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THE d2-TRANSFORMATION FOR INFINITE DOUBLE SERIES

AND THE D2-TRANSFORMATION FOR

INFINITE DOUBLE INTEGRALS

CHEN GREIF AND DAVID LEVIN

Abstract. New transformations for accelerating the convergence of infinite
double series and infinite double integrals are presented. These transforma-
tions are generalizations of the univariate d- and D-transformations. The D2-
transformation for infinite double integrals is efficient if the integrand satisfies
a p.d.e. of a certain type. Similarly, the d2-transformation for double series
works well for series whose terms satisfy a difference equation of a certain
type. In both cases, the application of the transformation does not require an
explicit knowledge of the differential or the difference equation. Asymptotic
expansions for the remainders in the infinite double integrals and series are
derived, and nonlinear transformations based upon these expansions are pre-
sented. Finally, numerical examples which demonstrate the efficiency of these
transformations are given.

1. Introduction

We discuss the problem of accelerating the convergence of infinite double in-
tegrals and infinite double series. The methods that are presented in this paper
are generalizations of the D- and d-transformations for univariate infinite integrals
and series, which were developed in [11]. In the following we review some useful
definitions that were used in the course of development of the transformations for
the univariate case:

Definition 1.1. A function p(x) is said to belong to the set A(γ), if, as x→∞, it
has a Poincaré-type asymptotic expansion of the form

p(x) ∼ xγ
∞∑
i=0

αi/x
i .(1.1)

Definition 1.2. B(m) is defined as the set of functions f which are integrable on
(0,∞) and which satisfy a linear mth-order differential equation of the form

f(x) =
m∑
k=1

pk(x)f (k)(x) ,(1.2)

where pk ∈ A(k), k = 1, . . . ,m .
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Definition 1.3. B̃(m) is defined as the set of infinite sequences {an} whose ele-
ments satisfy a linear mth-order difference equation of the form

an =

m∑
k=1

pk(n)∆kan ,(1.3)

where ∆an = an+1 − an and pk, considered as functions of a continuous variable,
are in A(k), k = 1, 2, . . . ,m.

In [11] it is shown that under certain conditions, infinite integrals whose inte-
grands belong to B(m), have an asymptotic expansion that can be used to obtain
an approximation to these integrals, namely—the D-transformation. Similarly, the
d-transformation is derived by applying the discrete analogue of the technique to
series with terms in B̃(m). The important observation in [11] is the fact that the sets

B(m) and B̃(m) include a very large variety of functions and sequences which appear
in applied mathematics. As shown there, the d-transformation is actually a family
of transformations, which includes the ε-algorithm [18] and the u-transformation
[7]. The range of applications of the D- and d-transformations includes very com-
plicated integrals and series which cannot be handled by other methods.

In the two-dimensional case, we are interested in accelerating the convergence of
infinite double integrals on R2

+

I =

∫ ∞

0

∫ ∞

0

f(s, t) dt ds ,(1.4)

and infinite double series

S =

∞∑
m=0

∞∑
n=0

am,n .(1.5)

As in the one-dimensional case, we aim at integrals and series which belong to
certain classes which cover a large variety of important cases. The first step is
generalizing Definitions 1.1-1.3 to the two-dimensional case in the following manner:

Definition 1.4. A(γ,δ) is defined as the set of functions g(x, y) which have Poincaré
type asymptotic expansions in inverse powers of x and y, as min{x, y} → ∞, of the
form

g(x, y) ∼ xγyδ(α0,0 +
α1,0

x
+

α0,1

y
+

α2,0

x2
+

α1,1

xy
+

α0,2

y2
+ · · · ) ,(1.6)

such that the partial derivatives of g, of any order, have asymptotic expansions
which can be obtained by differentiating that in (1.6) formally term by term. The
asymptotic expansion is in the sense

g(x, y) = xγyδ
( ∑
i+j≤k

αi,j
xiyj

+ O((min{x, y})−k−1)
)
, as min{x, y} → ∞ .(1.7)

Definition 1.5. B(m,n) is defined as the set of bivariate functions that are inte-
grable on (0,∞)× (0,∞), and which satisfy a linear partial differential equation of
the form

f(x, y) =

m∑
k=0

n∑
l=0

pk,l(x, y)∂
k
x∂

l
yf(x, y) ,(1.8)

where pk,l ∈ A(k,l) and p0,0 ≡ 0.
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Definition 1.6. B̃(m,n) is defined as the set of double sequences whose terms sat-
isfy a linear difference equation of the form

aq,r =
m∑
k=0

n∑
l=0

pk,l(q, r)∆
k
1∆l

2aq,r ,(1.9)

where ∆1ai,j = ai+1,j−ai,j, ∆2ai,j = ai,j+1−ai,j and pk,l, considered as continuous

bivariate functions, are in A(k,l), with p0,0 ≡ 0.

The derivation of the transformations in the bivariate case follows the idea and
the technique in [11]. Using the above definitions, we derive asymptotic expan-
sions for the remainders in double integrals and series whose associated integrands
and series terms belong to B(m,n) and B̃(m,n), respectively. The derivation of the
asymptotic expansions is based on repetitive integration or summation by parts
and appropriate assumptions regarding the decay of the integrand/series terms at
infinity. As we shall show, for infinite integrals the asymptotic expansion is given
by ∫ ∞

x

∫ ∞

y

f(s, t) dt ds(1.10)

∼
m−1∑
k=0

n−1∑
l=0

xk+1yl+1∂kx∂
l
yf(x, y)

∞∑
i=0

i∑
j=0

βk,li−j,j
xi−jyj

+

m−1∑
k=0

xk+1
∞∑
i=0

i∑
j=0

∫ ∞

y

γki−j,j
xi−jtj

∂kxf(x, t) dt

+
n−1∑
l=0

yl+1
∞∑
i=0

i∑
j=0

∫ ∞

x

δlj,i−j
sjyi−j

∂lyf(s, y) ds ,

and for infinite series the asymptotic expansion is given by

∞∑
q=Q

∞∑
r=R

aq,r ∼
m−1∑
k=0

n−1∑
l=0

Qk+1Rl+1∆k
1∆l

2aQ,R

∞∑
i=0

i∑
j=0

βk,li−j,j
Qi−jRj

(1.11)

+

m−1∑
k=0

Qk+1
∞∑
r=R

∆k
1aQ,r

∞∑
i=0

i∑
j=0

γki−j,j
Qi−jrj

+

n−1∑
l=0

Rl+1
∞∑
q=Q

∆l
2aq,R

∞∑
i=0

i∑
j=0

δlj,i−j
qjRi−j .

We use these expansions to formulate linear systems of equations in which one
unknown is the approximation to the underlying integral or sum, and the other
unknowns are the coefficients of the truncated asymptotic expansion. We argue
that all one needs to know in order to apply the transformations, is the order of the
partial differential equation satisfied by the integrand, or alternatively, in the case
of series, the order of the difference equation satisfied by the terms of the series. The
derivation of the asymptotic expansions is quite tedious, but the resulting linear
systems are easy to implement. See also [5].

Another point that should be mentioned is that in the bivariate transformations
certain infinite univariate integrals or series have to be approximated. In general,
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we assume that this can be efficiently done, e.g., by the D-transformation for 1D
integrals, and by d-transformation or Padé approximants for 1D series.

An outline of the rest of this paper follows: in Section 2 we review the univariate
d- and D- transformations. In Section 3 we derive the D2-transformation for infinite
double integrals. In Section 4 we present the d2-transformation for infinite double
series. Sections 3 and 4 also include a brief review of some other techniques for
evaluation of infinite 2D integrals and series. Finally, in Section 5 we bring several
numerical examples in which various aspects of the two new transformations are
discussed.

2. The D- and d-transformations

We now review the main results and definitions for the d- and D-transformations.
We start with a theorem which is the key to the construction of the latter (see [11]
for the proof).

Theorem 2.1. Let f be integrable on [0,∞) and satisfy a linear mth-order dif-
ferential equation of the form (1.2) with pk ∈ A(ik), ik ≤ k, k = 1, . . . ,m. If

limx→∞[p
(i−1)
k (x)][f (k−i)(x)] = 0 for i ≤ k ≤ m, 1 ≤ i ≤ m, and if for any integer

l ≥ −1 we have

m∑
k=1

l(l− 1) · · · (l − k + 1) · lim
x→∞[pk(x)/xk] 6= 1 ,(2.1)

then, as x→∞,
∫∞
x

f(t) dt has an asymptotic expansion of the form∫ ∞

x

f(t) dt ∼
m−1∑
k=0

f (k)(x)xjk (βk,0 +
βk,1
x

+
βk,2
x2

+ . . . ) ,(2.2)

where jk ≤ max(ik+1, ik+2 − 1, . . . , im −m+ k + 1) , k = 0, . . . ,m− 1.

The D-transformation is defined by truncating the asymptotic expansion (2.2)

and forming the following linear system of N = 1 +
∑m−1

k=0 nk equations:

D(m)
n0,n1,...,nm−1

=

∫ xr

0

f(t) dt +

m−1∑
k=0

f (k)(xr)xr
jk

nk−1∑
i=0

βk,i
xri

, r = 1, . . . , N .

(2.3)

The unknowns in this system are D
(m)
n0,n1,...,nm−1, which represents the approxima-

tion to
∫∞
0 f(t) dt, and the set of coefficients {βk,i}. An appropriate choice of the

points {xr}Nr=1 (which yields fast convergence) is discussed by Levin and Sidi in
[11], and by Sidi in [13], [16], [17].

The d-transformation for accelerating the convergence of infinite series is merely
a discrete analogue of the D-transformation [11] :

Theorem 2.2. Let an, n = 1, 2, ..., satisfy the linear mth-order difference equation
of the form (1.3), with pk ∈ A(ik), ik ≤ k, k = 1, . . . ,m. If

lim
n→∞[∆i−1pk(n)][∆k−ian] = 0(2.4)
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for i ≤ k ≤ m, 1 ≤ i ≤ m, and
∑m

k=1 l(l− 1) · · · (l− k+1) · limn→∞[pk(n)/nk] 6= 1
for l = −1, 1, 2, 3, ..., then for N →∞

∞∑
n=N

an ∼
m−1∑
k=0

N jk(∆kaN )βk(N) ,(2.5)

where βk ∈ A(0) and jk ≤ max(ik+1, ik+2− 1, · · · , im−m+ k+1), 0 ≤ k ≤ m− 1.

Theorem 2.2 serves as the basis for the definition of the d-transformation. We
demand that the approximation d

(m)
n0,n1,...,nm−1 to

∑∞
n=1 an satisfy the

N = 1 +
∑m−1

k=0 nk equations

d(m)
n0,n1,...,nm−1

=

Nl∑
n=1

an +

m−1∑
k=0

[∆kaNl+1](Nl + 1)jk
nk−1∑
i=0

βk,i
(Nl + 1)i

, l = 1, · · · , N .

(2.6)

From (2.6) it can be observed that setting m = 1 and j0 = 0 yields Levin’s t-
transformation, and m = j0 = 1 yields Levin’s u-transformation (see [6],[7]). The
full derivation of the d- and D-transformations, including special cases, plus ex-
amples which demonstrate their efficiency can be found in [11]. The convergence
analysis of this method has been presented in a series of papers by Sidi [13], [14],
[15]. In [12] it is shown that when applied to power series, the d-transformation
is a rational approximant with some properties that are similar to those of Padé
approximants.

3. The D2-transformation for infinite 2D integrals

We consider approximations to infinite double integrals, I =
∫∞
0

∫∞
0 f(s, t) dt ds.

In analogy to the 1D case, we assume here that f ∈ B(m,n). We start by reviewing
the 2D analogue of the confluent ε-algorithm, which was developed by the second
author [10] for a special subset of B(m,n) integrands. The assumption that stands
in the basis of this transformation is that the integrand, f(x, y), satisfies a linear
partial differential equation with constant coefficients of the form:

f(x, y) =
∑

(k,l)∈T
αk,l∂

k
x∂

l
yf(x, y) ,(3.1)

where T is a finite set of pairs, T ⊆ Ω+\{(0, 0)} where Ω+ = {(i, j)| i, j ≥ 0}.
Let R be a subset of Ω+, with the same number of elements as T , and let Ax,y be
defined as

Ax,y = {(s, t)| s ≤ x or t ≤ y, s, t ≥ 0} .(3.2)

Then, for x, y ≥ 0, the 2D analogue of the confluent ε-algorithm is defined as
follows:

ε
(2)
T (x, y) =

∫ ∫
Ax,y

f(s, t) dt ds+
∑

(k,l)∈T ,k·l6=0

αk,l∂
k−1
x ∂l−1

y f(x, y)(3.3)

−
∑

(k,0)∈T
αk,0

∫ ∞

y

∂k−1
x f(x, t) dt−

∑
(0,l)∈T

α0,l

∫ ∞

x

∂l−1
y f(s, y) ds ,
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where the coefficients αk,l are determined by the system of linear equations:

∂ix∂
j
yf(x, y) =

∑
(k,l)∈T

αk,l∂
k+i
x ∂l+jy f(x, y) , (i, j) ∈ R .(3.4)

The following theorem, presented in [10], describes the class of exactness of the
algorithm:

Theorem 3.1. Let f satisfy (3.1) for s ≥ x and t ≥ y, and suppose that

lim
t→∞∂

k
x∂

l−1
y f(s, t) = 0 , (k, l) ∈ T, l 6= 0 ,(3.5)

and

lim
s→∞∂

k−1
x ∂lyf(s, t) = 0, (k, l) ∈ T, k 6= 0 .(3.6)

Then, if the system (3.4) has a unique solution, ε
(2)
T (x, y) integrates f exactly in

[0,∞)× [0,∞).

The above algorithm handles very well integrals whose associated integrands
satisfy p.d.e.’s with constant coefficients. The D2-transformation presented below
is meant to be appropriate for the case of variable coefficients. The theoretical
basis for the definition of this transformation is the generalization of Theorem 2.1
to the two-dimensional case. In the following we refer to functions f ∈ B(m,n),
and we present a series of propositions leading to the derivation of the asymptotic
expansion (1.10). Throughout the derivation we shall make certain assumptions
with regard to the decay of f and its derivatives. These assumptions are analogous
to the ones given in Theorem 2.1.

Assumption 3.2. Given (1.8), the following holds:

lim
x→∞∂

i−1
x pk,l(x, y)∂

k−i
x ∂lyf(x, y) = 0,

for k = i, . . . ,m, i = 1, . . . ,m, l = 0, . . . , n, and for any y > 0.

We now state the following result, concerning one-dimensional integration of f :

Proposition 3.3. Let f satisfy (1.8) and assume that the conditions stated in
Assumption 3.2 hold, then

∫ ∞

x

f(s, y) ds =

n∑
l=0

{
m−1∑
k=0

a0,k,l(x, y)∂
k
x∂

l
yf(x, y) +

∫ ∞

x

b0,l(s, y)∂
l
yf(s, y) ds} ,

(3.7)

where

a0,k,l(x, y) =

m∑
j=k+1

(−1)j+k∂j−k−1
x pj,l(x, y) , k = 0, . . . ,m− 1 , l = 0, . . . , n ,

(3.8)

and

b0,l(x, y) =

m∑
j=0

(−1)j∂jxpj,l(x, y) , l = 0, . . . , n .(3.9)
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Proof. Intergating (1.8) with respect to x we have∫ ∞

x

f(s, y) ds =
n∑
l=0

{
m∑
k=0

∫ ∞

x

pk,l(s, y)∂
k
x∂

l
yf(s, y) ds} .(3.10)

In a way similar to that used in the derivation of the D-transformation, we now
perform a sequence of integration by parts: by Assumption 3.2 with i = 1, we
obtain∫ ∞

x

f(s, y) ds =

n∑
l=0

{−
m∑
k=1

pk,l(x, y)∂
k−1
x ∂lyf(x, y)(3.11)

+

∫ ∞

x

p0,l(s, y)∂
l
yf(s, y) ds−

m∑
k=1

∫ ∞

x

∂xpk,l(s, y)∂
k−1
x ∂lyf(s, y) ds} .

Integrating by parts the last term of the right hand side of (3.11) and using As-
sumption 3.2 with i = 2 leads to∫ ∞

x

f(s, y) ds =

n∑
l=0

{−
m∑
k=1

pk,l(x, y)∂
k−1
x ∂lyf(x, y)(3.12)

+

∫ ∞

x

[p0,l(s, y)− ∂xp1,l(s, y)]∂
l
yf(s, y) ds

+
m∑
k=2

∫ ∞

x

∂xxpk,l(s, y)∂
k−2
x ∂lyf(s, y) ds} .

At this point it is clear that assuming the decay conditions stated in Assumption
3.2, we can carry on repeated integration by parts, until all the x-derivatives of f
in the last term of the right hand side of (3.12) disappear, and the result (3.7) is
obtained.

We now turn to integrate (3.7) in the y-direction:∫ ∞

x

∫ ∞

y

f(s, t) dt ds =

n∑
l=0

m−1∑
k=0

∫ ∞

y

a0,k,l(x, t)∂
k
x∂

l
yf(x, t) dt(3.13)

+

n∑
l=0

∫ ∞

y

∫ ∞

x

b0,l(s, t)∂
l
yf(s, t) ds dt .

Performing a sequence of successive integration by parts, we assume the following
decay conditions :

Assumption 3.4. Given (3.8) and (3.9), the following decay conditions hold for
x > 0: limy→∞∂i−1

y b0,l(x, y)∂
l−i
y f(x, y) = 0 , for i = 1, . . . , n, l = i, i + 1, . . . , n,

and limy→∞∂i−1
y a0,k,l(x, y)∂

k
x∂

l−i
y f(x, y) = 0 , for k = 0, . . . ,m − 1, i = 1, . . . , n,

l = i, i+ 1, . . . , n.

Provided Assumption 3.4 holds, we now present formulas for each of the terms
on the right hand side of (3.13).
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Proposition 3.5.

n∑
l=0

m−1∑
k=0

∫ ∞

y

a0,k,l(x, t)∂
k
x∂

l
yf(x, t) dt(3.14)

=

m−1∑
k=0

n−1∑
l=0

a∗0,k,l(x, y)∂
k
x∂

l
yf(x, y) +

m−1∑
k=0

∫ ∞

y

b∗0,k(x, t)∂
k
xf(x, t) dt ,

where

a∗0,k,l(x, y) =

m∑
i=k+1

n∑
j=l+1

(−1)i+j+k+l∂i−k−1
x ∂j−l−1

y pi,j(x, y) ,(3.15)

k = 0, . . . ,m− 1 , l = 0, . . . , n− 1 ,

and

b∗0,k(x, y) =

m∑
i=k+1

n∑
j=0

(−1)i+j+k∂i−k−1
x ∂jypi,j(x, y) , k = 0, . . . ,m− 1.(3.16)

Proof. The left hand side of (3.14) is similar in essence to the one on the right
hand side of (3.10) handled in Proposition 3.3. Therefore, interchanging order
of summation, assuming the conditions in Assumption 3.4 concerning a0,k,l and
performing successive integration by parts in a way analogous to the one performed
in Proposition 3.3, we obtain (3.14) with

a∗0,k,l(x, y) =

n∑
j=l+1

(−1)j+l∂j−l−1
y a0,k,j(x, y) ,(3.17)

k = 0, . . . ,m− 1 , l = 0, . . . , n− 1 ,

and

b∗0,k(x, y) =

n∑
j=0

(−1)j∂jya0,k,j(x, y), k = 0, . . . ,m− 1 .(3.18)

In terms of the pk,l’s, the above two functions are given by (3.15) and (3.16).

Proposition 3.6.
n∑
l=0

∫ ∞

y

∫ ∞

x

b0,l(s, t)∂
l
yf(s, t) ds dt(3.19)

=

n−1∑
l=0

∫ ∞

x

c∗0,l(s, y)∂
l
xf(s, y) ds +

∫ ∞

y

∫ ∞

x

d0(s, t)f(s, t) dt ds,

where

c∗0,l(x, y) =
m∑
i=0

n∑
j=l+1

(−1)i+j+l∂ix∂
j−l−1
y pi,j(x, y) , l = 0, . . . , n− 1 ,(3.20)

and

d0(x, y) =

m∑
i=0

n∑
j=0

(−1)i+j∂ix∂
j
ypi,j(x, y) .(3.21)
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Proof. Interchanging the order of integration, using the conditions in Assumption
3.4 concerning b0,l and repeating the process of integration by parts, we obtain
(3.19), with

c∗0,l(x, y) =

n∑
j=l+1

(−1)j+l∂j−l−1
y b0,j(x, y) , l = 0, . . . , n− 1 ,(3.22)

and

d0(x, y) =

n∑
j=0

(−1)j∂jyb0,j(x, y) .(3.23)

Using (3.9) to express the above in terms of the pk,l’s yields (3.20) and (3.21).

Let us examine the effect of Propositions 3.3, 3.5 and 3.6. Using (3.13), (3.14)
and (3.19) yields∫ ∞

x

∫ ∞

y

f(s, t) dt ds =

m−1∑
k=0

n−1∑
l=0

a∗0,k,l(x, y)∂
k
x∂

l
yf(x, y)(3.24)

+

m−1∑
k=0

∫ ∞

y

b∗0,k(x, t)∂
k
xf(x, t) dt +

n−1∑
l=0

∫ ∞

x

c∗0,l(s, y)∂
l
yf(s, y) ds

+

∫ ∞

x

∫ ∞

y

d0(s, t)f(s, t) dt ds .

From (3.15), (3.16), (3.20) and (3.21) the following conclusions can be made:

a∗0,k,l ∈ A(k+1,l+1) ; b∗0,k ∈ A(k+1,0) ; c∗0,l ∈ A(0,l+1) ; d0 ∈ A(0,0) ,(3.25)

for 0 ≤ k ≤ m− 1 and 0 ≤ l ≤ n− 1. Since d0 ∈ A(0,0), i.e.,

d0 = α0,0 +
α1,0

x
+

α0,1

y
+

α2,0

x2
+

α1,1

xy
+

α0,2

y2
+ · · · ,(3.26)

the dominant factor in the last term of the right hand side of (3.24) is

α0,0

∫ ∞

x

∫ ∞

y

f(s, t) dt ds.

Provided α0,0 6= 1, we may move this factor to the left hand side and divide by

1 − α0,0 to obtain a new expression for
∫∞
x

∫∞
y f(s, t) dt ds. In the following we

are going to repeat this process several times, and we shall need to generalize the
assumption regarding α0,0 in the following manner (which will be clarified in the
proof of Lemma 3.8):

Assumption 3.7. For integer values µ, ν ≥ 0

αµ,ν =

m∑
i=0

n∑
j=0

[

i∏
q=1

j∏
r=1

(µ− q)(ν − r)] pi,j 6= 1 ,(3.27)

where pi,j is the leading term in the asymptotic expansion of pi,j .

Remark. We refer to
∏0

q=1(. . . ) as being identically equal to 1.

We now present the generalization of the process started above:
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Lemma 3.8. Let d(x, y) ∈ A(−µ,−ν) where µ, ν are nonnegative integer values, and
assume that for 0 ≤ i ≤ m, 0 ≤ j ≤ n, ∂ix∂

j
yd exist. Under Assumptions 3.2, 3.4,

3.7, ∫ ∞

x

∫ ∞

y

d(s, t)f(s, t) dt ds =

m−1∑
k=0

n−1∑
l=0

ak,l(x, y)∂
k
x∂

l
yf(x, y)(3.28)

+

m−1∑
k=0

∫ ∞

y

bk(x, t)∂
k
xf(x, t) dt +

n−1∑
l=0

∫ ∞

x

cl(s, y)∂
l
yf(s, y) ds

+

∫ ∞

x

∫ ∞

y

d∗(s, t)f(s, t) dt ds ,

where

ak,l ∈ A(k−µ+1,l−ν+1); bk ∈ A(k−µ+1,−ν); cl ∈ A(−µ,l−ν+1);(3.29)

d∗ ∈ A(−µ−1,−ν) ∪ A(−µ,−ν−1)

with k = 0, . . . ,m− 1 and l = 0, . . . , n− 1.

Proof. The procedure presented in Propositions 3.3, 3.5 and 3.6 starts with repre-
senting f by (1.8). Here we start by representing d · f by a similar representation
with the functions pi,j replaced by d ·pi,j . Repeating the same steps yields an equa-
tion of the type (3.28), with the exception that the last term on the right hand side
is now

∫∞
x

∫∞
y

d(s, t)f(s, t) ds dt, with d ∈ A(−µ,−ν). In the process of successive

integration by parts, the required decay conditions are guaranteed to be satisfied
since −µ,−ν ≤ 0 and Assumptions 3.2 and 3.4 hold. Since d and d both belong to
A(−µ,−ν), we can write

d(x, y) = α · d(x, y) + d∗(x, y) ,(3.30)

with d∗ ∈ A(−µ−1,−ν) ∪ A(−µ,−ν−1). α can be computed as follows: since the pi,j
are replaced by d · pi,j , we have by Proposition 3.6 that α is the coefficient of the
leading term in the asymptotic expansion of

d0(x, y) =

m∑
i=0

n∑
j=0

(−1)i+j∂ix∂
j
y[d · pi,j ] .(3.31)

By writing the formal asymptotic expansion of the form (1.6) for d · pi,j ∈
A(−µ+i,−ν+j), differentiating i times in the x-direction and j times in the y-direction
for each required value of i and j, the leading term in d0 is αxµyν with

α =

m∑
i=0

n∑
j=0

(−1)i+j [

i∏
q=1

j∏
r=1

(−µ+ q)(−ν + r)] pi,j .(3.32)

Note that α ≡ αµ,ν [see (3.27)]. We can now rewrite
∫∞
x

∫∞
y d(s, t)f(s, t) ds dt

replacing d(x, y) by α · d(x, y) + d∗(x, y). Transferring
∫∞
x

∫∞
y

αd(s, t)f(s, t) ds dt

to the left hand side and dividing by 1 − α, which is non-zero by Assumption 3.7,
we obtain (3.28).



THE d2- AND D2-TRANSFORMATIONS 705

We now use Lemma 3.8 recursively. First we obtain

∫ ∞

x

∫ ∞

y

f(s, t) dt ds =

m−1∑
k=0

n−1∑
l=0

a1,k,l(x, y)∂
k
x∂

l
yf(x, y)(3.33)

+

m−1∑
k=0

∫ ∞

y

b1,k(x, t)∂
k
xf(x, t) dt +

n−1∑
l=0

∫ ∞

x

c1,l(s, y)∂
l
yf(s, y) ds

+

∫ ∞

x

∫ ∞

y

d1(s, t)f(s, t) dt ds ,

where d1 ∈ A(0,−1)∪A(−1,0) and the first three terms on the right hand side of (3.33)
are of the same form as in the expansion we seek (1.10). The last term of (3.33)
is handled as follows: since this term involves the factor d1 ∈ A(0,−1) ∪A(−1,0), we
decompose d1 into two factors, one in A(0,−1) and the other in A(−1,0), and we use
(3.28) for each of the corresponding integrals. As a result we obtain the expansion

∫ ∞

x

∫ ∞

y

f(s, t) dt ds =

m−1∑
k=0

n−1∑
l=0

a2,k,l(x, y)∂
k
x∂

l
yf(x, y)(3.34)

+

m−1∑
k=0

∫ ∞

y

b2,k(x, t)∂
k
xf(x, t) dt +

n−1∑
l=0

∫ ∞

x

c2,l(s, y)∂
l
yf(s, y) ds

+

∫ ∞

x

∫ ∞

y

d2(s, t)f(s, t) dt ds .

Here also the first three terms on the right hand side are of the right form, that is,
as in (1.10), and now d2 ∈ A(0,−2) ∪ A(−1,−1) ∪ A(−2,0). Specifically,

a2,k,l ∈ A(k+1,l+1) ; b2,k ∈ A(k+1,0) ; c2,l ∈ A(0,l+1) ,(3.35)

for 0 ≤ k ≤ m− 1 and 0 ≤ l ≤ n− 1. Repeating this we can make the last term be
of the form

∫∞
x

∫∞
y dq(s, t)f(s, t) dt ds with dq ∈

⋃q
i=0 A

(−i,−q+i), for any integer
q > 0.

We have thus proved the following theorem on the asymptotic expansion of the
infinite double integral:

Theorem 3.9. Let f(x, y) be integrable on [0,∞) × [0,∞) and satisfy the linear
p.d.e. (1.8) with pk,l ∈ A(k,l) , 0 ≤ k ≤ m , 0 ≤ l ≤ n and p0,0 ≡ 0. When As-
sumptions 3.2, 3.4, 3.7 hold, as x, y →∞,

∫∞
x

∫∞
y f(s, t) dt ds has an asymptotic

expansion of the form given in (1.10).

The asymptotic expansion (1.10) serves as the basis for the D2-transformation.
The idea is truncating the three infinite sums indexed by i in the expansion, and
solving a linear system where the unknowns are the approximation to the infinite
integral and the coefficients of the truncated expansions. In order to avoid the usage
of too many indices, we refer to a ‘diagonal’ approximation, in which the above
mentioned sums are all truncated in the same power of x and y. The resulting
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linear system is

D(m,n)
n1,n2,n3

=

∫ ∫
Ar

f(s, t) dt ds(3.36)

+
m−1∑
k=0

n−1∑
l=0

xr
k+1yr

l+1
n1∑
i=0

i∑
j=0

βk,li−j,j
xri−jyrj

∂kx∂
l
yf(xr, yr)

+

m−1∑
k=0

xk+1
r

n2∑
i=0

i∑
j=0

γki−j,j
xri−j

∫ ∞

yr

∂kxf(xr , t)

tj
dt

+

n−1∑
l=0

yl+1
r

n3∑
i=0

i∑
j=0

δlj,i−j
yri−j

∫ ∞

xr

∂lyf(s, yr)

sj
ds ,

where r = 1, . . . , N , {(xr, yr)}Nr=1 is a chosen set of points in the first quadrant,

Ar ≡ Axr,yr as in (3.2), the unknowns are D
(m,n)
n1,n2,n3 and the coefficients {βk,li−j,j},

{γki−j,j} and {δlj,i−j}, and N is the number of equations, given by

N = m · n · F (n1) + m · F (n2) + n · F (n3) + 1 ,(3.37)

where F (x) = 1
2 · (x + 1) · (x + 2). The value D

(m,n)
n1,n2,n3 in the solution vector

represents the approximation to
∫∞
0

∫∞
0

f(s, t) dt ds.

A class of exactness for the D2-transformation. Let us look at a special class
of B(m,n) functions: those which satisfy (1.8), with pk,l being constants. In this
case it follows that in the asymptotic expansions on the right hand side of (1.10)

only the terms with i = 0 are non-zero. Hence D
(m,n)
0,0,0 gives an exact value for∫∞

0

∫∞
0

f(s, t) dt ds in this case. In that respect, the D2-transformation is similar
to the 2D analogue of the confluent ε-algorithm.

Practical implementation of the transformation. The system of equations
that has to be solved in order to obtain the approximation involves some infinite 1D
integrals,

∫∞
y

∂kxf(xi, t)dt ,
∫∞
x

∂lyf(s, yi)ds , and double integrals
∫ ∫

Ai
f(s, t) dt ds,

i = 1, . . . , N. Let us refer first to
∫ ∫

Ai
f(s, t) dt ds, i = 1, . . . , N ; in order to find a

satisfactory approximation to these double integrals, we split Ai, for each i, into 3
subsets, as follows:

Ai = Axy
i ∪Ax

i ∪ Ay
i , i = 1, . . . N ,

where: Axy
i = [0, xi] × [0, yi], A

x
i = [0, xi] × [yi,∞], Ay

i = [xi,∞]× [0, yi]. For the
integral over Axy

i we have used tensor product composite 6-point Gauss-Legendre
rule, correct to 12 decimal digits. The integrals over Ax

i and Ay
i can be computed

in several efficient ways. For example, in order to obtain an approximation to∫
Ax
i
f =

∫ xi
0

∫∞
yi

f(s, t) dt ds, we can take a sequence of finite double integrals,∫ xi
0

∫ yi+(j+1)ξ

yi+jξ
f(s, t) dt ds, j ≥ 0, for a fixed small value of ξ, and apply the d-

transformation (or any other sequence extrapolation method) to sum these finite
integrals. Alternatively, the D-transformation can be used. This also refers to the
infinite 1D integrals in (3.36). In many cases examined, it has been observed that
the integrands, as functions of either x or y only, belong to B(m) for some small
m. In such cases, the D-transformation can be effectively applied to evaluate these
infinite integrals. The actual evaluation of the different derivatives of f needed in
the computation of the D2-transformation can be done by direct differentiation,
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or, it can be done to any required accuracy by appropriate divided differences
approximations.

4. The d2-transformation for infinite 2D series

We start this section by presenting the [A/S]R approximant for infinite 2D sums
[9] and reviewing some of its properties. See [8], [9], [10] for full details on the
derivation. Further theoretical results and applications can be found in [2], [3] and
[4].

The [A/S]R approximant [10]. Given a 2D series, its terms are assumed to satisfy
a linear relation of the form:

ai,j =
∑

(k,l)∈T
αk,l∆

k
1∆l

2ai−k,j−l , i ≥ I , j ≥ J ,(4.1)

where T is a finite set of ordered pairs with nonnegative indices, with (0, 0) /∈ T ,
and I ≥ max{i | (i, j) ∈ T }, J ≥ max{j | (i, j) ∈ T }. For a set A of ordered pairs,
we use the notation

A+ = {(i, j) | (i, j) ∈ A, i ≥ 0, j ≥ 0} .(4.2)

Taking

A = {(i, j) | i < M or j < N}, M ≥ I , N ≥ J ,(4.3)

it can be shown that by performing summation by parts, we obtain:
∞∑

i,j=0

ai,j =
∑

(i,j)∈A+

ai,j +
∑

(k,l)∈T ,k·l6=0

αk,l∆
k−1
1 ∆l−1

2 aM−k,N−l(4.4)

−
∑

(k,0)∈T
αk,0

∞∑
j=N

∆k−1
1 aM−k,j −

∑
(0,l)∈T

α0,l

∞∑
i=M

∆l−1
2 ai,N−l .

Let S and R be finite subsets of Ω+ such that |S| = |R|+ 1, where |S| denotes the
number of elements of S. The approximation [A/S]R is defined as the value Ω′ in
the solution vector (Ω′, {βi,j}(i,j)∈R) of the linear system of equations

Ω′ −
∑

(i,j)∈R
βi,jai−k,j−l = A−k,−l , (k, l) ∈ S ,(4.5)

where A−k,−l is the partial sum of the (−k,−l) translation of the A defined above.
Notice that the system of equations for the computation of [A/S]R involves the
need to compute the infinite 1D sums appearing in A−k,−l. In many cases, this
can be efficiently done by using the d-transformation. Numerical examples, and the
generalization to higher-dimensional series can be found in [10].

The d2-transformation. The previous transformation handles well series whose
terms satisfy approximately difference equations with constant coefficients. As in
the case of integrals, we seek a transformation that can handle series of a more
general class, namely series whose terms satisfy difference equations with variable
coefficients rather than constant ones. The generalization is the d2-transformation
which is meant for evaluating infinite double sums (1.5) whose terms satisfy a linear
double difference equation of the form (1.9). As in the case of infinite integrals,
the derivation of the d2-transformation is based upon obtaining an asymptotic
expansion for the remainder of the double sum. The asymptotic expansion involves
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infinite 1D ‘boundary’ series of a certain kind. In most cases, these one-dimensional
sums can be well approximated by the d-transformation. In analogy to Theorem
3.9 for infinite 2D integrals whose integrands are in B(m,n), we now state a theorem
for the sum of infinite 2D series, whose terms belong to the set of sequences B̃(m,n).

Theorem 4.1. Let |∑∞
q,r=0 aq,r| < ∞, and let {aq,r}∞q,r=0 satisfy the linear dif-

ference equation (1.9). Denote sk,l(q, r) =
∑m

j=k+1(−1)j+k∆j−k−1
1 pj,l(q, r), k =

0, . . . ,m − 1, l = 0, . . . , n and let tl(q, r) =
∑m

j=0(−1)j∆j
1pj,l(q, r), l = 0, . . . , n.

Assume the following:

1. limq→∞[∆i−1
1 pk,l(q, r)][∆

k−i
1 ∆l

2aq,r] = 0 , for k = i, . . . ,m, i = 1, . . . ,m,
l = 0, . . . , n.

2. limr→∞[∆i−1
2 sk,l(q, r)][∆

k
1∆l−i

2 aq,r] = 0 and limr→∞[∆i−1
2 tl(q, r)][∆

l−i
2 aq,r]

= 0 , for i = 1, . . . , n, l = i, . . . , n, k = 0, . . . ,m− 1.
3. Assumption 3.7 (stated in Section 3).

Then, for Q, R → ∞,
∑∞

q=Q

∑∞
r=R aq,r has an asymptotic expansion of the

form (1.11).

The proof of this theorem is completely analogous to the proof of Theorem 3.9:
the operator ∂x is replaced by ∆1, the operator ∂y is replaced by ∆2, and integration
by parts is replaced by summation by parts. In a way analogous to the derivation
of the D2-transformation, we can now define the d2-transformation. Let us make
the following notations:

U
(i,p)
Q,R =

∞∑
r=R

∆p
1aQ,r
ri

,(4.6)

and

V
(i,p)
Q,R =

∞∑
q=Q

∆p
2aq,R
qi

.(4.7)

The d2-transformation is defined as the value d
(m,n)
n1,n2,n3 in the solution vector of the

following linear system:

d(m,n)
n1,n2,n3

= AQs,Rs +

m−1∑
k=0

n−1∑
l=0

Qs
k+1Rs

l+1
n1∑
i=0

i∑
j=0

βk,li−j,j
Qs

i−jRs
j ∆k

1∆l
2aQs,Rs(4.8)

+

m−1∑
k=0

Qk+1
s

n2∑
i=0

i∑
j=0

γki−j,j
Qs

i−j U
(j,k)
Qs,Rs

+

n−1∑
l=0

Rl+1
s

n3∑
i=0

i∑
j=0

δlj,i−j
Ri−j
s

V
(j,l)
Qs,Rs

,

where s = 1, . . . , N , {(Qs, Rs)}Ns=1 is a chosen set of indices, AQs,Rs denotes the
corresponding partial double sum,

AQs,Rs =
∞∑
i=0

∞∑
j=0

ai,j −
∞∑

i=Qs

∞∑
j=Rs

ai,j ,(4.9)

the unknowns are d
(m,n)
n1,n2,n3 and the coefficients {βk,li−j,j}, {γki−j,j} and {δlj,i−j}, and

N is the number of equations, given by (3.37).

The value d
(m,n)
n1,n2,n3 in the solution vector is the approximation to

∑∞
i,j=0 ai,j .

The approximation to the infinite 1D sums in AQs,Rs , U
(j,k)
Qs,Rs

and V
(j,l)
Qs,Rs

can be
obtained by the d-transformation.
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Remark. Application to double power series. In this case, the ‘boundary’ infinite
1D sums that appear in the asymptotic expansion for the remainder, turn the ap-
proximation achieved by applying the d2-transformation into a bivariate function
which does not have a simple structure. However, if one approximates the ‘bound-
ary’ sums by Padé approximants, or by the d-transformation for 1D power series
[12], then the d2-transformation yields a rational approximation.

5. Numerical examples

In the tables that follow, the term ‘cdd’ refers to the number of correct decimal
digits, computed by taking the logarithm of the absolute value of the approxima-
tion’s error. The term ‘Size’ refers to the number of unknowns in the linear system
solved for obtaining the approximation.

Example 5.1.

I =

∫ ∞

0

∫ ∞

0

ds dt

(1 + s2 + t2)2
=

π

4
= 0.78539818525 . . . .

The integrand, f(x, y) = 1
(1+x2+y2)2 , satisfies a first-order linear p.d.e. of the type

presented in (1.8). In fact, there is more than one such equation that this function
satisfies. For example, we have

f = −1 + 2x2

8x
fx +

1 + 2y2

8y
fy .

In terms of equation (1.8), with m = n = 1, we can see that p1,0 ∈ A(1,0) and

p0,1 ∈ A(0,1), hence, f ∈ B(1,1). Verifying that the other conditions of Theorem 3.9
hold is easy. In Table 5.1 (on the next page) we present the results we have obtained
for this integral. In this case, it is evident that the D-transformation (for infinite
1D integrals) can be successfully applied, due to the fact that f(x, y) satisfies the
following two equations:

1. f(x, y) = − 1+x2+y2

4x fx(x, y).

2. f(x, y) = − 1+x2+y2

4y fy(x, y).

Hence, f(x, y), as a function of one variable (x or y), belongs to B(1). In addi-
tion to that, f , as a function of one variable, satisfies all the conditions stated in
the theorem which defines the 1D D-transformation, hence we expect to obtain a
good approximation to the 1D integrals that appear in the asymptotic expansion.
Numerical experiments verify this observation.

As input to the program we took m = n = 1, and (x0, y0) = (1, 1) as the point
whose distance to the origin is the largest, out of all the points that are used in the
system of equations.

The results in Table 5.1 illustrate the fast convergence of the D2-transformation
even with a zero degree approximation for the expansions involving the ‘boundary
terms’.

Faster convergence is observed for higher degree approximations, as presented in
Table 5.2.
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Table 5.1

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

0,0,0 4 1.30 3,0,0 13 4.13 6,0,0 31 6.51
1,0,0 6 2.46 4,0,0 18 5.21 7,0,0 39 7.22
2,0,0 9 3.76 5,0,0 24 5.96 8,0,0 48 8.32

Table 5.2

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

1,1,1 10 4.31 1,2,2 16 4.09 1,3,3 24 7.38
3,1,1 17 5.11 3,2,2 23 5.67 3,3,3 31 6.91
5,1,1 28 5.18 5,2,2 34 8.13 5,3,3 42 9.51

Example 5.2.

I =

∫ ∞

0

∫ ∞

0

sin(s2 + t2)ds dt

s2 + t2
=

π2

8
= 1.23370055013617 . . . .

This integral can be easily computed by using polar coordinates. The integrand,

f(x, y) = sin(x2+y2)
x2+y2 , satisfies the p.d.e.:

f = − 1

2x(x2 + y2)
fx − 1

2y(x2 + y2)
fy − 1

4xy
fxy ,

hence f(x, y) ∈ B(1,1). It is easy to verify that f(x, y) satisfies all the conditions
that appear in Theorem 3.9. Notice that in terms of (1.8), we can use polynomials
in inverse powers of x and y, with lower degrees than those used in (1.10). The
integral in this example is considered a tough case, since the integrand oscillates
rapidly as x and y grow larger. The matrix which represents the system of equations
becomes ill conditioned very fast as its size grows larger. For systems of size 20×20
or so, the numerical instability becomes dominant. Despite the above difficulties,
we obtain up to 4-5 digit accuracy, which is the expected accuracy, considering the
truncation error in the asymptotic expansion.

At this point we mention that Sidi, [13], suggested a way to handle oscillatory
integrals (he referred to the 1D case) by choosing the points xr such that f (ki)(xr) =
0. As a result, we end up with a singular matrix. However, this system can be
reduced, by elimination of a few of its equations, to one that has a unique solution.
The convergence properties of this modification of the D-transformation are brought
in [13]. The same idea can be applied to the 2D case. The resulting system of
equations will be smaller and less ill conditioned.

Table 5.3

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

0,0,0 4 1.85 0,1,1 8 2.46 0,2,2 14 2.48
2,0,0 9 3.41 2,1,1 13 3.34 2,2,2 19 4.02
4,0,0 18 4.63 4,1,1 22 4.58 4,2,2 28 4.33
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Example 5.3.

f(x, y) =
32

π4

∑
m=1,2,3,...

∑
n=1,2,3,...

sin(mπx
a ) sin(nπyb )

mn(m
2

a2 + n2

b2 )
.

This example is taken from Sidi [13]. The function f(x, y) is the solution to the
problem {

∆f = −2 , 0 < x < a , 0 < y < b ,
f(0, y) = f(a, y) = f(x, 0) = f(x, b) = 0 .

The above infinite double series converges slowly. We use the d2-transformation
to accelerate its convergence. By the form of the series’ terms follows that the
appropriate orders of the double difference equation should be m = n = 2.

There is no known explicit expression for f(x, y), but it can be expressed by an
infinite 1D sum [13], as follows:

f(x, y) = x(a− x)− 8a2

π3

∑
n=1,3,5,...

cosh[nπ(2y−b)
2a ]

n3 cosh(nπb2a )
sin(

nπx

a
) ,

and this series converges very fast when 0 < y < b. Using this, it can be verified
that, to 15 digit accuracy, with a = b = 2 we have

f(1, 1) = 0.589370826252111 . . . .

In Table 5.4 we present the results we have obtained, using d
(2,2)
n1,n2,n3 with different

values of n1, n2 and n3, so that the size of the system is not larger than 40.

Table 5.4

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

0,0,0 9 5.63 0,1,1 17 7.43 0,2,2 29 7.57
1,0,0 17 6.97 1,1,1 25 7.57 1,2,2 37 7.58
2,0,0 29 7.50 2,1,1 37 7.44

In order to demonstrate the significant effect of the d2-transformation in this
case, we give some ‘diagonal’ partial sums of f(1, 1), using up to 200 terms of the
original double series. Denoting the partial double sums of this series by Ai,j , we
have:

A7,7 = 0.587553229 . . . , A13,13 = 0.589740256 . . . , A19,19 = 0.589244712 . . . .

It is evident that approximating the infinite double sum by the partial sum using
200 terms of the series is only 3 digits accurate, whereas the d2-transformation
brings us to 7-8 digit accuracy by using not more than 40 terms.

Example 5.4.

f(x, y) =
∞∑

m=1

∞∑
n=1

xm−1yn−1

m2 + n3
.

This example was presented in [8], where 2D versions of the t-transformation [7]
were studied and compared to Chisholm approximants [1]. Sidi, in [13], also used
this example for testing another class of transformations. The function f(x, y) is
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not known analytically, and we learn about the quality of the approximations to
this function by comparing to Sidi’s approximations.

For fixed values of x and y, the series’ terms belong to B̃(1,1). Hence, d
(1,1)
n1,n2,n3 is

appropriate here. Note that the given double series diverges for |x| > 1 or |y| > 1.
Thus we expect to obtain better accuracy for small absolute values of x and y.
Following is Table 5.5, where we present the approximations to f(1, 1) obtained with

d
(1,1)
n1,n2,n3 , for different values of n1, n2, and n3. We considered S = 0.3149104237,

taken from [13] as the exact value.

Table 5.5

n1, n2, n3 Size cdd n1, n2, n3 Size cdd

1,0,0 6 5.14 1,1,1 10 5.07
3,0,0 13 6.20 3,1,1 17 7.67
5,0,0 24 7.65 5,1,1 28 8.07

0,2,2 14 6.95 0,3,3 22 7.99
1,2,2 16 8.34 1,3,3 24 8.00

For x = y = −0.5 the series converges. Sidi [13] obtained the value S =

0.3843515211843. In Table 5.6 we present the results using d
(1,1)
n1,n2,n3 , referring

to Sidi’s approximation as the correct one.

Table 5.6

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

0,0,0 4 5.72 0,1,1 8 7.15 0,2,2 14 8.62
2,0,0 9 6.62 2,1,1 13 8.37 2,2,2 19 9.27
4,0,0 18 8.97 4,1,1 22 9.15 4,2,2 28 9.00

For |x| > 1 and |y| > 1 the series diverges. The results obtained by d(1,1) for
x = y = −2 were again compared to Sidi’s result, and were identical to the 5th
digit.

Example 5.5. In this example we consider the power series expansion of the func-
tion

f(x, y) = (1 + x + 0.5y)−1.5(1 + 2x + 0.2y)−0.5 + e−x−2y ,

about the origin. The power series of f̃(x, y) = (1+x+0.5y)−1.5(1+2x+0.2y)−0.5

has terms which belongs to B̃(1,1). We examine the performance of the approx-
imants d(1,1) to f , which is the sum of f̃ and a smooth bivariate function. The
addition of the latter is expected to make a negative effect upon the performance
of the transformation. f has two lines of singularity, at 1 + x + 0.5y = 0, and at
1+ 2x+ 0.2y = 0. The point (− 3

8 ,− 5
4 ) is a multicritical point. We first look at the

value of f at a point which is inside the range for which the double power series of
f converges:

f(−0.2,−0.3) = 4.822308536399305 . . . .
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Table 5.7

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

1,0,0 6 2.15 1,1,1 10 4.74 1,2,2 16 5.80
3,0,0 13 4.81 3,1,1 17 5.99 3,2,2 23 7.40
5,0,0 24 7.21 5,1,1 28 7.47 5,2,2 34 7.75

For this series, the d2-transformation works very efficiently, as is evident from Table
5.7.

Comparing the results we obtained with the partial sums of the series itself, the
efficiency of the transformation is evident: the sum of the first 121 terms of the
power series is

A10,10 = 4.8221925669415 . . . ;

thus is accurate only to 5 digits, whereas the d2-transformation is accurate to 7-8
digits using not more than 35 terms.

We have also found that the d2-transformation is fairly efficient even beyond the
radius of convergence. At the point (x, y) = (1, 1),

f(1, 1) = 0.1912084246051735 . . . ,

and we can still obtain an approximation which is accurate to 5-6 digits.

Table 5.8

n1, n2, n3 Size cdd n1, n2, n3 Size cdd n1, n2, n3 Size cdd

1,0,0 6 1.20 1,1,1 10 3.71 1,2,2 16 4.68
3,0,0 13 3.15 3,1,1 17 5.41 3,2,2 23 5.26
5,0,0 24 5.15 5,1,1 28 6.05 5,2,2 34 5.28
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