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Abstract. We consider a positive definite block preconditioner for solving saddle point linear
systems. An approach based on augmenting the (1,1) block while keeping its condition number small
is described, and algebraic analysis is performed. Ways of selecting the parameters involved are
discussed, and analytical and numerical observations are given.
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1. Introduction. Consider the large and sparse saddle point linear system

Hu = b ≡
(

A B
BT 0

)(
x
y

)
=

(
c
d

)
,(1.1)

where A is n×n and B is n×m, with m ≤ n (possibly m � n). Systems of the form
(1.1) arise in many areas; for a recent comprehensive survey of numerical solution
methods see [3]. The numerical treatment of these systems strongly depends on the
properties of the (1,1) block, A, and we assume throughout (unless otherwise stated)
that it is positive semidefinite. We also assume that H is nonsingular, which implies
that B has full column rank.

It is possible to replace (1.1) by

(
A + γBBT B

BT 0

)(
x
y

)
=

(
c + γBd

d

)
,(1.2)

where γ is a positive scalar. Such an approach has been considered in various ap-
plications (see, e.g., [6]). In the context of optimization, it is related to forming
an augmented Lagrangian function [14]; for example, the method of multipliers [2]
amounts to applying the Uzawa algorithm [1] to (1.2).

Equation (1.1) can also be reformulated as a linear system that is more general
than (1.2), as follows (see, for example, [5]):

(
A + BWBT B

BT 0

)(
x
y

)
=

(
c + BWd

d

)
,(1.3)
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where W is an m×m matrix. We will assume that W is symmetric positive semidef-
inite yet A + BWBT is positive definite. Let us define

M(W ) = A + BWBT ; H(W ) =

(
M(W ) B
BT 0

)
.(1.4)

Note that H defined in (1.1) is equivalent to H(0) in (1.4).
An advantage of forming (1.2) or the more general form (1.3) is that the Schur

complement is well defined whereas in (1.1) there is no Schur complement associated
with a singular A. Thus, one could solve the system by using the decomposition(

M B
BT 0

)
=

(
I 0

BTM−1 I

)(
M 0
0 −BTM−1B

)(
I M−1B
0 I

)
,(1.5)

which holds for any symmetric nonsingular matrix M , including M = M(W ) defined
in (1.4). Using (1.5), solution methods for positive definite systems can be applied
throughout the iterative process of solving for the indefinite matrix H(W ). Other
possible numerical advantages of solving (1.2) or (1.3) instead of (1.1) are discussed
in [7] and in other places. However, choosing W to make M(W ) easy to solve for
may hurt the conditioning of H(W ) and the choice of this parameter is delicate. For
example, for W = γI, as γ grows the conditioning of the saddle point matrix of (1.2)
typically deteriorates at a rate proportional to γ2 whereas the condition number of
its associated (1,1) block deteriorates at a rate typically proportional to γ. It may be
useful, then, to consider an approach of using a block preconditioner based on M(W )
rather than (or in addition to) modifying system (1.1) to (1.2) or (1.3).

Motivated by the above, our goal in this paper is to perform an algebraic study
of the block diagonal positive definite preconditioner

M(W ) =

(
A + BWBT 0

0 BT (A + BWBT )−1B

)
.(1.6)

Forming the preconditioner (1.6) may be computationally expensive (in particular
setting up the Schur complement and solving for it) unless A and B have a very
special structure, and in practice cheaper alternatives must be sought. Nevertheless,
understanding the spectral properties of (1.6) is useful since it can illuminate the
behavior of preconditioners based on approximations of the components of M(W ).
For example, finite volume discretization of the Maxwell equation yields a semidefinite
(1,1) block corresponding to the curl-curl operator, and in certain applications this
operator is replaced by an operator of the form A+BDBT with D a diagonal scaling
matrix [11]. This is not necessarily done in a saddle point system context, but such a
formulation is also viable.

Our focus throughout this paper is on the analysis, and we stay within the al-
gebraic framework without associating the problem with any specific application. In
section 2 we provide analytical results that characterize the spectral distribution of
the preconditioned matrix and indicate what can be expected in terms of convergence
of minimum residual Krylov solvers such as MINRES [16]. Section 3 is devoted to the
question of how to choose the parameter(s) involved, and we provide a perturbation
analysis which may help in the choice of W . The idea here is that aiming to minimize
the condition number of the augmented (1,1) block (and in practice look for cheap
computational alternatives that keep it small) may prove effective. A few numerical
examples are provided in section 4, and in section 5 we draw some conclusions.
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2. The block diagonal preconditioner. In [13] it is shown that if A is non-
singular, then a matrix that in our notation here is equal to M(0) has the attractive
property that the associated preconditioned matrix M−1(0)H has at most four dis-

tinct eigenvalues: 0, 1, 1
2 ±

√
5

2 . Thus, when this matrix is nonsingular, a minimum
residual Krylov solver terminates within three iterations (if roundoff errors are ig-
nored). In the context of the linear system we discuss, if (1.1) is first reformulated
as (1.3) and then M(W ) is applied as a preconditioner, then we again obtain a pre-
conditioned matrix with three distinct nonzero eigenvalues. However, it is possible
that a particular choice of W that works well in solving for M(W ) will not be the
ideal choice in terms of the conditioning or the spectral distribution of H(W ). Using
M(W ) as a preconditioner applied to (1.1) rather than (1.3) enhances flexibility in
that it allows for a choice of W that makes the solve for M(W ) effective without
directly having to balance it with considerations related to the conditioning of the
saddle point matrix.

Let us begin this part of the analysis by showing that if the matrix of (1.3) were
to be used as a preconditioner for system (1.1), then a minimal residual Krylov solver
converges almost immediately. In [7] it is shown that for general matrices A of size
n× n, B and C of size n×m with full column rank (m ≤ n), and W of size m×m,

if H̃(W ) = (A+BWCT B

CT 0
) is nonsingular, then

H̃−1(W ) = H̃−1(0) −
(

0 0
0 W

)
.

The same result, for symmetric matrices, can be found in [5, Chap. 12]. From this we
can obtain the following result.

Proposition 2.1. If H(W ) (defined in (1.4)) is used as a preconditioner for
solving the linear system (1.1), and a minimum residual Krylov subspace solver is
applied, convergence is obtained (in the absence of roundoff errors) within two itera-
tions.

Proof. Since

H−1(W )H =

{
H−1 −

(
0 0
0 W

)}
H =

(
I 0
WBT I

)
,

it follows that all eigenvalues are equal to 1 and the minimal polynomial is p2(z) =
(1 − z)2.

From Proposition 2.1 it follows that a constraint preconditioner (see, e.g., [12]
or [17] for definition and spectral analysis) based on taking M(W ) as its (1,1) block
behaves like a direct solver. Clearly, solving for A + BWBT may be a nontrivial
computational task, and so the effectiveness of this approach depends on the numerical
properties of the preconditioning matrix. The preconditioner M(W ) defined in (1.6)
is the middle matrix in the decomposition (1.5) applied to H(W ). If it is to be used,
then MINRES (which requires a positive definite preconditioner) could be applied.

2.1. Spectral properties of the preconditioned matrix. Consider the ma-
trix M =

(
M 0
0 BTM−1B

)
, where M is a positive definite matrix. Let ν be an eigenvalue

of M−1H with eigenvector ( u
v ). Then

(
A B
BT 0

)(
u
v

)
= ν

(
M 0
0 BTM−1B

)(
u
v

)
.
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Substituting v = 1
ν (BTM−1B)−1BTu, we get a quadratic expression (in ν) for u:

[
ν2M − νA−B(BTM−1B)−1BT

]
u = 0.

Denoting ũ = M
1
2u and C = M−1/2B, the equation can be written as

(ν2I − νK − P )ũ = 0,(2.1)

where

K = M−1/2AM−1/2; P = C(CTC)−1CT .

Note that if A is positive definite and M = A, then K = I and the result of [13]
applies. P is an orthogonal projector of rank m, thus it has m eigenvalues equal to 1
and n−m eigenvalues equal to 0. The matrix K has eigenvalues equal to those of the
matrix M−1A.

So far we have not relied on specific properties, and (2.1) holds for any positive
definite M . We now discuss the specific choice M(W ), with W positive semidefinite.
We start with W = γI, for which we can show that there is an explicit formula that
connects P and K.

Proposition 2.2. Suppose W = γI. The projection matrix P is a polynomial of
degree m in K, given explicitly by P = I − p(K), where p is the Lagrange interpolant

p(x) =

m∏
i=1

(
x− λi

λi + γ

)
m∏
i=1

(
1 − λi

λi + γ

)(2.2)

and {λi} are the eigenvalues of the generalized eigenvalue problem Ax = λBBTx.
Proof. Let L = 1

γ (I −K). Then L = CCT = C(I)CT , and Lp = C(CTC)p−1CT

for any positive integer p. Since P = C(CTC)−1CT , and since by the Cayley–
Hamilton theorem (CTC)−1 is a polynomial of degree m in CTC, it follows that
P is a polynomial of degree m in L and hence a polynomial of degree m in K.

The polynomial connection is now established, and we can seek an explicit ex-
pression. Denote the eigenvalues of K by {μi}. We have eig(K) = eig(M−1A) =
eig(A − μM). Thus {μi} = eig(A − μ(A + γBBT )) = eig((1 − μ)A − μγBBT ), and
the eigenvalues of K are related to the eigenvalues of the generalized eigenvalue prob-
lem (A − λBBT )x = 0 as follows: λi = μiγ

1−μi
. Since rank(BBT ) = m, the n − m

infinite generalized eigenvalues λi map onto μi = 1. There are m finite generalized
eigenvalues λi; the m eigenvalues of K that are not equal to 1 thus satisfy 0 ≤ μi < 1.

As for the matrix P , since n−m of its eigenvalues are equal to 1, we know that the
function p defined in the statement of this theorem satisfies p(1) = 1 and p( λi

λi+γ ) = 0,

and thus p is the Lagrange interpolant of degree m given by (2.2).
If W �= γI, a polynomial connection does not necessarily exist (in particular if W

is singular), but we can still make an observation on the clustering of the eigenvalues.
Lemma 2.3. For M = M(W ), P and K share the same eigenvectors.
Proof. We have

I − CWCT = M−1/2(M −BWBT )M−1/2 = M−1/2AM−1/2 = K,
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from which it follows that

PK = C(CTC)−1CT (I − CWCT ) = KP = P + K − I.

Since K and P are commuting normal matrices, they share the same eigenvec-
tors.

Theorem 2.4. Suppose A and W are symmetric positive semidefinite and M(W )
is symmetric positive definite. Then the eigenvalues of K, {μi}, are given as follows.

1. n−m eigenvalues are equal to 1; the corresponding eigenvectors span the null
space of BT .

2. nullity(A) eigenvalues are equal to 0; the corresponding eigenvectors span the
null space of A.

3. The rest of the eigenvalues are all strictly between 0 and 1, and are given
explicitly in terms of the generalized eigenvalue problem Ax = λBWBTx as
follows:

μi =
λi

λi + 1
, i = 1, . . . , 2m− nullity(A).

Proof. Suppose Kx = μx. Then μ is also an eigenvalue of M−1A, with eigenvector
x̃ = M−1/2x, and we have

Ax̃ = μ(A + BWBT )x̃.(2.3)

Proof of statement 1. If z is a vector in the null space of BT , namely BT z = 0,
then from nonsingularity of H it follows that Az �= 0. Thus z is an eigenvector of
(2.3), with eigenvalue μ = 1. Since B has full column rank, this eigenvalue is of
multiplicity n−m.

Proof of statement 2. Suppose A is semidefinite, and let z �= 0 be a null vector.
Since A+BWBT is positive definite, it follows that BWBT z �= 0. From this it follows
that μ = 0 is a corresponding eigenvalue with multiplicity equal to nullity(A).

Proof of statement 3. If μ �= 0, 1 we have, by (2.3), Ax̃ = μ
1−μBWBT x̃. Since A

and BWBT are positive semidefinite, the generalized eigenvalues λ = μ
1−μ must be

nonnegative and hence 0 < μ = λ
λ+1 < 1.

Theorem 2.5. If A is positive semidefinite, the eigenvalues of the preconditioned
matrix M−1(W )H are bounded within the two intervals[

−1,
1 −

√
5

2

]⋃ [
1,

1 +
√

5

2

]
.

The eigenvalue 1 is of algebraic multiplicity n − m + nullity(A). Also, nullity(A)
eigenvalues are equal to −1.

Proof. Since null(BT ) is the space of eigenvectors associated with the n−m zero
eigenvalues of P and the n−m eigenvalues of K that are equal to 1, and since K and P
commute by Lemma 2.3, we get that n−m eigenvalues of the preconditioned matrix
M−1(W )H satisfy ν2 − ν = 0, and when the preconditioned matrix is nonsingular
those eigenvalues are all equal to 1.

For the rest of the eigenvalues, by (2.1) we have the connection ν2 − νμ = 1,
which leads to

νi =
1

2

(
μi ±

√
μ2
i + 4

)
.
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The zero eigenvalues of A are mapped onto ν = ±1. On the other hand, from
what we know about the eigenvalues of K (namely, that they are all bounded between
0 and 1; see Theorem 2.4) we can deduce that

1 ≤ 1

2

(
μi +

√
μ2
i + 4

)
≤ 1

2
(1 +

√
5) ≈ 1.618

and

−0.618 ≈ 1

2
(1 −

√
5) ≥ 1

2

(
μi −

√
μ2
i + 4

)
≥ −1.

All the eigenvalues of the preconditioned matrix are thus within two narrow in-
tervals whose ends are fixed. We note that some of the bounds presented above
can be obtained by applying [18, Lemma 2.1] or [17, Proposition 2] to the matrix
M−1/2HM−1/2; however at least one of the bounds obtained here is tighter, since
we use the special connection between K and P , observed in Lemma 2.3, which does
not hold in more general cases.

2.2. Numerical properties of the Schur complement. The preconditioner
we are studying involves forming the Schur complement

−S(W ) = −BT (A + BWBT )−1B.

The same Schur complement arises if (1.3) is to be solved using a block Gaussian elim-
ination procedure. An analysis of the Schur complement is useful for evaluating the
merits of the general approach, even if in practice one may seek cheaper alternatives.

When A is positive definite S(0) = BTA−1B is defined; for simplicity of notation
let us denote it simply by S. If A is semidefinite, consider a small perturbation of A,
e.g., A(ε) ≡ A+εBBT for some small ε, so that the Schur complement is still defined,
and in this case we refer to A(ε) and S(ε) simply as A and S, and both are symmetric
positive definite.

Using the Sherman–Morrison formula [8, p. 50] in its block version, we have

S(W ) = BT (A + BWBT )−1B

= BTA−1B −BTA−1B(I + WBTA−1B)−1WBTA−1B

= BTA−1B(I + WBTA−1B)−1(I + WBTA−1B −WBTA−1B)

= S(I + WS)−1,

and we have the following commuting relation.
Proposition 2.6. If S and W commute, then S and S(W ) commute.
Proof. If WS = SW , then we have

S · S(W ) = S2(I + WS)−1 = S(S−1 + WSS−1)−1

= S(S−1 + S−1SW )−1 = S(I + WS)−1S = S(W ) · S.

This leads to the following conclusion with regard to the conditioning of the Schur
complement.

Proposition 2.7. Suppose that S and W commute, and let {ϕi} be the eigen-
values of S(W ), {βi} the eigenvalues of S, and {αi} the eigenvalues of W . Then

ϕi =
βi

βiαi + 1
.(2.4)
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Proof. From Proposition 2.6 it follows that S, S(W ), and W share the same eigen-
vectors. Ordering the eigenvalues so that the ith eigenvalue of each of the matrices
corresponds to the same eigenvector, (2.4) readily follows.

Corollary 2.8. Let S(γ) denote S(W ) with W = γI. Then κ2(S(γ)) ≤ κ2(S)
for any γ > 0.

Proof. By Proposition 2.7 we have S(γ) = S(I + γS)−1 and the eigenvalues of
S(γ) are ϕi = βi

1+γβi
. The desired result readily follows, by monotonicity.

Proposition 2.7 has limited practical value, since S and W rarely commute (even
if W is a simple nonconstant diagonal matrix there is no commuting). However, even
when the commuting condition does not hold, it may still nearly hold.

3. Minimizing the condition number of the augmented (1,1) block.
Suppose that

W = diag(wj), wj ≥ 0.

The (1,1) block can be expressed as a sum of rank-1 perturbations of A as follows:

M(W ) = A +
∑
j∈S

wjbjb
T
j ,

where bj is the jth column of B, and S is the set of indices j for which wj �= 0.
The number of nonzero entries of W is equal to at least the nullity of A if positive
definiteness of the modified (1,1) block is to be obtained.

A possible way of selecting W is to base it on condition number minimization of
A+BWBT . See [15] and the references therein for a survey of eigenvalue optimization
problems; see also [10] for minimizing the condition number given a prescribed sparsity
pattern.

Since M(W ) defined above is a sum of A and a sequence of rank-1 contributions,
we can simplify the discussion by considering a single rank-1 perturbation:

M(w) = A + wbbT ,

where A is positive definite and w ≥ 0.
Proposition 3.1. Suppose that A is symmetric positive semidefinite with nul-

lity 1, and suppose that (0, un) and (λ1, u1) are the eigenpairs with the smallest and
the largest eigenvalues of A (known to be simple), and λn−1 > 0 is the smallest posi-
tive eigenvalue of A. Then the function κ2(A+wunu

T
n ) is strictly decreasing in w for

0 = λn < w < λn−1, is constant for λn−1 ≤ w ≤ λ1, is strictly increasing for w > λ1,
and is explicitly given in terms of the eigenvalues of A as follows:

κ2(A + wunu
T
n ) =

max(λ1, w)

min(λn−1, w)
.(3.1)

The proof follows straightforwardly from orthogonality of the eigenvectors and
is omitted. In [4, Theorem 5.3] it is shown that for saddle point systems rank-1
perturbations of a (1,1) block with nullity 1 change the zero eigenvalue to a positive
one and perturb the eigenvectors, and the norm of the perturbation is related to the
angle formed between the null vector of the matrix and the vector used for the rank-1
perturbation. The angle between a column of B and the null vectors of A is relevant
in our discussion here, in which the condition number is considered.
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Let the eigenvalues of A be λ1 > λ2 ≥ · · · ≥ λn > 0, and let us define

κ(w) ≡ κ2(A + wbbT ); λi(w) ≡ λi(A + wbbT ).

Also, we denote by ui(w) the eigenvectors of A + wbbT . The eigenvalues of M(w)
and A interlace:

λn ≤ λn(w) ≤ λn−1 ≤ · · · ≤ λ1 ≤ λ1(w).

In general, each λk(w) is a piecewise smooth function, with “corners” possible at
multiple eigenvalues. In order to avoid discontinuities with the extremal eigenvalues
λ1 and λn, we assumed above that they were simple eigenvalues of A; then λ1(w),
λn(w), and hence κ(w) = λ1(w)/λn(w) are all smooth functions. Note also that only
λ1(w) increases without limit as w → ∞; the other eigenvalues of A + wbbT are all
bounded by the next eigenvalue of A. For A = D = diag(λk), the limiting values are

the roots of
∑n

k=1
b2k

(λ−λk) = 0 [8, section 8.5.3].

We are interested in the behavior of κ(w) for w > 0, in particular whether it has
a minimum. To this end, we need expressions for the derivatives of the eigenvalues,
which can be derived from perturbation theory.

Proposition 3.2. Let λk(w) be a simple eigenvalue of M(w). Then

λ′
k(w) = [bTuk(w)]2,

where uk(w) is the corresponding (normalized) eigenvector.
Proof. A simple perturbation expansion [19] for λk(w) about w gives this imme-

diately, since our perturbation matrix is bbT .
Applying Proposition 3.2 to λ1(w) and λn(w) gives

κ′(w)

κ(w)
=

λ′
1(w)

λ1(w)
− λ′

n(w)

λn(w)
=

(
bTu1(w)

)2
λ1(w)

−
(
bTun(w)

)2
λn(w)

.(3.2)

In general, κ(w) does not necessarily have a minimum for w > 0. However, we
can state when it does. Below we will again (as we did in section 2.2) assume that
A is positive definite, and when it is not we will consider a small perturbation A(ε)
that is positive definite as the matrix for which the following result is stated.

Proposition 3.3. When λ1 and λn are simple, a necessary and sufficient con-
dition for κ(A + wbbT ) to have at least one minimum for w > 0 is

|bTu1|
|bTun|

<
√
κ2(0).

Proof. Since κ(w) → ∞ as w → ∞, it will have at least one minimum if and only
if κ′(0) < 0. From (3.2), this holds if and only if |bTu1(0)|2 < κ(0)|bTun(0)|2.

From Proposition 3.3 it follows that it may be desirable that b form a small angle
with the eigenvector of A that corresponds to the smallest eigenvalue (a null vector
if A is rank deficient). This is a reasonable condition, which can be concluded also
from the analysis in [4, section 5]. We can in fact show more, as follows.

Theorem 3.4. When λ1 and λn are simple, κ(A + wbbT ) has at most one
minimum for w > 0.

Proof. We shall show that κ(w) is convex: κ′′(w) > 0. To see this, consider (3.2).
Multiplying by κ(w) on both sides and differentiating with respect to w yield

κ′′ = κ′ ·
(
λ′

1

λ1
− λ′

n

λn

)
+ κ ·

(
λ1λ

′′
1 − (λ′

1)
2

λ2
1

− λnλ
′′
n − (λ′

n)2

λ2
n

)
.
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Simplifying, we get

κ′′

κ
=

λ′′
1

λ1
− λ′′

n

λn
+ 2

λ′
n

λn

(
λ′
n

λn
− λ′

1

λ1

)
.

From [19, p. 20] we can get an expression for the second derivative. For a general
perturbation A + wB,

λ′′
k = 2

∑
i �=k

(uT
i Buk)

2

λk − λi
.

Here we have B = bbT , so

λ′′
1 = 2(bTu1)

2
n∑

i=2

(bTui)
2

λ1 − λi
, λ′′

n = 2(bTun)2
n−1∑
i=1

(bTui)
2

λn − λi
.

Now define ck = bTuk. Then

κ′′

2κ
=

c21
λ1

n∑
i=2

c2i
λ1 − λi

− c2n
λn

n−1∑
i=1

c2i
λn − λi

+
c2n
λn

(
c2n
λn

− c21
λi

)
.

Notice that the terms in the first sum are positive and in the second sum are negative.
Collecting terms, we have

κ′′

2κ
=

c21
λ1

n∑
i=2

c2i
λ1 − λi

+
c2n
λn

[
c21

(
1

λ1 − λn
− 1

λ1

)
+

c2n
λn

+

n−1∑
i=2

c2i
λi − λn

]
,

and all terms of the right are positive.
As stated in Proposition 3.1, for A + wunu

T
n any choice of the parameter w

between the minimal positive eigenvalue and the maximal eigenvalue of A will obtain
the minimized condition number. The upper bound of that range corresponds to
taking w = ‖A‖2 = ‖A‖2/‖un‖2

2. Given b, if it forms a small angle with the null
vector of A we could make the choice w = ‖A‖2/‖b‖2

2. This choice is relatively easy to
compute or estimate. For the choice A + wBBT we can apply a similar strategy and
set w = ‖A‖2/‖B‖2

2, and if 2-norms are difficult to calculate, then norm estimators
could be used. This establishes a computationally inexpensive way of choosing the
parameter w in the general case.

Finally, we mention that other choices of W are possible. For example, setting
W = (BTB)−1 (see, for example, [5]) has the advantage that the matrix B(BTB)−1BT

is an orthogonal projector onto the range of B, which is orthogonal to the null space
of BT , and since the null space of A does not intersect with the null space of BT

either, such a choice of W is viable.

4. Numerical examples. We have tested with a set of matrices, including a
few from the CUTE/CUTEr collection [9], with self-generated right-hand-side vectors.
The matrices were used merely for testing purposes, without considering the type of
constraints in the underlying optimization problem.

Example 4.1. This example validates some of the analytical observations made
in section 3. The genhs28 problem from the CUTE collection is a tiny 28 × 28
saddle point matrix, where A is 10 × 10. A is tridiagonal, almost Toeplitz, with
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Fig. 4.1. Example 4.1: Condition numbers of A + wvvT , A + wBBT , and A + wb4bT4 for the
genhs28 matrix. Here v is the null vector of A and b4 is the fourth column of B.

2, 4, 2 along its superdiagonal, main diagonal, and subdiagonal, respectively, except
A1,1 = A10,10 = 2. The matrix is thus singular with nullity 1, and its null vector is
v = α · (−1, 1,−1, 1,−1, 1,−1, 1,−1, 1)T . B is 10× 8 with values 1, 2, and 3 along its
main diagonal, first subdiagonal, and second subdiagonal, respectively.

The eigenvalues of A are 8 sin2(πj
2n ), j = 0, . . . , 9, and so λmin = 0, λmax =

7.8042 . . . , and the smallest positive eigenvalue is 0.1958 . . . .
The inner products of the eight columns of B with v are equal in magnitude

and alternate in sign. Figure 4.1 shows the condition numbers of the perturbation
of the matrix A by multiples of vvT , the matrix obtained by perturbing A by a
multiple of b4b

T
4 , where b4 is the fourth column of B (arbitrary choice), and the

matrix obtained by adding a multiple of BBT to A. The range of values of w for
which a nearly optimal condition number is obtained is fairly large and is similar for
the three matrices. The condition numbers were computed for log10 w = −10 : 0.1 : 10
(201 values for each of the matrices). We obtained minw κ2(A + wbbT ) = 172.3 . . . ,
minw κ2(A + wBBT ) = 44.2 . . . , and minw κ2(A + wvvT ) = 39.9 . . . . The choice
w = ‖A‖/‖B‖2 gives log10 w = −0.6367 . . . , which is well within the range of values
for which the condition numbers in the plot are close to the minimum, and for this
value we obtained κ2(A+wBBT ) = 44.6 . . . , which is extremely close to the minimum
stated above. Finally, we mention that κ2(A + B(BTB)−1BT ) = 25.5 . . . , which is
superior to all the other choices and may justify this as a viable choice, as briefly
discussed at the end of section 3.

Example 4.2. We took a version of the CUTE matrix cvxqp1 of size 1500×1500;
A is 1000×1000 with rank 986, and B is 1000×500. The smallest positive eigenvalue
of A is 9.4756 · · · × 10−7. The rank of the saddle point matrix is 1499, and thus
A + BWBT is rank deficient with nullity of (at least) 1 for any choice of W . We set
W = (‖A‖2/‖B‖2

2)I and generated the right-hand side vector so that the solution was
a vector of all 1’s.

Figure 4.2 shows the history of residual norms using MINRES with precondi-
tioners M, for five choices of the (1,1) block M . In the top two curves M is the
identity matrix and the diagonal of A. The bottom three are related to the shift by
a scalar multiple of BBT : we set w = ‖A‖/‖B‖2 = 156.13 . . . , and take A + wBBT ,
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Fig. 4.2. Example 4.2: Convergence of the preconditioned MINRES with various positive
definite block diagonal preconditioners.

its diagonal part, and its incomplete Cholesky decomposition as our choices for M .
The number of nonzeros of A is 6968, whereas A + wBBT has 9950 nonzeros; thus
matrix-vector products and linear solves with the latter are more computationally
expensive. However the reduced iteration count more than compensates for that, and
the overall computational work is reduced when A+wBBT or its approximations are
used. We note that A is sparse but not narrow banded, and is not structured in a
way that allows for easily exploiting its nonzero pattern.

Example 4.3. The CUTE matrix gouldqp3 is 1048×1048, with A of size 699×699
and rank 697. The smallest positive eigenvalue of A is approximately 4.0514·10−5, and
its largest eigenvalue is approximately 5.236. The rank-2 null space of A is spanned
by a vector of all 1’s (or any other nonzero constant) except the last entry, which is
zero, and a vector of all 0’s except the last, nonzero entry. Since this null space is
explicitly available, the observations of section 3 can be used. We find the columns
of B that form the smallest angle with the null vectors of A. The first and the last
columns of B are valid (though not unique) choices; let us denote them by b1 and bm,
respectively. We define V = w1b1+w2bm, with w1 = ‖A‖/‖b1‖2 and w2 = ‖A‖/‖b2‖2.
We then set M1 = A + V V T and M2 = A + wBBT , with w = ‖A‖/‖B‖2.

Table 4.1

Number of nonzeros in A, B, A + V V T , and A + BBT for the gouldqp3 matrix.

nnz(A) 2092

nnz(B) 1047

nnz(A + V V T ) 2105

nnz(A + BBT ) 4185

The number of nonzeros of all the matrices involved is given in Table 4.1. As
is evident, M1 is very close in sparsity to A. The advantage of forming a rank-2
perturbation is that the eigenvalues are all nearly equal to the three eigenvalues of
the case described in [13], due to interlacing and the high algebraic multiplicity of
each of the eigenvalues. This is illustrated in Figure 4.3. For the choice A + wBBT

the analysis of section 2 holds, and all eigenvalues are within the intervals stated in
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Fig. 4.4. Example 4.3: Convergence of preconditioned MINRES with various positive definite
block diagonal preconditioners. The dot-dashed line refers to a preconditioner whose (1,1) block is the
incomplete Cholesky factorization of A+wBBT and whose (2,2) block is BT diag(A+wBBT )−1B.

Theorem 2.5, with the expected algebraic multiplicities. Finally, for the incomplete
Cholesky factorization the result of the theorem does not hold, but the eigenvalues
of the preconditioned matrix are still fairly close to the eigenvalues in the intervals
stated in Theorem 2.5, and none of them is close to zero. Numerical experiments show
that the eigenvalue structure well predicts the convergence behavior of preconditioned
MINRES, as demonstrated in Figure 4.4.
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5. Conclusions. We have performed an algebraic analysis for solving (1.1) by
using the block diagonal positive definite preconditioner (1.6), whose (1,1) block is
A + BWBT . While the preconditioner in that precise form may be computationally
expensive, it forms a basis for a preconditioning approach (based on approximations
of the components of (1.6)) that may be useful in practice.

Our analysis shows that the eigenvalues of the preconditioned matrix are clustered
in fixed intervals whose ends are fixed far from the origin. Moreover, the eigenvalue 1
is of algebraic multiplicity at least n − m, and interestingly, the multiplicity goes
up with the nullity of A. In section 3 we discussed an approach of minimizing the
condition number of A+BWBT . Our analysis shows that columns of B that form a
small angle with the null vectors of A should be considered in the selection of nonzero
entries of W . In practice obtaining the null space of A is a computationally nontrivial
task for large scale problems, and we have provided analytical justification for using
all the columns of B and choosing a scaling parameter of the form w = ‖A‖/‖B‖2.
This involves a minimal computational effort when cheap norm or extremal eigenvalue
estimators are used.
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