.90. With the IXXT
factor as a preconditioner, PCG converges within six iterations, while with the IXX(0)
factorization as a preconditioner, PCG converges in 38 iterations.

In the bottom of Fig. 7, we show the results of applying the symmetric Legendre-
Galerkinmethod for the Poisson equationwith Robin boundary conditions.We choose

0 5 10 15 20 25 30 35 40 45
Iteration number

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al

2D Poisson equation, Dirichlet boundary conditions

ICHOL(0)
IXX(0)
ICHOLT(10-3)
IXXT(10-3)
tolerance

0 5 10 15 20 25 30 35 40 45
Iteration number

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al

2D Neumann problem

ICHOL(0)
IXX(0)
ICHOLT(10-3)
IXXT(10-3)
tolerance

0 5 10 15 20 25 30 35 40 45
Iteration number

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al

Robin boundary conditions, preconditioner C

ICHOL(0)
IXX(0)
ICHOLT(10-3)
IXXT(10-3)
tolerance

0 5 10 15 20 25 30 35 40 45
Iteration number

10-6

10-4

10-2

100

R
el

at
iv

e 
re

si
du

al

Robin boundary conditions, preconditioner M

ICHOL(0)
IXX(0)
ICHOLT(10-3)
IXXT(10-3)
tolerance

Fig. 7 Convergence of PCG with proposed preconditioners for the Poisson equation with Dirichlet/Robin
boundary conditions and the Neumann problem
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a(x, y) = 1+ε+x+ y2 in (21), where ε = 10−5. The condition number of the matrix
A2DPR of size 400× 400 is 5.81× 103. The matrix is not centrosymmetric, and PCG
with Cholesky factor as preconditioner converges in 112 iterations, where the density
factor of the Cholesky factor is 9.79. The matrix A2DPR is nearly centrosymmetric
in the sense that it is centrosymmetric except along the diagonal. In the following, we
propose two centrosymmetric approximations for the matrix A2DPR .

We first approximate A2DPR with the matrix arising from spectral discretization
of the same problem, where in the Robin boundary conditions, a is replaced by ā, the
average of a,

ā = 1

| ∂� |
∫

∂�

a(x, y)dxdy.

The newmatrix, which we refer asC , is centrosymmetric with the density factor of the
IXXT factor with drop tolerance 10−3 is 2.00 and the density factor of IXX(0) is 1.90.
With the IXXT factor as a preconditioner, PCG converges within 14 iterations, while
with the IXX(0) factorization as a preconditioner, PCG converges in 23 iterations.

The second approximation is given by the centrosymmetric part of A,

M = A + JAJ

2
.

PCG with IXX(0) and IXXT factors of this matrix converges in almost the same
number of iterations as the former peconditioner C .

We see here that the loss of centrosymmetry has a negative effect on the performance
of incomplete double-cone factorizations; however, they do stay competitive with their
ILU counterparts.

Example (vi). 2D Helmholtz equation with Robin boundary condition In (24), we
considera(x, y) = 2+x+y2.We set N = 22 in the spectral discretization and consider
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Fig. 8 Convergence of GMRES for the Helmholtz equation

123



Numerical Algorithms

Fig. 9 Distribution of the eigenvalues of A2DHR compared with distribution of the eigenvalues of the
preconditioned system with the centrosymmetric part of the matrix

k = 91.7907, which is close to one of the eigenvalues of generalized eigenvalue
problem. The condition number of the matrixA2DHR given by similar (25) is 3.04×
109. Thematrix is nearly centrosymmetric. GMRESwithout preconditioner converges
in 391 iterations, whilewith the ILU(0) and IXY(0) factors of the centrosymmetric part
of thematrix as preconditioner,GMRESconverges in 32 and28 iterations, respectively.
GMRES with ILUTP or IXYTP factors and drop tolerance 10−3 converges in 18
iterations in both cases, as shown in Fig. 8.

In Fig. 9, we compare the distribution of eigenvalues of A2DHR with that of the
system preconditioned by the centrosymmetric part of the matrix. As it shows, most
of the eigenvalues of preconditioned system are positive and are bounded away from

Table 4 The number of GMRES iterations versus N , the number of collocation nodes for discretization.
Nnop is the number of iterations of GMRES for solving the related linear system without using precondi-
tioner, Nilu(0), Nixy(0), Nilutp and Nixytp are the number of iterations with using ILU(0), IXY(0), ILUTP
and IXYTP factors of the matrix as preconditioners, respectively

A N Nnop Nilu(0) Nixy(0) Nilutp(10−3) Nixytp(10−3)

12 59 12 11 3 3

2DP 16 95 15 14 4 4

20 134 19 17 4 4

12 93 15 14 5 4

3DP 16 157 18 18 5 5

20 213 22 22 6 6

12 84 30 23 7 7

2DB 14 113 40 31 7 7

precond C 18 185 61 49 9 8

12 85 31 18 6 6

2DB 14 112 50 36 7 6

precond M 18 183 77 67 8 7
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Table 5 Cost of computation (in seconds) for ILU(0) and IXY(0) solvers (timing for factorization is
excluded). 3D Helmholtz problem is solved with wave number k2 = 1

A N Size (A, 1) Nilu(0) Nixy(0) Time ilu(0) Time i xy(0)

3DP 11 1000 11 10 0.13 0.05

21 8000 19 17 18.7 10.2

31 27,000 26 24 338.4 187.7

3DH 11 1000 12 10 0.27 0.11

21 8000 20 17 19.8 10.3

31 27,000 27 25 349.6 162.11

0, with just one eigenvalue negative and close to zero; its value is −2.2 × 10−7. This
eigenvalue does not seem to have a seriously detrimental effect on the performance
of the iterative scheme. For the original system, the eigenvalues are scattered between
−177.39 and 15.19.

In Table 4, we compare the number of GMRES iterations versus N , the number
of collocation nodes for discretization. The maximal value of N for each experiment
conforms with the maximal value shown previously to obtain nearly full machine
accuracy; this value is 20 for the first two experiments in the table and 18 for the
last two. The table shows that preconditioning in this case successfully takes us in the
direction ofmaintaining a higher level of scalability compared to the unpreconditioned
case and that, altogether, our preconditioning approaches are robust with respect to
the number of degrees of freedom. As illustrated in previous examples, the threshold-
based incomplete factorization is particularly robust.

Finally, Table 5 provides a comparison of execution times for the GMRES solver
using ILU(0) and IXY(0) factors as preconditioners.We use thematrix–vector product
proposed by Fassbender and Ikramov [30] and the modified backward substitution
introduced by Burnik [24] in GMRES. We also incorporate an implementation of the
ILU algorithm given by Saad in [52] (Algorithm 10.2 in [46], Gaussian Elimination-
IKJ Variant). With the current implementation and given examples, we report that the
timing for the IXY(0) solver is almost two times faster than the ILU(0) solver. A more
advanced implementation of ILU(0) and an improved version of IXY(0) that takes
into account the centrosymmetry and sparsity pattern of the matrix would provide a
more reliable indication of the time reduction achievable.

5 Concluding remarks

We have developed incomplete factorizations with a double-cone structure for cen-
trosymmetric linear systems. This structure was identified and used previously for
developing QR factorizations [24] for such systems, and we believe that the extension
we propose to LU-type factorizations is useful. We have illustrated the merits of our
approach on the important class of spectral differentiation matrices. Our IXYTP fac-
torization provides a robust and cost-effective way to precondition centrosymmetric
linear systems.
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