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A box-shaped cyclically reduced operator

Chen Greif∗,† and Robert L. Hocking
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SUMMARY

We propose a new procedure of partial cyclic reduction, where we apply a 2d -color ordering (with d=2,
3 the dimension of the problem), and use different operators for different gridpoints according to their
color. These operators are chosen so that the gridpoints can be readily decoupled, and we then eliminate
all colors but one. This yields a smaller cartesian mesh and box-shaped 9-point (in 2D) or 27-point (in 3D)
operators that are easy to analyze and implement. Multi-line and multi-plane orderings are considered, and
we perform convergence analysis and numerical experiments that demonstrate the merits of our approach.
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1. INTRODUCTION

The technique of cyclic reduction has been studied and analyzed in several settings in the last few
decades. Early work demonstrates the advantages of applying this procedure to the discrete Poisson
equation associated with finite differences on a uniform mesh; see [1–3] for early papers, as well
as [4] and the references therein for a review of history and applications. The nonzero pattern of
the matrix in this case allows for efficiently eliminating half of the unknowns, while preserving the
block structure. The procedure can be applied repeatedly until a small system that can be easily
solved is obtained. Recovering the solution for the eliminated unknowns is straightforward, and
the overall computational cost is attractively low.

The cyclic reduction method has also been used in the context of multigrid (MG) methods
[5]; see for example the early paper [6]. Reduction-based approaches continue to be of interest
to designers of MG methods; see for example the recent paper [7], whose focus is on algebraic
MG (AMG).

In the non-symmetric case, for example the discrete convection–diffusion equation, on which
we focus in this work, some of the attractive features of the discretized Laplacian are lost and a
recursive cyclic reduction may be numerically unstable. But carrying out a small number of steps
is still a viable strategy.

Consider, then, the two- or three-dimensional convection–diffusion model problem:

−�u+ �w ·∇u= f. (1)
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The domain �= (0,1)d is the unit square (d=2) or unit cube (d=3), subject to the Dirichlet-type
boundary conditions. For our analysis we will consider a constant row vector �w, and denote its
components by (�,�) for 2D and (�,�,�) for 3D. In our experiments we also include the variable
coefficients case.

Consider a uniform grid of size h, and let us denote the mesh Reynolds numbers by

�= �h

2
, �= �h

2
, �= �h

2
.

Then, the +-shaped second-order 5-point discretization of (1) in 2D, after scaling by h2, is given by

F+ui, j =aui, j +bui, j−1+cui−1, j +dui+1, j +eui, j+1, (2)

where

a=4, b=−1−�, c=−1−�, d=−1+�, e=−1+�.

In the early 1990s Elman and Golub offered a thorough analysis of the spectral properties and
the convergence behavior of linear systems arising from a procedure of one step of cyclic reduction
[8–10]. Using red-black ordering and eliminating all the unknowns corresponding to one of the two
colors yields a linear system associated with a diamond-shaped 9-point computational molecule.
After scaling by ah2, this reduced operator is given by

R2ui, j = (a2−2be−2cd)ui, j −e2ui, j+2−2deui+1, j+1−c2ui−2, j

−d2ui+2, j −2bcui−1, j−1−b2ui, j−2−2ceui−1, j+1−2bd ui+1, j−1. (3)

The Schur complement (reduced) matrix obtained after the elimination is only half the dimension
of the original (unreduced) matrix. Thus, even though the 5-point operator is replaced by a 9-point
operator, the cost of performing matrix–vector products on the reduced system is similar to, or in
fact marginally lower than the cost of matrix–vector products on the unreduced system. As a result,
when comparing the iterative solution procedure for the original system to that for the cyclically
reduced system, the overall performance of solvers depends almost exclusively on the spectral
structure of the reduced versus the unreduced operators, and not on the cost of a single iteration.
The analysis and numerical experiments in [8–10] show that iterative solvers for the reduced system
converge faster, and hence it pays off to perform one step of cyclic reduction in the 2D case.

In the late 1990s, Greif and Varah [11–13] showed that gains can be made for the three-
dimensional case as well. However, in 3D the original 7-point operator is replaced by a 19-point
operator applied to half of the unknowns, and hence matrix–vector products for the reduced system
are more expensive, in contrast to the 2D case. Despite that the improvement in the spectral
structure and convergence rates lead to the conclusion that in 3D it still pays off to perform a step
of cyclic reduction. After scaling by ah2 and setting v=−1−� and w=−1+�, the cyclically
reduced operator in 3D is given by

R3ui, j,k = (a2−2be−2cd−2vw)ui, j,k−v2ui, j,k−2−2ev ui, j+1,k−1

−2cv ui−1, j,k−1−2dv ui+1, j,k−1−2bv ui, j−1,k−1−e2ui, j+2,k

−2deui+1, j+1,k−c2 ui−2, j,k−d2 ui+2, j,k−2bcui−1, j−1,k

−b2ui, j−2,k−2ewui, j+1,k+1−2cwui−1, j,k+1−2ceui−1, j+1,k

−2bd ui+1, j−1,k−2dwui+1, j,k+1−2bwui, j−1,k+1−w2ui, j,k+2. (4)

Despite their attractive numerical properties and the computational savings, cyclically reduced
operators of the form just described have not been widely used. One possible reason for this is the
nature of the computational molecule and the mesh, which presents a computational challenge,
for example in handling boundary conditions. Applying one step of cyclic reduction to a cartesian
mesh based on using a 5-point operator (in 2D) or 7-point operator (in 3D), yields a non-cartesian
mesh with ‘holes’ corresponding to the locations of the gridpoints of the eliminated color.
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Another possible reason for cyclic reduction being less popular than expected is that it is effective
in settings where alternative techniques are also extremely effective. For example, for the symmetric
positive-definite case represented by the discrete Poisson equation, multigrid methods are optimal
in terms of computational work, and preconditioning approaches such as incomplete Cholesky
(IC) or modified incomplete Cholesky (MIC) are well understood and easy to implement. Many
of the computational advantages of multigrid and incomplete factorizations carry over to the non-
symmetric case, and these techniques can be effectively combined with Krylov subspace solvers.
An important factor in the success of a method is the ease with which it can be implemented, and
this is what motivates us to derive a new variant of cyclic reduction.

The basic idea of our approach is quite simple; let us illustrate it briefly for the 2D problem. We
apply a four-color ordering and use different stencils for different colors. Gridpoints that belong
to two of the colors are discretized using the +-shaped 5-point operator F+ defined in (2), and
gridpoints that belong to the other two colors are discretized using a different operator (still with
5 points) whose stencil is ×-shaped. We then proceed by eliminating all but one of the colors.
The gridpoints that are associated with the remaining color form a subgrid which is also cartesian.
Note that this is different than the step of cyclic reduction that leads to (3), which generates
a non-cartesian subgrid.

In 3D the procedure is more complicated but the idea is similar; further details are provided in the
following section. In any case, the result is a grid that contains only 1/2d of the original gridpoints
(with d=2, 3 the dimension), but this grid is again cartesian and the stencil of the operator
associated with it has the shape of a box: 9 points in 2D, 27 points in 3D. Boundary conditions can
now be seamlessly incorporated, and implementation is straightforward. One obvious benefit from
the fact that the grid contains 1/4 (2D) and 1/8 (3D) of the unknowns of the original grid is that
matrix–vector products are cheaper than for the original grid. Recovering the unknowns that were
eliminated along the way, if necessary, amounts to trivially solving a sequence of diagonal systems.

We use a block ordering strategy that exploits the structure of the stencil. Specifically, we
consider k-line and k-plane orderings in 2D and 3D, respectively, where k is a small integer, e.g.
2 or 3. These orderings are based on lexicographic ordering of blocks of multiple lines, which are
themselves lexicographically ordered; see also [14] and the references therein. One advantage of
using such orderings is that the main diagonal blocks of the permuted matrix are fairly dense. This,
in turn, may accelerate the convergence of block iterative methods; in the block stationary case
for M-matrices this is supported by the theory of regular splittings [15]. A detailed description of
block orderings is provided in Section 3.

We derive exact analytic expressions for the spectral radius of the block Jacobi iteration matrix
with lexicographic ordering (which is equivalent to 1-line or 1-plane ordering), and tight bounds for
a 2-line (2-plane) ordering in 2D (3D).We show that the latter orderings are superior to lexicographic
ordering. Our experiments suggest that a 3-line ordering is even more effective, although we are not
able to obtain tight bounds in this case. Since the matrices in question are consistently ordered with
respect to the blockpartitioning thatwe consider, the analytic bounds carry over to blockGauss–Seidel
and block SOR. In our numerical results we also consider ILU preconditionedGMRES iterations.

The remainder of this paper is organized as follows. In Section 2 we introduce the model
convection–diffusion problem and derive our new operator. In Section 3 we discuss the notion
of block grids. In Section 4 we apply multi-line and multi-plane orderings for the 2D and 3D
cases, respectively, and offer a convergence analysis for block Jacobi. In Section 5 we provide
numerical comparisons between our reduced operators, the reduced operators (3) and (4) and the
unreduced 5-point and 7-point operators, using stationary as well as non-stationary solvers. Finally,
in Section 6 we draw some conclusions.

2. THE PROPOSED PROCEDURE OF CYCLIC REDUCTION

We discretize the problem using a uniform rectangular grid G in �. Our method requires the
number of gridpoints to be odd; we thus set G={h,2h, . . . , (2n+1)h}d where h=1/(2n+2).
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Figure 1. (a) Four-color ordering applied to a 7×7 grid and (b) Eight-color ordering
applied to a 3×3×3 grid. Refer online version for interpretation of color.

2.1. The reduction step in 2D

We will be using a combination of two different discrete operators, as follows. Denote by F× an
×-shaped second-order 5-point discretization of (1)

F×ui, j =aui, j +bui+1, j+1+cui−1, j+1+dui−1, j−1+eui+1, j−1

after scaling by 2h2. We have in this case

a=4, b=−1+�+�, c=−1−�+�, d=−1−�−�, e=−1+�−�. (5)

We note that the values of a through e are different here than those in the Introduction.
We now assign one of four colors to each point in G. Points (i, j ) with both i and j odd are

called red; green is for i, j even; blue is for i odd and j even; and yellow signifies i even and j odd.
We apply a four color ordering to G by ordering the points within each color lexicographically—
starting with red, then green, yellow, and blue. This is illustrated in Figure 1(a).

We then discretize (1) by applying F+ at the yellow and blue points, and F× at the red and
green points.

The resulting (2n+1)2×(2n+1)2 linear system can be written in a block form as

⎛
⎜⎜⎜⎜⎝
D1 B1 0 0

B2 D2 0 0

B3 B4 D3 0

B5 B6 0 D4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ured

ugreen

ublue

uyellow

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

2h2 f red

2h2 f green

h2 f blue

h2 f yellow

⎞
⎟⎟⎟⎟⎟⎠ ,

where the matrices D1, D2, D3, and D4 are diagonal. We apply a block elimination procedure to
obtain a reduced (Schur complement) system of size n2×n2, involving only the green points:

(D2−B2D
−1
1 B1)u

green=2h2( f green−B2D
−1
1 f red). (6)

The remaining three quarters of the unknowns can be recovered by solving the following three
linear systems, whose solution is trivial because Di , i =1,3,4, are diagonal:

D1u
red = 2h2 f red−B1u

green,

D3u
blue = h2 f blue−B3u

red−B4u
green,

D4u
yellow = h2 f yellow−B5u

red−B6u
green.

The n2×n2 reduced matrix in (6) is block tridiagonal with tridiagonal blocks:

D2−B2D
−1
1 B1 = trin×n[trin×n[−d2,−2de,−e2],
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trin×n[−2cd,a2−2bd−2ce,−2be],

trin×n[−c2,−2bc,−b2]]. (7)

The operator for the green points is a 9-point box-shaped operator, as opposed to the diamond-
shaped 9-point operator R2 defined in (3). We observe one of its properties as a discrete differential
operator, as follows.

Proposition 2.1
The equation for the discrete differential operator that corresponds to (6) can be posed as a finite
difference discretization of the differential equation

−
[(

1+ �2h2

4

)
uxx +

(
1+ �2h2

4

)
uyy

]
+�ux +�uy = f +O(h2).

Proof
After expanding each ui+�i, j+� j term of (6) using a Taylor series about ui, j , the left-hand side
of that equation reduces, after dividing by 16h2, to

�ux +�uy−
(
1+ �2h2

4

)
uxx −

(
1+ �2h2

4

)
uyy− ��h2

2
uxy + 2�h2

3
uxxx + 2�h2

3
uyyy+�h2uxxy

+�h2uxyy − h2

3
uxxxx − h2

3
uyyyy−h2uxxyy +o(h2).

Similarly, the right-hand side of (6) reduces to

f − �h2

4
fx − �h2

4
f y+ h2

4
� f +o(h2).

This computation was done using MATLAB’s symbolic toolbox. �

Proposition 2.1 shows that the new cyclically reduced operator is in fact a second-order operator
for the 2D convection–diffusion equation. A few of the additional O(h2) terms on the left-hand
side represent artificial viscosity, and this suggests that the operator may be better behaved for
higher mesh Reynolds numbers, compared with the original operator. In this regard, this operator
satisfies properties similar to the ones for the cyclically reduced operators R2 and R3 in (3) and
(4), respectively.

We now make the point that in fact the new operator is nothing but a rotated version of
operator R2 for a related equation; it is interesting to note that this does not carry over to the
three-dimensional case.

Proposition 2.2
Suppose the new cyclic reduction process is applied to the 2D convection–diffusion problem,
yielding a box-shaped 9-point operator. Then the operator is identical to the operator obtained by
applying one step of cyclic reduction on a grid rotated 45◦ clockwise with mesh spacing

√
2h.

Proof
The proof of the proposition follows from moving to the rotated grid, where the convection–
diffusion equation becomes

−�u+ 1√
2
(�−�,�+�)·∇u= f

discretizing with mesh spacing
√
2h using the 5-point operator, and then applying one step of

cyclic reduction; see Figure 2 for an illustration, where the original and transformed coordinates
are denoted, respectively, by (x, y) and (x ′, y′). �
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Figure 2. The 2D cyclically reduced operator defined on a mesh with spacing
√
2h becomes a compact

rectangular operator when viewed on a grid rotated 45◦ with mesh spacing h.

2.2. The reduction step in 3D

In three dimensions, our elimination procedure requires the use of the second-order 7-point operator
F̂ , as well as three other second-order operators F̃ , F̀ , and F . After scaling by h2, 2h2, 2h2 and
4h2, respectively, these operators are

F̂ui, j,k = 6ui, j,k+(−1+�)ui+1, j,k+(−1−�)ui−1, j,k+(−1+�)ui, j+1,k

+(−1−�)ui, j−1,k+(−1+�)ui, j,k+1+(−1−�)ui, j,k−1,

F̃ui, j,k = 8ui, j,k+(−1+�+�)ui+1, j+1,k+(−1−�+�)ui−1, j+1,k

+(−1−�−�)ui−1, j−1,k+(−1+�−�)ui+1, j−1,k

+2(−1+�)ui, j,k+1+2(−1−�)ui, j,k−1,

F̀ui, j,k = 8ui, j,k+(−1−�+�)ui−1, j,k+1+(−1+�+�)ui+1, j,k+1

+(−1−�−�)ui−1, j,k−1+(−1+�−�)ui+1, j,k−1

+2(−1+�)ui, j+1,k+2(−1−�)ui, j−1,k

and

Fui, j,k = aui, j,k+bui+1, j+1,k+1+cui−1, j+1,k+1+dui−1, j−1,k+1+eui+1, j−1,k+1

+pui+1, j+1,k−1+qui−1, j+1,k−1+rui−1, j−1,k−1+sui+1, j−1,k−1.

Here a=8, b=−1+�+�+�, c=−1−�+�+�, d=−1−�−�+�, e=−1+�−�+�, p=−1+
�+�−�, q=−1−�+�−�, r =−1−�−�−�, s=−1+�−�−�. See Table I for a classification
of gridpoint colors.

We order the mesh G with an eight-color ordering as in Figure 1(b). Equation (1) is then
discretized by applying F to red and brown points, F̂ to cyan and yellow points, F̀ to orange and
blue points, and F̃ to green and purple points.

For each color c∈C≡{red, brown, orange, blue, purple, green, cyan, yellow}, we obtain a
system

Dcu
c+ ∑

x∈C,x 
=c
Bc,xu

x =�h2 f c,

where the matrix Dc is diagonal and �=1, 2, or 4, depending on which operator was applied to
gridpoints of color c. As seen in Table I, unknowns of a given color only depend on unknowns of
a few other colors, so most of the Bc,x values are zero.
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Table I. Classification of grid colors in terms of i , j , and k, dependence of gridpoints of a given color on
gridpoints of other colors, and the associated discrete operators.

Color i j k Depends on Operator

Red Odd Odd Odd Red, brown F
Brown Even Even Even Brown, red F
Green Even Even Odd Green, red, brown F̃
Purple Odd Odd Even Purple, red, brown F̃
Blue Odd Even Odd Blue, red, brown F̀
Orange Even Odd Even Orange, red, brown F̀
Yellow Even Odd Odd Yellow, red, green, orange F̂
Cyan Odd Even Even Cyan, blue, purple, brown F̂

In fact, as soon as u is known for all the brown points it can be found for every other color by
inverting a diagonal matrix and performing a few matrix vector products—simply apply

uc=D−1
c

(
�h2 f c− ∑

x∈C,x 
=c
Bc,xu

x

)

to the red, green, purple, blue, orange, yellow, and cyan points in that order.
A block elimination procedure completely analogous to the 2D case gives an n3×n3 reduced

system involving only the brown unknowns. The reduced matrix

A= trin×n[A1, A2, A3] (8)

is block triagonal, with each block itself block tridiagonal with tridiagonal blocks. We have

A1 = trin×n[trin×n[−r2,−2rs,−s2],

trin×n[−2qr,−2(qs+ pr ),−2ps],

trin×n[−q2,−2qp,−p2]];
A2 = trin×n[trin×n[−2dr,−2(re+ds),−2es],

trin×n[−2(cr+qd),a2−2br−2cs−2dp−2eq,−2(pe+bs)],

trin×n[−2cq,−2(cp+bq),−2bp]];
A3 = trin×n[trin×n[−d2,−2de,−e2],

trin×n[−2cd,−2(bd+ce),−2be],

trin×n[−c2,−2bc,−b2]].

It is tedious but straightforward to show that as long as ‖(h/2) �w‖1<1, the reduced matrices (7)
and (8) are strictly diagonally dominant irreducible M-matrices.

A multivariate Taylor expansion similar to the one in 2D shows that the 3D operator has similar
properties and can be interpreted as a discretization of the convection–diffusion equation with
some artificial viscosity. More precisely, the operator that corresponds to the reduced system for
the brown points can be posed as a finite difference discretization of the differential equation

−
[(

1+ �2h2

4

)
uxx +

(
1+ �2h2

4

)
uyy+

(
1+ �2h2

4

)
uzz

]
+�ux +�uy+�uz

= f +O(h2).

The proof is almost identical to the 2D case, Proposition 2.1, and is omitted.
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On the other hand, as opposed to 2D, in 3D there is no clear connection between this operator
and the cyclically reduced 3D operator defined in (4). For one, these operators have a different
number of components in their stencils. Furthermore, there is no easy way to interpret this operator
on a rotated grid.

In Section 4 we will show that when �w is aligned with the x-axis, both systems are symmetrizable
by a diagonal symmetrizer, and are positive definite.

3. BLOCK GRID ORDERINGS

In some cases it may be beneficial to use grid orderings that generate dense diagonal blocks; as
stated in the Introduction this is justified by regular splittings [15]. Here multi-line and multi-plane
block orderings are effective and easy to analyze; see [14] for an analysis of 2-line and 2-plane
orderings applied to the centered differences discretizations of (1).

We explore the effect of k-line and k-plane orderings on the convergence of iterative solvers
applied to (7) and (8). For convenience, let us define k-line and k-plane orderings within the context
of general block grid orderings.

An ordering on a grid G is a function iG :G→{1,2, . . . , |G|}. A block ordering on a grid G is
defined by a set of grid blocks {B} partitioning G, an ordering of the grid blocks, and an ordering
of the grid elements within each block. The block ordering is given by

iG (p)= iBI (p)+
I−1∑
j=1

|B j |,

where BI is the grid block p belongs to, and iBI (p) is the order of p with respect to BI .
Unless stated otherwise, all block orderings considered in this paper will use the lexicographic

ordering for both the grid blocks, and the elements within each block. Note, however, that the
resulting ordering is not lexicographic; see Figures 3 and 4.

Suppose we work on an n×n grid G2D , with n an integer multiple of k. The k-line ordering is
defined by partitioning G2D into n/k vertical blocks containing k lines of n gridpoints each, as in
Figure 3(a) for k=3, n=9.

Suppose now we work on an n×n×n grid G3D with n again an integer multiple of k. The
k-plane ordering is defined by partitioning G3D into n2/k2 blocks containing nk2 gridpoints each,
as in Figure 4(a) for k=3, n=6.

Let A denote the matrix obtained by discretizing (1) on a grid G with a block ordering. A has a
natural block structure that it inherits from the block ordering of G. For each ordered pair of grid
blocks (Bi , B j ), there is a matrix block Ai j containing all the dependencies of members of Bi on
members of B j .

Figure 3. (a) 3-line ordering applied to a 9×9 grid. The grid blocks are separated
by lines; (b) The induced block structure of the 5-point operator matrix; and (c) The

induced block structure of the 9-point operator matrix.
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Figure 4. (a) 3-plane ordering applied to a 6×6×6 grid; (b) The block matrix A3L of the 5-point operator
on a 9×9×9 grid; and (c) The block matrix A3L of the 9-point operator on a 9×9×9 grid.

We denote by AkL and AkP the matrices that correspond to k-line and k-plane orderings. For
k-line ordering, there are n/k grid blocks of nk gridpoints each. AkL can therefore be referred to
as a block matrix with (n/k)×(n/k) blocks, each of size nk×nk. For the k-plane ordering, there
are n2/k2 grid blocks containing nk2 points each. Therefore, AkP is an (n2/k2)×(n2/k2) block
matrix with blocks of size nk2×nk2.

The sparsity pattern of the matrix depends, of course, also on the discretization used. In
Figures 3(b) and (c) we show the matrices corresponding to 3-line ordering, namely A3L , for
5-point and 9-point discretizations. In Figures 4(b) and (c) we show the matrices for 3-plane
ordering, A3P , using 7-point and 27-point stencils, respectively.

4. ORDERING STRATEGIES AND BOUNDS ON CONVERGENCE RATES

Our analysis makes extensive use of Kronecker products and their properties, and of known results
on spectra of tridiagonal Toeplitz matrices. The following results are used so often in our analysis
that they are worth stating explicitly.
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Proposition 4.1
Suppose a and c are two scalars of the same sign (or zero). Then, the tridiagonal Toeplitz matrix
T = trin×n[a,b,c] is symmetrizable by a real diagonal similarity transformation; that is, there exists
a real diagonal matrix ST such that S−1

T T ST is symmetric. Furthermore, the eigenvalues of T are
given by

	i =b+2
√
accos

(
i


n+1

)
, i =1,2, . . . ,n.

Proof
See [8, Lemmas 1 and 2]. �

Proposition 4.2
Suppose A and B are square matrices of sizes n×n and m×m, respectively, with respective eigen-
pairs {	i , �xi }, i =1,2, . . . ,n and {� j , �y j }, j =1,2, . . . ,m. Then A⊗B is nm×nm with eigenpairs
{	i� j , �x⊗ �y}, i =1,2, . . . ,n, j=1,2, . . . ,m.

Proof
See [16, Theorem 4.2.12]. �

Proposition 4.3
If A and B are square matrices symmetrizable by SA and SB , that is SAAS

−1
A and SBBS

−1
B are

symmetric, then A⊗B is symmetrizable by SA⊗SB .

Proof
If B and D are matrices such that the products AB and CD are defined, then (A⊗C)(B⊗D)=
AB⊗CD; see, e.g. [16, Lemma 4.2.10]. Thus, by this property and other basic properties of
Kronecker products [16, Section 4.2], we have

(SA⊗SB)
−1(A⊗B)(SA⊗SB)= (S−1

A ⊗S−1
B )(A⊗B)(SA ⊗SB)= (S−1

A ASA)⊗(S−1
B BSB).

The identity (A⊗B)T = AT⊗BT completes the proof. �

We will also be using the following inequality, whose proof is trivial. Let M and N be symmetric
matrices, with M positive definite. Then

�(M−1N )�‖M−1‖2‖N‖2= �(N )

	min(M)
. (9)

In our analysis we will consider the simple case where convection is aligned with the x-axis,
namely �=�=0. We also assume that |�|�1, so that AkL and AkP are M-matrices. We note that
one-dimensional convection in the y- or z-direction is just as easy to analyze. On the other hand,
other situations may be rather difficult to analyze, even when simplifying assumptions (such as
�=�=�) are made.

4.1. 2D Case: k-line ordering

Consider the block Jacobi splitting AkL =MkL −NkL , with MkL consisting of all the blocks (AkL )i i
discussed in Section 3.

As will be evident from the analysis, it is useful to consider the general setting of a uniform
nx ×ny grid, to establish the eigenvalues of AkL ; we will then resort back to nx =ny =n.

The matrix A1L is block tridiagonal of size nx ×nx with respect to its blocks. Each block is
itself tridiagonal of size ny×ny . As �=0, we have b=e and c=d, and thus the matrix of (7)
reduces to

A1L = trinx×nx [triny×ny [−c2,−2bc,−b2],

triny×ny [−2c2,a2−4bc,−2b2],
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triny×ny [−c2,−2bc,−b2]]

= a2 Inx ny + trinx×nx [1,2,1]⊗triny×ny [−c2,−2bc,−b2].

Proposition 4.4
The eigenvalues of the matrix AkL are given by

	i, j (AkL )= a2−4bc

[
1+cos

(
i


ny+1

)][
1+cos

(
j


nx +1

)]
,

i =1,2, . . . ,ny, j =1,2, . . . ,nx .

Proof
Using Propositions 4.1 and 4.2, the eigenvalues for A1L are easily calculated, and since all the
matrices AkL are permutations of each other, the result follows. �

The eigenvalues of MkL can now be found as a simple corollary; we will set nx =ny=n from
this point on. Since the matrices MkL are not permutations of each other, there is an explicit
dependence on k.

Corollary 4.5
Let h=1/(2(n+1)). Then, the eigenvalues of MkL are given by

	i, j (MkL )= a2−4bc

[
1+cos

(
i


k+1

)]
(1+cos(2
 jh)),

i =1,2, . . . ,k, j =1,2, . . . ,n

each with multiplicity n/k. The minimal eigenvalue of MkL is given by

	min(MkL )=a2−4bc

[
1+cos

(



k+1

)]
(1+cos(2
h)).

In addition, MkL is symmetrizable by a real similarity transformation, and the symmetrized matrix
is positive definite.

Proof
MkL is a block diagonal with n/k identical blocks of size kn. The structure of each block (MkL )i i
is that of the matrix A1L discretized on a k×n grid.

Substituting k=nx =ny into Proposition 4.4, there are n/k blocks and the minimal eigenvalue
is attained when i = j=1. From (5) it follows that 	min is positive. Since MkL is a Kronecker
product of tridiagonal Toeplitz matrices, by Propositions 4.1 and 4.3 it is symmetrizable. �

To find the spectrum of the matrix NkL for k>1, we reorder grid unknowns in a way that exploits
the structure of the graph of NkL . In particular, we observe that all graph edges are between
boundary nodes of neighboring grid blocks. Let �x+ Bi and �x− Bi denote the boundary columns
of a grid block Bi on the right and left sides, respectively. Then for every graph edge e there is an
i ∈1,2, . . . ,n/k−1 such that e contains one node from �x+ Bi and one node from �x− Bi+1. This
also implies that the interior nodes of Bi are not present in any of the edges of the graph of NkL .
Therefore, by grouping all the interior nodes together, we can get a permuted matrix with dense
and well-structured blocks.

Motivated by these observations, we repartition G2D into n/k new grid blocks B̃i . The first
(n/k)−1 blocks B̃i contain the boundary nodes of original blocks,

B̃i =�x+ Bi ∪�x− Bi+1, i =1,2, . . . ,
n

k
−1.
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The last block contains all the interior nodes,

B̃n/k =G2D−
(n/k)−1⋃
i=1

B̃i .

The permuted matrix corresponding to this new ordering, which we denote by ÑkL , is block
diagonal with n/k diagonal blocks. The first (n/k)−1 blocks are of size 2n×2n, whereas the final
block is of size (n2−2n((n/k)−1))×(n2−2n((n/k)−1)).

An example is shown in Figure 5, on a 9×9 grid that was originally ordered using a 3-line
ordering.

Proposition 4.6
The matrix NkL is symmetrizable and has the following eigenvalues: for k=1,

	i, j (N1L )=4bc(1+cos(2
ih))cos(2
 jh), i, j =1,2, . . . ,n.

When 1<k�n, NkL has 2n((n/k)−1) eigenvalues of the form

	i (NkL )=±2bc(1+cos(2
ih)), i =1,2, . . . ,n

each of multiplicity (n/k)−1. The remaining n2−2n((n/k)−1) eigenvalues are zero.

Proof
For k=1 we have

N1L = trin×n[1,0,1]⊗trin×n[c
2,2bc,b2]. (10)

Symmetrizability follows from Propositions 4.1, 4.3 and Equation (10), and the eigenvalues follow
from Propositions 4.1 and 4.2.

For 1<k�n, we note that the first (n/k)−1 blocks of the block diagonal permuted matrix ÑkL
are identical and are equal to

tri2×2[c
2,0,b2]⊗trin×n[1,2,1].

The expression for the nonzero eigenvalues follows from Propositions 4.1 and 4.2, whereas
symmetrizeability follows from Propositions 4.1 and 4.3. The final diagonal block of ÑkL consists
entirely of zeros and is of size n2−2n((n/k)−1), showing the existence and multiplicity of zero
eigenvalues, as claimed. �

Corollary 4.7
The spectral radii of NkL are given by

�(N1L )=4bc(1+cos(2
h))cos(2
h), �(NkL )=2bc(1+cos(2
h)), 1<k<n.

We note that the case k=n is trivial, since NnL =0. We are now in a position to make a statement
regarding the convergence of block Jacobi.

Theorem 4.8
The spectral radius of the block Jacobi iteration matrix obeys the bound

�kL��̃kL = 2bc(1+cos(2
h))

a2−4bc

(
1+cos

(



k+1

))
(1+cos(2
h))

[1+�1k(2cos(2
h)−1)].

In the case k=1, the bound is attained, that is �1L = �̃1L .

Proof
By Corollary 4.5, MkL can be symmetrized, and its symmetrized version is also positive defi-
nite. By Proposition 4.6 NkL can also be symmetrized, and hence (9) can be used. Thus, by
Corollaries 4.5, 4.7 and Equation (9), the stated bound holds.
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Figure 5. When unknowns are reordered as in (a), the matrix NkL , whose sparsity pattern is shown in (b),
takes on the block diagonal form depicted in (c).

For k=1 we can obtain an exact expression, as follows. We have

M1L =a2In2 −2In ⊗trin×n[c
2,2bc,b2]

and N1L given in the Kronecker product form by (10). If �x and �y are the dominant eigenvectors of
trin×n[1,0,1] and trin×n[c2,2bc,b2], by Proposition 4.2, �x⊗ �y is both the dominant eigenvector of
N1L and the eigenvector corresponding to the minimal eigenvalue of M1L . Therefore, the bound
is attained. �

The following proposition shows that multiplying k by any integer �2 improves the convergence
of block Jacobi. In the proof and the remark that follows, matrix inequalities are used in an
elementwise sense. That is, given matrices X and Y of the same dimensions we write X�Y if
Xi j�Yi j for all i and j .

Proposition 4.9
For any given m>k�1, if k divides m then �mL<�kL .

Proof
Our proof makes use of the theory of nonnegative matrices and regular splittings
[15, Chapters 2–3]. Two results are of particular importance. First, the inverse of an irreducible
diagonally dominant M-matrix is elementwise positive [15, p. 85, Corollary 1]. Second, the
Perron–Frobenius theorem states that when any of the entries of a nonnegative irreducible matrix
are increased, the spectral radius also increases [15, Theorem 2.1].

When k dividesm, the graph of NmL is a subgraph of NkL , and hence as long as the same ordering
is applied to both, elementwise inequalities between the two matrices hold. Hence, NkL�NmL�0
when NkL and NmL are permuted by reordering grid unknowns lexicographically. As the matrix
AkL is an irreducibly diagonally dominant M-matrix, we have A−1

kL>0. The claimed result now
follows from [15, p. 90, Theorem 3.15]. �

Remark
We expect Proposition 4.9 to generalize to �mL<�kL whenever m>k. However, if k does not divide
m, the graph of NmL is not a subgraph of NkL , and there seems to be no permutation matrix P
such that PNmL PT�PNkL PT. Therefore, the technique described in the proof of the proposition
does not apply.

Table II shows experimentally the tightness of our bound. In the case k=2 the bound seems to
become arbitrarily tight as h→0. For k=3, however, the quality of the bound is quite poor. As
the above remark states, we expect the convergence of block Jacobi to improve as k gets larger,
since a greater portion of the matrix AkL is included in MkL . However, while we expect that
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Table II. Spectral radii �2L and �3L of the 2-line and 3-line iteration matrices, and the bounds �̃2L and
�̃3L . For the 2-line ordering the bound grows tight for large n, but not for the 3-line ordering. The values

of the mesh Reynolds numbers in this example are �=0.5 and �=0.

n �2L �̃2L �3L �̃3L

6 0.339 0.383 0.302 0.455
12 0.400 0.415 0.345 0.501
18 0.415 0.422 0.356 0.511
24 0.421 0.425 0.360 0.515
30 0.423 0.426 0.362 0.517

�(k+1)L<�kL and this is confirmed experimentally for k=2 in Table II, for the bounds we actually
get �̃(k+1)L>�̃kL for 1<k<n.

We can use the results of Theorem 4.8 to determine exactly the optimal parameter for block
SOR with the 1-line ordering. In addition, we can determine the optimal parameter for 2-line
ordering to good degree of accuracy. As AkL is block tridiagonal with respect to nk×nk blocks,
the analysis of Young [17, Chapter 14, Sections 5.2 and 14.3] applies.

Comparison of convergence rates (2D)

Let us compare the convergence of block Jacobi applied to our reduced system, the cyclically
reduced system associated with operator (3), and the unreduced system.When referring to quantities
of interest we use the superscripts �, �, and +, respectively, motivated by the shapes of the
corresponding computational molecules.

A bound on the spectral radius of the 2D cyclically reduced matrix associated with the difference
equation (3), with a diagonal one-line ordering strategy, is given by [8]

��
1L��̃�

1L =
(√

1−�2+
√
1−�2

)2
8−

(√
1−�2+

√
1−�2

)2+2

√(
1−�2

)(
1−�2

)
(1−cos(
h))

(11)

valid for |�|, |�|<1. The diagonal ordering is equivalent to a 1-line ordering if the grid is viewed
at a 45◦ angle. It was observed experimentally that �̃�

1L →��
1L as h→0 with (�,�) fixed.

Setting �=0, we expand (11) as well as the results of Theorem 4.8 in a Taylor series about
h=0.

�̃�
1L = 1−

(

2

4
+ �2

4

)
h2+o(h2),

��
1L = 1−

(
4
2+ �2

2

)
h2+o(h2),

��
2L � �̃�

2L =1−(4
2+�2)h2+o(h2).

As observed in Table II, it appears that �̃�
2L →��

2L as h→0 with � fixed.
For block Jacobi applied to the +-shaped 5-point operator (2), we have

�+
1L =1−

(

2+ �2

8

)
h2+o(h2)

and

�+
2L��̃+

2L =1−
(


2+ �2

4

)
h2+o(h2)

with the latter bound observed experimentally to grow arbitrarily tight as h→0 with � fixed [14].
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The asymptotic convergence rate is R∞ =− log(�). Noting that log(1+ch2)=ch2+o(h2), we
have for �2�
2 and h�1 the following hierarchy of relative asymptotic convergence rates:

(R∞)�2L ≈2(R∞)�1L ≈4(R∞)�1L ≈4(R∞)+2L ≈8(R∞)+1L .

We confirm this experimentally in Section 5.

4.2. 3D Case: k-plane ordering

Consider the block Jacobi splitting AkP =MkP −NkP with MkP consisting of the blocks (AkP )i i of
the k-plane matrix discussed in Section 3. As previously stated, we assume that �w is aligned with
the x-axis. Thus, we have �=�=0, which means b=e= p= s and c=d=q=r . As we did for the
2D case, it is useful to consider the general setting of a uniform nx ×ny×nz grid to establish the
eigenvalues of AkP ; we will then resort back to nx =ny =nz.

A1P is a block tridiagonal matrix of size ny×ny with respect to its blocks. Each block is itself
a block tridiagonal matrix of size nx ×nx with respect to nz×nz tridiagonal blocks.

Assuming that the ordering the gridpoints goes in a z−x− y fashion without loss of generality,
we have

A1P = triny×ny [B,C, B],

where

B = trinx×nx [trinz×nz [−c2,−2c2,−c2],

trinz×nz [−2bc,−4bc,−2bc],

trinz×nz [−b2,−2b2,−b2]];
C = trinx×nx [trinz×nz [−2c2,−4c2,−2c2],

trinz×nz [−4bc,a2−8bc,−4bc],

trinz×nz [−2b2,−4b2,−2b2]].

Using Kronecker products, we have

A1P =a2 Inx nynz − triny×ny [1,2,1]⊗trinx×nx [c
2,2bc,b2]⊗trinz×nz [1,2,1]. (12)

Proposition 4.10
The eigenvalues of the matrix AkP are

	i, j,k = a2−8bc

[
1+cos

(
i


nx +1

)][
1+cos

(
j


ny+1

)][
1+cos

(
�


nz+1

)]
,

i =1,2, . . . ,nx , j =1,2, . . . ,ny, �=1,2, . . . ,nz.

Proof
This follows from (12) and Propositions 4.1 and 4.2. �

Once again, the eigenvalues of MkP follow as a simple corollary. From this point we assume
nx =ny =nz =n.

Corollary 4.11
The eigenvalues of the matrix MkP are given by

	i, j,k(MkP )= a2−8bc

[
1+cos

(
i


k+1

)][
1+cos

(
j


k+1

)]
(1+cos(2
�h)),

i =1,2, . . . ,k, j =1,2, . . . ,k, �=1,2, . . . ,n

each with multiplicity n2/k2.
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Figure 6. Partition of NkP into (a) (NkP )1; (b) (NkP )2; and (c) (NkP )3. The grid is 9×9×9 with k=3.

The minimal eigenvalue of MkP is

	min(MkP )=a2−8bc

[
1+cos

(



k+1

)]2
(1+cos(2
h)).

Finally, MkP is symmetrizable, and the symmetrized matrix is positive definite.

Proof
MkP is block diagonal, with each block equal to the matrix AkP discretized on a k×k×n grid.
The result follows from applying Proposition 4.10 to a k×k×n subgrid. As MkP is a Kronecker
product of tridiagonal Toeplitz matrices, by Propositions 4.1 and 4.3 it is symmetrizable. By
inspecting the values of a,b and c, it readily follows that 	min is positive. �

To obtain a bound on the spectral radius of NkP when k>1 we split this matrix into three pieces

NkP = (NkP )1+(NkP )2+(NkP )3,

where the eigenvalues of the three matrices on the right can be computed exactly. The sparsity
patterns of these matrices are depicted in Figure 6.

The choice of splitting is motivated by the observation that the edges in the graph of NkP are of
three distinct types. The description of these categories is facilitated by the introduction of some
notation regarding the faces and edges of each grid block Bi .

We denote by �x+ Bi and �x− Bi the faces of Bi whose outward facing unit normals are (1,0,0)
and (−1,0,0), respectively. The faces in the y-direction are denoted in the same fashion. The
edge where the faces with normals (1,0,0) and (0,1,0) meet is denoted by �x+ y+Bi , with obvious
modifications for the other edges.

The edges in the graph of NkP can be partitioned into those between �x+ B1 and �x− B2 for
grid blocks B1 and B2 sharing a common face of constant x (type 1), those between �y+B1 and
�y−B2 for grid blocks B1 and B2 sharing a common face of constant y (type 2), and those between
�x+ y+B1, �x+ y−B2, �x− y−B3, and �x− y+B4 for grid blocks B1, B2, B3, and B4 sharing a common
edge (type 3). The matrix (NkP )i is then defined to be the matrix whose graph contains all NkP ’s
graph edges of type i .

There exist three orderings i1, i2, and i3 of G3D , each bringing one of the pieces of NkP to
block diagonal form. As justified in Section 3, each of these orderings is specified by a new choice
of grid blocks for G3D .

The ordering i1 is defined by the choice of grid blocks

B̃i =�x+ Bi ∪�x− Bi+1, i =1,2, . . . ,
n

k

(n
k

−1
)
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(where Bi is the i th block of the k-plane ordering) and

B̃ n
k (

n
k −1)+1=G3D−

n
k (

n
k −1)⋃
i=1

B̃i .

The permuted matrix (ÑkP )1 is block diagonal with n
k (

n
k −1) blocks of size 2kn×2kn, and one

block of zeroes of size (n3−2n2(nk −1))×(n3−2n2(nk −1)). For i2 we do the same thing with grid

blocks B̃i =�y+Bi ∪�y−Bi+1, obtaining a matrix with identical structure.
The ordering i3 is defined by the choice of grid blocks

B̀i =�x+ y+Bi ∪�x− y+Bi+1∪�x+ y−Bi+ n
k
∪�x− y−Bi+ n

k +1, i =1,2, . . . ,
(n
k

−1
)2

,

and

B̀( nk −1)2+1=G3D−
( nk −1)2⋃
i=1

B̀i .

The block diagonal matrix (ǸkP )3 has ((n/k)−1)2 diagonal blocks of size 4n×4n, followed by
a zero block of size (n3−4n((n/k)−1)2)×(n3−4n((n/k−1)2).

Example 4.12 describes these orderings and shows the permuted (NkP )i for an example grid
and a particular k.

Example 4.12
Consider a 9×9×9 grid with k=3. In Figure 7(a) we look at a cross-section with a constant z of
the graph of NkP , where graph vertices are placed in the same location as their corresponding grid
cells. Graph edges of type 1 (i.e. edges between grid blocks sharing a common face of constant x)
are shown with thin lines, graph edges of type 2 (i.e. edges between grid blocks sharing a common
face of constant y) are shown in bold, and graph edges of type 3 (i.e. graph edges between grid
blocks sharing a common edge) are shown with wavy lines. The ordering that brings (NkP )2 into
block diagonal form is shown. Note that the full graph of NkP actually consists of nine layered
copies of Figure 7(a), with edges between each layer and the layers directly above and below it in
the z direction. Figure 7(b) illustrates this point with a constant x slice of the graph.

As stated in Section 3, to define a new block ordering it suffices to specify new grid blocks. The
ordering shown uses as grid blocks the six common y-faces (each containing 54 nodes), as well

Figure 7. (a) A z=constant slice of the graph of NkP for a 9×9×9 grid with
k=3 and (b) A x=constant slice.
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Figure 8. (a) Nonzero blocks of permuted (NkP )1 and (NkP )2 and (b) Nonzero
blocks of permuted (NkP )3. Grid is 9×9×9, k=3.

as one final zero block consisting of all nodes that have no type 2 edges. An analogous ordering
bringing (NkP )1 into block diagonal form does the same thing using faces of constant x .

Finally, the four sets of common edges, each containing 36 nodes (together with a zero block
of all nodes with no type 3 edges) bring (NkP )3 to block diagonal form. If m is one of the first
36 nodes in this ordering (i.e. i3(m)∈{1,2, . . . ,36}) then in terms of the ordering i2 shown in
Figure 7, we have

i2(m)=ci3(m)−1(mod4)+6�i3(m)−1�,
where c0=3, c1=55, c2=6, and c3=58.

Figure 8(a) shows one of the six identical diagonal blocks of the permuted (NkP )2 for this
example. From the above description it follows that the structure for the permuted (NkP )1 is
identical, since it can be obtained by switching the roles of x and y. On the other hand, in
Figure 8(b) we show that the permuted (NkP )3 has a different structure, because the nonzero values
of this matrix correspond to the edges between corners, rather than edges between faces.

Lemma 4.13
NkP is symmetrizable. The eigenvalues of N1P are given by

	i j�(N1P )= 8bc[(1+cos(2
ih))(1+cos(2
 jh))−1][1+cos(2
�h)],

i, j,�=1,2, . . . ,n.

The spectral radius of N1P is thus given by

�(N1P )=8bccos(2
h)[1+cos(2
h)][2+cos(2
h)].

When k>1, a bound on �(NkP ) is given by

�(NkP )�2bc

[
1+4

(
1+cos

(



k+1

))]
[1+cos(2
h)].

Proof
We have

N1P = (trin×n[1,2,1]⊗trin×n[c
2,2bc,b2]−4bcIn2 )⊗trin×n[1,2,1].

The claim on its eigenvalues now follows from Propositions 4.1 and 4.2. The spectral radius is
attained at i = j=�=1. Symmetrizability follows from Propositions 4.1 and 4.3.
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To prove symmetrizability when k>1 we define the matrix N lex
kP to be the permutation of NkP

obtained by reverting back to the lexicographic ordering. Next we note that the graph of N lex
kP is

a subgraph of the graph of N1P and the former graph is obtained from the latter by removing
edges in symmetric pairs. That is, whenever edge (v,w) is removed edge (w,v) is also removed.
Therefore, the matrix N lex

kP is obtained from N1P by setting various matrix entries N1P:i, j to zero
but setting the corresponding N1P: j,i to zero as well. Hence, the same matrix that symmetrizes
N1P symmetrizes N lex

kP .
To prove the claim on the spectral radius for k>1, we follow the procedure of block ordering

and permutations described in detail in the text following Corollary 4.11 and in Example 4.12.
Each nonzero block of the block diagonal permuted (NkP )1 is the matrix

trin×n[1,2,1]⊗tri2×2[−c2,0,−b2]⊗trik×k[1,2,1].

By Propositions 4.1 and 4.2, the eigenvalues of (NkP )1 are

±4bc

(
1+cos

(
i


k+1

))
(1+cos(2
ih)), i =1,2, . . . ,k, j=1,2, . . . ,n

each of multiplicity (n/k)((n/k)−1) and 0 of multiplicity (n3−2n2((n/k)−1)). Clearly,

�((NkP )1)=4bc

(
1+cos

(



k+1

))
(1+cos(2
h)). (13)

Similarly, we have

�((NkP )2)=�((NkP )1). (14)

We also note that each nonzero block of (NkP )3 is the matrix

trin×n[1,2,1]⊗tri2×2[1,0,1]⊗tri2×2[−c2,0,−b2].

By Propositions 4.1 and 4.2, the eigenvalues of (NkP )3 are

±2bc(1+cos(2
ih)), i =1,2, . . . ,n

each of multiplicity ((n/k)−1)2 and 0 of multiplicity n3−4n((n/k)−1)2). Clearly,

�((NkP )3)=2bc(1+cos(2
h)). (15)

The bound on �(NkP ) now follows from (13)–(15), and the observation that �(NkP )��((NkP )1)+
�((NkP )2)+�((NkP )3). �

Theorem 4.14
The spectral radius of the block Jacobi iteration matrix obeys the bound

�kP��̃kP =
2bc

[
1+4

(
1+cos

(



k+1

))]
(1+cos(2
h))

a2−8bc
[
1+cos

(



k+1

)]2
(1+cos(2
h))

×
[
1+�1k

(
4

5
cos(2
h)(2+cos(2
h))−1

)]
.

Furthermore, the bound is exact for k=1, that is �̃1P =�1P .

Proof
By Corollary 4.11, MkP is symmetrizable and positive definite. By Lemma 4.13 NkP is also
symmetrizable. Therefore, (9) may be used, and the bound follows from Lemma 4.13 and
Corollary 4.11.
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Table III. Spectral radii �2P and �3P of the 2-plane and 3-plane iteration matrices, and the bounds �̃2P
and �̃3P . For the 2-plane ordering the bound grows tight for large n, but not for the 3-line ordering. We

have taken �=0.5 and �=0=�=0.

n �2P �̃2P �3P �̃3P

6 0.430 0.521 0.372 0.726
12 0.524 0.554 0.454 0.784
18 0.547 0.561 0.475 0.797
24 0.556 0.564 0.483 0.802
30 0.556 0.565 0.487 0.805
36 0.562 0.566 0.489 0.806
42 0.564 0.566 0.490 0.807

For k=1 we have

M1P =a2In3 −4bcIn2 ⊗trin×n[1,2,1]

and

N1P = (trin×n[1,2,1]⊗trin×n[c
2,2bc,b2]−4bcIn2 )⊗trin×n[1,2,1].

If �x and �y denote the dominant eigenvectors of trin×n[1,2,1] and trin×n[b2,2ab,a2], then from
Proposition 4.2 the vector �x⊗ �y⊗ �x is both the dominant eigenvector of N1P and the eigenvector
corresponding to the minimal eigenvalue of M1P . The bound is therefore attained in this case. �

The results of Proposition 4.9 and the remark that followed apply to this case in exactly the
same way as in 2D.

Table III shows experimentally the tightness of our bound. In the case k=2, the bound seems
to become arbitrarily tight as h→0. For k=3 (and in fact for k>2 in general) the bound is of
low quality, but the computed spectral radius for k=3 is smaller compared with the one for k=2.
This situation is the same as in 2D.

Comparison of convergence rates (3D)

A bound on the spectral radius of the block Jacobi iteration matrix obtained by applying a 2-plane
ordering to the 19-point 3D cyclically reduced operator (4) is given by [13]

�19pt
2P ��̃19pt2P =1−( 109 
2+ 1

6�
2+ 1

6�
2+ 1

6�
2)h2+o(h2).

Expanding the results of Theorem 4.14 in a Taylor series gives

�27pt1P =1−
(
4
2+ �2

3

)
h2+o(h2)

and

�27pt2P ��̃27pt
2P =1− 4

7 (4

2+�2)h2+o(h2).

For the 7-point operator, we have [14]

�7pt1P =1−( 34

2+ 1

16�
2+ 1

16�
2+ 1

16�
2)h2+o(h2)

and

�7pt2P��̃7pt2P =1−( 12

2+ 1

8�
2+ 7

64�
2+ 7

64�
2)h2+o(h2).

We have found experimentally that all the above bounds grow arbitrarily tight as h→0 with
mesh Reynolds numbers held constant. Noting again − log(1+ch2)=ch2+o(h2), we construct
Table IV showing the expected relative asymptotic convergence rates, valid for h�1 and �2�
2.
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Table IV. Relative asymptotic convergence rates for different combinations of discretization scheme and
grid ordering. The number in row i and column j is the ratio of the asymptotic convergence rate of

method i to method j , using Taylor expansions.

7-pt 1P 7-pt 2P 19-pt 2P 27-pt 1P 27-pt 2P

7-pt 1P 1
7-pt 2P 2 1
19-pt 2P 2.67 1.34 1
27-pt 1P 5.35 2.67 2 1
27-pt 2P 9.14 4.57 3.42 1.71 1

Table V. Number of block Jacobi iterations it takes to reduce the 2-norm of the relative residual
by a factor of 10−4 for constant coefficients. The initial guess is the zero vector. The right-hand
side was constructed so that the solution was a vector of all ones. Results are shown for �=60

in 2D and �=30 in 3D, and �=�=0.

n=129 n=257 n=513

(a) 2D
+, 1L 890 3319 12 299
+, 2L 450 1664 6154
�, 1L 457 1680 6210
�, 2L 234 845 3109
�, 1L 243 891 3307
�, 2L 127 451 1659

(b) 3D n=17 n=33 n=65
7-pt, 1P 75 287 1098
7-pt, 2P 42 148 554
19-pt, 1P 46 170 643
19-pt, 2P 33 112 416
27-pt, 1P 15 56 208
27-pt, 2P 11 35 125

Computational cost. For the operators we consider, it is straightforward to estimate the compu-
tational cost per iteration. Due to the process of reduction, our cyclically reduced operators entail
a lower computational cost of a single iteration, compared with the other operators. For example,
in the 2D case the new operator is nine point, as is the operator R2 in (3), but we work on a grid
with only 1/4 of the unknowns rather than 1/2. In the 3D case our operator has 27 points in its
stencil (as opposed to 19 points that the operator R3 in (4) has) but we solve for only 1/8 of the
unknowns rather than 1/2. Solving for the unknowns that were eliminated in the process entails a
negligible cost, as it involves a small number of diagonal system solves.

5. NUMERICAL EXPERIMENTS

In this section we present an experimental examination of our approach. We show results for block
Jacobi, for which we have carried out a detailed analysis, and then briefly explore the performance
of modern Krylov solvers. Specifically, we apply GMRES, preconditioned with incomplete LU.
All experiments were done using the MATLAB. In both 2D and 3D we have looked at three linear
systems arising from discretization of (1), corresponding to the second-order centered difference
discretization, the reduced system arising from cyclic reduction represented by (3) and (4), and
the system arising from our new approach.
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Table VI. Constant coefficient problem: number of iterations for GMRES preconditioned with ILU(0.01)
to bring the norm of the relative residual down to 10−4. �=60, �=�=0, with h=1/(n+1).

n=129 n=257 n=513

(a) 2D
1-line
+ 20 46 97
� 11 26 55
� 7 15 34

2-line n=129 n=257 n=513
+ 18 36 76
� 12 27 63
� 6 14 31

(b) 3D
1-plane n=17 n=33 n=65
7-point 5 9 21
19-point 4 8 16
27-point 2 4 8

2-plane n=17 n=33 n=65
7-point 5 10 21
19-point 4 7 15
27-point 2 4 8

Table VII. Variable coefficient problem: number of iterations for GMRES preconditioned with ILU(0.01)
to bring the norm of the relative residual down by a factor of 10−4.

n=129 n=257 n=513

(a) 2D
1-line
+ 40 65 115
� 18 30 57
� 14 23 42

2-line n=129 n=257 n=513
+ 28 45 85
� 20 37 63
� 15 25 43

(b) 3D
1-plane n=17 n=33 n=65
7-point 7 12 23
19-point 5 9 14
27-point 3 6 11

2-plane n=17 n=33 n=65
7-point 7 13 24
19-point 5 8 14
27-point 3 6 11

5.1. Test problem 1: constant coefficients

Table V shows the number of iterations required for the convergence of block Jacobi. Then, we
show the results of applying GMRES, preconditioned with ILUTP to each system in turn. A variety
of values of �, � and � were tried, for several different grid sizes. The results of a few of these
experiments are shown in Table VI.

In the tables we use +, �, and �, respectively to denote the 5-point operator, the operator R2,
and the new operator, as per the shapes of the corresponding computational molecules.
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The results validate our analysis. The reduced system is solved within approximately half
the number of iterations of the cyclically reduced system represented by operator (4). For
block stationary schemes, the 2-line/plane orderings are provably superior in terms of speed of
convergence, and this is manifested also in the experiments. For GMRES the benefit of using
these orderings in place of lexicographic ordering is less obvious in terms of iteration counts.

5.2. Test problem 2: variable coefficients

We now modify problem (1) so that the vector �w is a function of the spatial coordinates. Table VII
shows the results for a 2D circular flow problem, �w=20((1/2)− y, (1/2)+x), and for a 3D sink
problem, �w=20((1/2)−x, (1/2)− y, (1/2)−z). The results lead to very similar conclusions as
those for the constant coefficient case.

6. CONCLUSIONS

We have introduced new cyclically reduced operators for the discrete convection–diffusion equation
in 2D and 3D. The operators are derived by applying multi-color orderings (2d colors in d
dimensions) and assigning different discretizations to different colors, so that an elimination of
all but one color is possible. This results in simple stencils on a cartesian grid: a 9-point operator
in the 2D case and a 27-point operator in the 3D case. The operators maintain the same good
spectral properties that other cyclically reduced operators have, and at the same time, the structure
of their stencil makes them easy to implement. We have analyzed the effect of block orderings in
conjunction with our new operator, and have found improvements in convergence rates.
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