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Abstract. We consider 2 × 2 block indefinite linear systems whose (2, 2) block is zero. Such
systems arise in many applications. We discuss two techniques that are based on modifying the
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its condition number are discussed, and some analytical observations are provided. A technique of
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1. Introduction. Indefinite linear systems arise in many applications. Notable
members of this family are linear systems whose associated matrix can be presented
as a 2× 2 block matrix whose (2, 2) block is zero:

Ku ≡
(

A B
BT 0

)(
x
y

)
=

(
c
d

)
.(1.1)

The matrix A is assumed to be n× n, and B is n× p, where p ≤ n. (Often p� n.)
As an example, consider the classical quadratic programming problem:

Minimize 1
2x

TAx− xT c
subject to BTx = d.

In optimization terms, A represents the Hessian of the quadratic function to be min-
imized, and BT is the Jacobian of the linear constraints.

Solving the problem using Lagrange multipliers amounts to defining a function of
the form

φ(x, y) =
1

2
xTAx− xT c+ yT (BTx− d)(1.2)

and computing its stationary points, which satisfy

∇φ = 0.(1.3)

The result is the linear system (1.1). The components of the vector y are the Lagrange
multipliers. See, for example, Nocedal andWright [40] for more details on this problem
and ways to solve it.
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In the context of constrained optimization, (1.3) is part of what defines first order
optimality conditions known as the Karush–Kuhn–Tucker (KKT) conditions. A pre-
cise definition of the KKT conditions can be found in [40, p. 328]. The conditions were
first derived by Karush in 1939, in his master’s thesis at the University of Chicago
[33], and were later rederived by others, but it was in 1950, when the Princeton math-
ematicians Kuhn and Tucker published their work [38], that the theory of constrained
optimization took off and started taking its modern shape. Throughout the years it
has become common practice to call (1.1) the KKT system or the augmented system.
A detailed account of the history of the derivation of the KKT conditions and the
theory of nonlinear programming can be found in [34] and references therein.

Problem (1.1) also arises in numerous applications other than optimization, espe-
cially in the solution of PDEs, and should therefore be considered in a broad context.
Formulations that lead to such linear systems appear in fluid dynamics, electromagnet-
ics, structural analysis, data fitting, linear elasticity, and other areas of applications.

A large variety of methods for solving linear systems of the form (1.1) can be found
in the literature. Among them we mention null-space methods [1, 20, 24, 40]; direct
solvers [10, 41]; the classical Uzawa algorithm [2] and the inexact Uzawa algorithm
[14]; splitting schemes such as the one introduced in [12], which was later generalized
to real positive matrices in [27]; preconditioned Krylov subspace solvers based on
approximating the Schur complement or other methodologies [13, 15, 16, 17, 35, 37,
39, 50]. See also [5, 7, 24, 40, 47, 48] for surveys of existing methods and further
references.

Of particular interest to us are techniques based on the Schur complement S =
−BTA−1B. The importance of this matrix is evident by the block factorization(

A B
BT 0

)
=

(
I 0

BTA−1 I

) (
A 0
0 −BTA−1B

)(
I A−1B
0 I

)
.(1.4)

Since computing S exactly and inverting it may require practically as much com-
putational work as solving (1.1), many preconditioning techniques (see [16] and refer-
ences therein) are based on approximating S−1 and A−1. Thus the numerical prop-
erties of the (1,1) block, such as its condition number and the distribution of its
eigenvalues, are important in finding effective approximations.

Conditions for the nonsingularity of K can be found in various papers. An im-
portant result is the following [40, Lem. 16.1]: if Z is a basis for the null space of BT ,
and if the reduced Hessian ZTAZ is positive definite and B has full column rank,
then K is nonsingular.

Since (1.4) is a congruence transformation, the inertia of K, which is denoted
i(K) and is defined as the ordered triplet that specifies the number of its positive,
negative, and zero eigenvalues [32, p. 221, Def. 4.5.6], is equal to the sum of inertias
of the matrices A and the Schur complement. When A is positive definite we have
i(K) = (n, p, 0). A more general result, which applies also if A is singular (in which
case decomposition (1.4) is not valid), connects the inertia of K with the inertia of
ZTAZ: i(K) = (p+n+, p+n−, n0), where i(Z

TAZ) = (n+, n−, n0). See [28] and [23,
Thm. 3.1, Cor. 3.1]. Further results on the inertia and the spectrum of K can be
found in [21, 43].

Throughout this paper we consider cases where the (1,1) block is possibly sin-
gular or ill-conditioned. Frequently the singularity appears in the form of semidefi-
niteness. Examples of applications are domain decomposition techniques for solving
linear elasticity problems [36], computation of thin plate splines [44], geophysical in-
verse problems [30], and various optimization problems [40]. In such cases, due to the
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singularity, techniques based on computing the Schur complement or approximating
its inverse cannot be straightforwardly applied. This motivates in part our discussion:
how to modify the linear system so that the singularity no longer poses a difficulty.

Scope of this paper. We refer to the linear system (1.1) in a broad context, without
making strict assumptions with regard to the nature of the underlying continuous
problem. Our primary goal is to discuss ways of modifying system (1.1) in a way
that may make it easier to solve, using existing methods. We thus focus on the
“preprocessing” stage that leads to a modified linear system that has the same solution
but may be easier to deal with numerically.

Assumptions throughout.
• The matrix K is assumed to be nonsingular.
• With the exception of one case (Proposition 2.1), the matrix associated with
the linear system is symmetric, just as it appears in (1.1).
• A is sparse and square, and its singularity or nonsingularity (as well as def-
initeness) are to be explicitly mentioned in the specific context. B is sparse
and of full column rank. As mentioned earlier, A and B are assumed to be
n× n and n× p, respectively.

Part of our analysis and findings applies only to a positive definite or a positive
semidefinite (1,1) block, but experimental evidence suggests that the analysis can in
some cases predict the behavior in circumstances it does not strictly satisfy. When
singularity is present, our methodology attacks it by transforming the system into one
where the (1, 1) block is nonsingular. The benefit is that methods that rely on the
nonsingularity of the (1,1) block can then be applied.

We discuss two different strategies: an augmented Lagrangian approach [22, 31,
42] (section 2) and a procedure that leads to a smaller indefinite system by deflat-
ing the (1,1) block (section 3). The augmented Lagrangian approach is parameter-
dependent and may be useful both when the (1,1) block is singular and when it is
nonsingular. In the main part of the paper we provide some analytical observations
regarding the spectrum of the matrix, and discuss ways of selecting the parameter.

In section 4 we present numerical examples. Finally, in section 5 we draw some
conclusions.

2. An augmented Lagrangian approach. Let W be a p × p matrix. Multi-
plying the second block-row of system (1.1) by BW and adding the resulting equation
to the first block equation of the system, we obtain

{ (
A+BWBT

)
x+By = c+BWd,

BTx = d.
(2.1)

This new linear system has the same solution and may be easier to solve, de-
pending on the method used. For methods that rely on the Schur complement, for
example, there may be one immediate benefit: even if the original (1,1) block was
singular or ill-conditioned, the (1,1) block of the modified linear system, (2.1), may
be nonsingular, and with attractive properties such as positive definiteness or a small
condition number.

Performing the step that leads to (2.1) can be considered an augmented La-
grangian technique [31, 42]. In constrained optimization, the augmented Lagrangian
technique combines introducing both quadratic penalty terms and Lagrange multi-
pliers [40, Chap. 17]. The technique is also called the method of multipliers [31]. It
is useful in restraining the ill-conditioning inherent in quadratic penalty methods, by
which it is necessary to drive the penalty parameter to zero so that the constraints



ON SOLVING BLOCK-STRUCTURED INDEFINITE LINEAR SYSTEMS 2079

are not violated. The name “augmented Lagrangian” has been used also to describe
the underlying linear system (see, for example, [22]). Certain numerical properties
of linear systems of the form (2.1) were analyzed in [9, 22] (and in other places) for
applications arising from elliptic PDEs with boundary conditions. The (1,1) block in
the original system was in many cases assumed to be positive definite, and the choice
W = γI (where γ is a scalar) was considered.

Selecting W as a function of the parameter γ may be difficult. Possible choices
are the following:

• Scaling based on norms. For example, the choice W = γI with γ = ‖A‖/‖B‖2
may often force the norm of the matrix A to be of the same magnitude as
the norm of the added term BWBT . This in turn may cause a significant
difference in the spectrum and the condition number of the matrix A+BWBT

in comparison to A. More on this is to be discussed in section 2.3.
• Sparsity considerations. Since the sparsity pattern of B could be considerably
different than that of A, it may be desirable to aim at the least possible change
of the sparsity pattern of the (1,1) block which would still accomplish turning
it into a nonsingular matrix. Here one of the simplest possibilities for choosing
W is to have it as a diagonal matrix with 1’s and 0’s, meaning that we add
B̃B̃T to A, where B̃ is a matrix comprised of some but not all of the columns
of B.
• Desired numerical properties. A possible goal may be to obtain positive def-
initeness of the (1,1) block. For example, if A is semidefinite, it is relatively
easy to achieve this goal. See Hestenes [31, pp. 76–77] for a related discussion.
Working with a positive definite (1,1) block may make it easier to solve the
system, in particular if methods that rely on inverting the (1,1) block are
used.

2.1. Estimates of the condition number. We start this part of our discussion
by providing a connection between the inverses of the original matrix (1.1) and the
modified one, associated with (2.1). The following result appeared in [18] (and in
other places) for symmetric matrices, and holds for nonsymmetric matrices as well.

Proposition 2.1. Suppose that A is a general n × n matrix, B and C are full
column rank n× p matrices (p ≤ n), and W is a p× p matrix. Define

K(W ) =

(
A+BWCT B
CT 0

)
.(2.2)

For simplicity of notation, denote K(0) simply by K and suppose it is nonsingular.
Then, for any W 
= 0 such that K(W ) is nonsingular,

K−1(W ) = K−1 −
(

0 0
0 W

)
.(2.3)

There is more than one way to prove this result. It can be verified by constructing
the inverse directly, or by using the Sherman–Morrison–Woodbury formula [25, p. 50].

Proposition 2.1 allows us to present the following upper bound on the condition
number of the matrix K(W ).

Corollary 2.2. The condition number of K(W ) defined in (2.2) satisfies

κ2 (K(W )) ≤ κ2 (K) + ‖W‖2‖B‖2‖C‖2 ·
(‖K−1‖2 + ‖W‖2

)
+ ‖K‖2‖W‖2.(2.4)
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Proof. Clearly,

‖K(W )‖2 ≤ ‖K‖2 + ‖W‖2‖B‖2‖C‖2.(2.5)

From Proposition 2.1 it follows that

‖K−1(W )‖2 ≤ ‖K−1‖2 + ‖W‖2.(2.6)

The last two inequalities lead to (2.4).

2.2. Condition number and spectrum analysis for the case W = γI.
The specific choice W = γI allows us to make further observations that are relevant
to the rate of convergence and accuracy of iterative solvers; see also section 2.3. Two
immediate consequences of Proposition 2.1 follow.

Corollary 2.3. Let

K(γ) =
(

A+ γBBT B
BT 0

)
.(2.7)

Under the assumptions of Proposition 2.1, with C = B,

K−1 −K−1(γ) =

(
0 0
0 γI

)
.(2.8)

Corollary 2.4. For W = γI, as γ →∞,
κ2 (K(γ))

γ2
→ ‖B‖2.(2.9)

The analysis that follows is performed for the case of a positive definite (1,1)
block.

Proposition 2.5. Suppose that A is an n×n symmetric positive definite matrix
and B is an n×p matrix of full column rank. There exists an n×n matrix G such that
A = GGT and BBT = G(ΣΣT )GT , where Σ is an n × p matrix such that the n × n
matrix ΣΣT is diagonal and consists of the generalized eigenvalues of the problem

σ2Ax = BBTx.(2.10)

Proof. The result can be obtained by employing a technique of simultaneous
diagonalization (see [25, pp. 461–463] or [46, p. 281]). Let A = FFT . Denote the
singular value decomposition of F−1B by

F−1B = UΣV T ,(2.11)

where U is n×n, Σ is of size n×p with its last n−p rows identically zero, and V is p×p.
Define G = FU . From (2.11) we have that B = GΣV T and thus BBT = GΣΣTGT .
Since U is orthogonal, we have

A = FFT = FUUTFT = GGT .(2.12)

By (2.11) we have

(F−1B)(F−1B)T = F−1BBTF−T = UΣΣTUT ,(2.13)
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Fig. 2.1. Sparsity patterns of T (γ) and its symmetric permutation.

and since the eigenvalues of F−1BBTF−T are equal to those of F−TF−1BBT =
A−1BBT (see [32, p. 53] for justification), these are the generalized eigenvalues defined
in (2.10). Since Σ is n× p, the matrix ΣΣT cannot have more than p nonzeros: this
follows since ker(BT ) forms a linear space for the zero generalized eigenvalues (see
[22, p. 9]).

Using Proposition 2.5, we may rewrite the augmented Lagrangian matrix K(γ)
as

(
A+ γBBT B
BT 0

)
=

(
GGT + γGΣΣTGT GΣV T

V ΣTGT 0

)
(2.14)

=

(
G 0
0 V

)(
I + γΣΣT Σ
ΣT 0

)(
GT 0
0 V T

)
.

Since
∥∥∥∥
(

G 0
0 V

)∥∥∥∥ =

∥∥∥∥
(

FU 0
0 V

)∥∥∥∥ = max{‖FU‖, ‖V ‖} = max{‖F‖, 1}(2.15)

and similarly for the inverse, it follows that

κ2 (K(γ)) ≤ α · κ2

(
I + γΣΣT Σ
ΣT 0

)
,(2.16)

where α depends on ‖F‖ and ‖F−1‖ but not on γ.
The matrix

T (γ) =

(
I + γΣΣT Σ
ΣT 0

)
(2.17)

has a simple structure, depicted in Figure 2.1(a). On the diagonal, the first p elements
are {1 + γσ2

i }, i = 1, . . . , p, the next n− p are all equal to 1, and the last p elements
on the diagonal are equal to zero. On the nth superdiagonal and nth subdiagonal, we
have σi, i = 1, . . . , p.
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Lemma 2.6. Let σ2
m and σ2

M denote the minimal and maximal generalized eigen-
values, respectively, of (2.10). For γ sufficiently large, the condition number of T (γ)
satisfies

κ2 (T (γ)) ≈
(1 + γσ2

m)
(
(1 + γσ2

M )2 + σ2
M

)
σ2
m(1 + γσ2

M )
.(2.18)

In addition, the p negative eigenvalues of T (γ) tend to cluster around − 1
γ as γ becomes

large.
Proof. Consider the permutation vector defined, using Matlab notation, by

p̃ = [1, n+ 1, 2, n+ 2, 3, n+ 3, 4, n+ 4, . . . ,m, n+m,m+ 1 : n].(2.19)

The sparsity structure of the matrix corresponding to the symmetric permutation of
T (γ) associated with p̃ is depicted in Figure 2.1(b). The permuted matrix is block
diagonal with either 2 × 2 or 1 × 1 blocks. All the 1 × 1 blocks are equal to 1. The
2× 2 blocks are of the form

diag

(
1 + γσ2 σ

σ 0

)
,(2.20)

where σ2 is a generalized eigenvalue of (2.10).
The eigenvalues of the 2× 2 blocks of (2.20), for a given σ = σi, are

λ(γ) =
1 + γσ2 ±√

(1 + γσ2)2 + 4σ2

2
.(2.21)

For γ sufficiently large, we have

2σ

1 + γσ2
� 1,(2.22)

which allows us to use the first order Taylor expansion
√
1 + x ≈ 1+ x

2 (valid when x
is sufficiently small). Hence

λ(γ) ≈ 1 + γσ2

2
·
(
1±

(
1 +

2σ2

(1 + γσ2)2

))
.(2.23)

The condition number of the block diagonal matrix (2.20) is a ratio of two eigen-
values (the maximal and the minimal in absolute value) that do not necessarily belong
to the same 2 × 2 block. The expression for the eigenvalues with the positive sign is
monotonically increasing as a function of σ. Thus the maximal positive eigenvalue is

λmax(γ) =
1 + γσ2

M +
√
(1 + γσ2

M )2 + 4σ2
M

2
.(2.24)

Using the Taylor expansion, this simplifies to

λmax(γ) ≈ 1 + γσ2
M +

σ2
M

1 + γσ2
M

.(2.25)

For the block diagonal matrix (2.20) we have to determine whether the minimum
in absolute value is attained for the smallest positive eigenvalue or for the negative
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eigenvalue closest to zero. The smallest positive eigenvalue is approximately given

by 1 + γσ2
m +

σ2
m

1+γσ2
m
. On the other hand, for the negative eigenvalues we have, by

(2.23), expressions of the form − σ2

1+γσ2 . As γ becomes large, these eigenvalues tend to

cluster around − 1
γ . In addition, the magnitude of the negative eigenvalue for σ = σm

is smaller than the smallest positive eigenvalue, and we have

min
i
|λi(γ)| ≈ σ2

m

1 + γσ2
m

.(2.26)

Equations (2.25) and (2.26) lead to (2.18).

2.3. Practical choice of γ. Lemma 2.6 shows that as γ grows larger the con-
dition number of T (γ) grows larger. At the same time, the negative eigenvalues of
T (γ) tend to cluster near − 1

γ , while its positive eigenvalues spread over a larger range
of values in comparison with the positive eigenvalues of A. For Krylov solvers, it is
known that the condition number and the distribution of the eigenvalues play a role
in the speed of convergence [29]. It should be noted, though, that such solvers will
typically be applied after preconditioning, and hence further analytical observations
will require taking into consideration the particular preconditioner used.

Lemma 2.6 addresses the matrix T (γ), but for the matrices we have tested ex-
perimentally we have noticed that similar effects occur for K(γ), both with a positive
definite or an indefinite (including singular) (1,1) block.

Three matrices that seem relevant for a general discussion (without getting into
the specifics of any particular method) are the following:

1. the matrix K(γ),
2. the (1,1) block: A+ γBBT ,
3. the Schur complement −BT (A+ γBBT )−1B.

If the (1,1) block is singular or nearly singular, we should seek a value of γ that
is large enough so as to eliminate the effect of the ill-conditioning of A, but not too
large, so as to avoid the effect of the singular matrix BBT .

If A is well-conditioned to begin with, a choice of a value of γ that is significantly
better than other choices may be less obvious or may not exist, and as long as γ is
not large, the condition numbers of the (1,1) block and the Schur complement may
change slowly as functions of γ. This illustrates an important difference between the
case of a singular (1,1) block and the case of a nonsingular one.

The Uzawa algorithm [2] is a good illustration of a method whose performance
depends on the above mentioned three matrices in more than one way. The algorithm
is based on constructing a sequence of approximations to x and y (defined in (1.1))
as follows:

For k = 0, 1, . . .
Solve Axk+1 = c−Byk
Compute yk+1 = yk + α(BTxk+1 − d).

The solution of the linear system involving the matrix A, if done iteratively, is
called the inner iteration, and an inner iteration combined with the computation of
yk+1 that follows forms the outer iteration. It is possible to perform the inner iteration
inexactly (see [4, 8, 14]). Convergence analysis shows that when A is positive definite,
the optimal Uzawa parameter, α, is given by

αopt =
2

λmin(S) + λmax(S)
,(2.27)
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where S = BTA−1B [14]. If the technique discussed in this section with W = γI is
applied, the iteration takes the following form:

For k = 0, 1, . . .
Solve (A+ γBBT )xk+1 = c−B(yk − γd)
Compute yk+1 = yk + α(BTxk+1 − d).

The spectrum of the Schur complement is fundamental to the convergence behav-
ior of the Uzawa scheme. See [22, Chap. 1] for a comprehensive analysis of the case
where A is positive definite.

Proposition 2.7. Let

S(γ) = BT (A+ γBBT )−1B.(2.28)

If there exists a scalar ν satisfying γ ≥ ν ≥ 0 such that A+ νBBT is positive definite
and the eigenvalues of S(ν) are {µi(ν)}, then the eigenvalues of S(γ) are

µi(γ) =
µi(ν)

1 + (γ − ν)µi(ν)
.(2.29)

A possible way to prove this result is by applying the Sherman–Morrison–Wood-
bury formula to the matrix (Ã + βBBT )−1, where Ã = A + νBBT and β = γ − ν.
The result also follows from [19, p. 327, exercise 12.12].

In order for the Uzawa scheme to converge for any initial guess, α must be such
that ρ (I − αS(γ)) < 1 [14]. (As usual, ρ denotes the spectral radius of a matrix [49,
p. 9].) From Proposition 2.7 it follows that the matrix I − αS(γ) has the eigenvalues
1+(β−α)µi(ν)

1+βµi(ν) . If A + νBBT is positive definite, then so is BT (A + νBBT )−1B. (We

assume that B has full rank.) We thus have µi(ν) > 0 for all i, and hence 1+βµi(ν) >
0, and imposing

−1 <
1 + (β − α)µi(ν)

1 + βµi(ν)
< 1(2.30)

is equivalent to 0 < α < 2β + 2
µi(ν) . This will hold if

0 < α < 2β +
2

µmax(ν)
(2.31)

and is satisfied for any arbitrary set of positive eigenvalues {µi(ν)} if 0 < α ≤ 2β.
It is desirable to find the minimal value of ν that yields a positive definite matrix
A+ νBBT , so as to obtain as large as possible a range of values of α for which there
is convergence. If A itself is positive definite, then ν = 0 and the results in [22] apply.
If A is positive semidefinite, then, since K is nonsingular, for any arbitrarily small
ν > 0 the matrix A+ νBBT is positive definite.

3. A method of eliminating the nullity of the (1,1) block by reducing
the system size. Suppose A is a singular symmetric n × n matrix, whose rank is
n− q, and q is a small integer. (The reasons for assuming that q is small have to do
with computational cost considerations and will be clarified below.)

3.1. Derivation of the proposed algorithm. Suppose that there exists an
orthogonal n× n matrix Q, partitioned into

Q = [ Q1 Q2 ],(3.1)

where Q1 has n− q columns and Q2 has q columns, such that QT
1 AQ1 is nonsingular.
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For example, given the spectral decomposition of A,

A = QT

(
Λ 0
0 0

)
QT ,(3.2)

where Λ is the nonsingular (n − q) × (n − q) diagonal matrix whose entries are the
nonzero eigenvalues of A and Q is the matrix whose columns are the eigenvectors of
A, we can define Q2 as the columns of Q that span the null-space of A.

Let

V =

(
Q 0
0 I

)
(3.3)

be an (n+ p)× (n+ p) matrix. We then have

(3.4)

V TKV =

(
QT 0
0 I

)(
A B
BT 0

)(
Q 0
0 I

)
=


 QT

1 AQ1 QT
1 AQ2 QT

1 B
QT

2 AQ1 QT
2 AQ2 QT

2 B
BTQ1 BTQ2 0


 .

We now perform the following two steps.
1. Multiply the original system (1.1) by V T from the left on both sides and use

(3.4) to write the resulting system as a 3× 3 block system.
2. Symmetrically permute block rows and columns 2 and 3 of the system ob-

tained in the previous step.
The resulting linear system is

 QT
1 AQ1 QT

1 B QT
1 AQ2

BTQ1 0 BTQ2

QT
2 AQ1 QT

2 B QT
2 AQ2





 QT

1 x
y

QT
2 y


 =


 QT

1 c
d

QT
2 c


 .(3.5)

We can rewrite it as ( K̂ U

UT Â2

)(
z
x2

)
=

(
e
c2

)
,(3.6)

where

K̂ =

(
QT

1 AQ1 QT
1 B

BTQ1 0

)
(3.7)

and

U =

(
QT

1 AQ2

BTQ2

)
; z =

(
QT

1 x
y

)
; e =

(
QT

1 c
d

)
;(3.8)

Â2 = QT
2 AQ2; x2 = QT

2 y; c2 = QT
2 c.

Note that K̂ is a block-structured indefinite matrix of a smaller size, (n+p− q)×
(n+ p− q), whose (1,1) block is now nonsingular by our initial assumption.

We can now eliminate x2 by solving for the Schur complement as follows:(
Â2 − UT K̂−1U

)
x2 = c2 − UT K̂−1e.(3.9)

Once x2 has been computed, we can solve for z by solving the system

K̂z = e− Ux2.(3.10)
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To summarize, the algorithm we propose is the following.
1. Find Q = [Q1 Q2] such that QQT = I and QT

1 AQ1 is nonsingular.
2. Solve (3.9), where the quantities in that system are defined in (3.7)–(3.8).
3. Solve (3.10).
4. Compute x and y by multiplying the required quantities by Q or its compo-

nents and by using the orthogonality of Q.

3.2. Remarks and discussion of computational aspects.
1. A decomposition-free algorithm. The above formulation works for any valid

choice of Q, under the conditions specified. There are several ways to reduce
the cost of the step involving forming the matrix Q. For example, it is possible
to set Q to be a diagonal matrix with either 1’s or 0’s along its diagonal.
Constructing a nonsingular matrix QT

1 AQ1 amounts to eliminating rows and
columns of A such that the resulting smaller matrix is nonsingular.

2. Deflation. The algorithm relates to deflation techniques [11, 45], in that the
(1, 1) block is deflated. The original linear system, however, is nonsingular
and its solution space is not changed.

The singularity of the (1, 1) block is eliminated by reducing its size by exactly
its nullity. The advantage is that methods that rely on the nonsingularity may now
be applied to the reduced system. On the other hand, the computational cost of this
procedure, which involves solving two separate linear systems, needs to be addressed.

The following factors determine the computational cost of solving (3.9).
• The rank of A. The smaller the nullity q is, the smaller the cost would be.

For example, if rank(A) = n− 1 (which occurs often, for example, for certain
discretized PDEs with Neumann conditions), then (3.9) is merely a scalar
equation.
• Application of the Lanczos/Stieltjes procedure. The expression UT K̂−1U is

a quadratic form. It is well known [26] that the Lanczos/Stieltjes algorithm
can be applied to rapidly evaluate this quantity. Details and a careful error
analysis of the Lanczos/Stieltjes procedure can be found in [3, 6, 25, 26].
• Inexact solve and iterative refinement. x2 does not always need to be com-
puted exactly—for example, in cases where the original problem is nonlinear
and solving the linear system is a step in an inexact Newton-type solve. The
Lanczos/Stieltjes procedure can then be terminated after a small number of
steps. This reduces the overall cost of the algorithm. In the above mentioned
references the error analysis allows for having an upper and a lower bound
on the error in the computation of a quadratic form. In the event that the
resulting residual is still larger than required, iterative refinement can be per-
formed: solve (3.6) using the proposed algorithm; compute the residual and
pose it as the right-hand-side vector; repeat those two steps until satisfied.

4. Numerical examples.

4.1. A randomly generated linear system. Extensive tests with random
matrices have been performed and have produced qualitatively similar results.

Our first example is a linear system of the form (1.1) that was constructed in
the following manner: A is a 2500× 2500 block diagonal matrix of 50 pentadiagonal
blocks, consisting of normally distributed random numbers. Each pentadiagonal block
Ai, i = 1, . . . , 50, has nullity of at least 1, generated by setting Ai ← Ai − λmin(Ai)I
after the construction. Thus A is semidefinite and its rank should be at most 2450.
(In this example, the rank was verified to be exactly 2450.) The random matrix B
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Fig. 4.1. Condition numbers of A + γBBT (“-x”), the matrix K(γ) (“-o”), and BT (A +
γBBT )−1B (“-*”), as a function of γ, for numerical example 4.1.

is of size 2500× 500, and is comprised of five 500× 500 tridiagonal blocks assembled
together. The matrix K is thus of size 3000 × 3000; the right-hand side is a 3000-
element randomly generated vector.

The matrix K is well-conditioned: κ2(K) = 1303.2. Figure 4.1 depicts the condi-
tion numbers of the three matrices of interest, as γ changes: the 2× 2 block matrix,
the (1,1) block, and the Schur complement.

The results validate some of our previously stated observations in section 2. The
condition number of K(γ) does not vary significantly as long as γ is small, but as γ
gets larger it grows larger and behaves like γ2; compare with Corollary 2.4.

A + γBBT is singular for γ = 0, and when γ = 10−10 there is only a slight
improvement: κ2(K(10−10)) = 6.53× 1011. As γ grows larger, the condition number
becomes dramatically smaller: κ2(A+ 0.1BBT ) = 2100.0. But as γ grows yet larger,
the condition number starts increasing again due to the rank deficiency of the n× n
rank p matrix BBT .

Finally, the condition number of BT (A + γBBT )−1B improves as γ gets larger,
as expected.

Even though we do not have an analytical way of determining the optimal value
of γ, we note that the choice pointed out as a possibility in section 2, namely γ =
‖A‖/‖B‖2, works well in this example: it is equal to 0.1748 and is well within the
range of values for which the condition numbers of all three matrices are fairly close
to their minimum.

In Table 4.1 we present results of running the classical Uzawa algorithm. The
Uzawa parameter α was chosen to be equal to γ. As follows from the discussion in
section 2.3, the scheme should theoretically converge in this case for any initial guess.

The following observations can be made.
1. For γ very small, no convergence to the desired threshold is reached, within

the imposed maximum number of iterations. A+γBBT is still nearly singular
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Table 4.1
Performance of the classical Uzawa algorithm for the 3000 × 3000 randomly generated sparse

linear system of Example 4.1. The second, third, and fourth columns correspond, respectively, to the
norm of the relative residual, the norm of the error, and the number of iterations. The stopping
criterion was the norm of the relative residual smaller than 10−6. If this convergence criterion was
not satisfied after 2000 iterations, the program execution was aborted and the norms presented in
these cases are for 2000 iterations.

Log10γ ‖Rel. res.‖2 ‖Error‖2 Iter

-3 6.2322e-03 3.2085e-01 > 2000
-2 9.8987e-07 6.2448e-05 955
-1 9.6296e-07 6.1730e-05 100
0 4.9195e-07 5.9695e-05 14
1 1.2786e-07 1.1557e-04 4
2 4.0451e-08 3.0454e-04 2
3 1.2541e-07 1.2514e-02 1

and as a result, both the inner iteration and the outer iteration (which are
affected, respectively, by the conditioning of A and of the Schur complement)
are prone to numerical inaccuracies.

2. As γ becomes larger, both A+γBBT and BT (A+γBBT )−1B become better
conditioned. As a result the inner iteration produces accurate solutions, and
the outer iteration converges increasingly rapidly.

3. As γ grows larger yet, convergence continues to be rapid due to the smaller
condition number of the Schur complement. This follows since ρ(I − αS) =
(κ−1)/(κ+1), where κ is the condition number of S [14]. But A+γBBT and
K(γ) are now ill-conditioned; as a result the residual continues to go down,
but the norm of the error does not significantly change. We note (details
omitted) that the spectra of the matrices involved also change in a way that
can explain the difference in speed of convergence.

4.2. A geophysical inverse problem. Consider the following problem, whose
full description can be found in [30]. Given observations, d, of a field u at some
discrete locations, s, the model, m, is to be recovered. The connection between d and
u is

d = u(s) + ε = Qu+ ε,(4.1)

where Q projects the field u into the measurement locations s and ε is the noise. The
constrained problem formulation in [30] is based on the following strategy.

• The quantity to be minimized is ‖Qu− d‖.
• A forward problem (typically a second order PDE) A(m)u = f needs to be
solved exactly and forms a constraint.

Since the problem is ill-posed, it is regularized and the result is the following
constrained minimization problem:

minimize φ(u,m) =
1

2
‖Qu− d‖2 + β

2
‖W (m−m0)‖2

subject to A(m)u = f,

where m0 is a reference model and W could be, for example, a discretized second
order differential operator.
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Fig. 4.2. The 729 negative eigenvalues of the original matrix of numerical example 4.2, i.e.,
for γ = 0, vs. those of a modified matrix with γ = 0.01. The eigenvalues closest to zero are
approximately −0.0019 in both cases.

A Gauss–Newton solver is used, and in each step an indefinite linear system is
solved, where the (1,1) block is typically rank deficient, due to under-sampling. See
[30] for full details.

We present results of running a three-dimensional problem using finite volume
discretization. The regularization parameter β is equal to 10−4 and the noise level is
approximately 0.01. The projection matrix Q was chosen to be a discretized gradient
operator in one set of tests, and a diagonal matrix in another set of tests, corresponding
to sampling of half of the points in the model. Both sets of tests produce results that
are qualitatively similar, and the graphs show the results for the first set of tests.

Figures 4.2 and 4.3 were generated for a 1970× 1970 linear system, where A is of
size 1241× 1241 and is of rank 876 and B is of size 1241× 729.

Figure 4.2 depicts the 729 negative eigenvalues of K(γ). Our analysis (section
2) does not apply to this case; nevertheless, the behavior is similar to our analytical
observations. For γ = 0.01 there is some clustering of negative eigenvalues near −100.
On the other hand, the largest positive eigenvalues of the linear system corresponding
to γ = 0.01 are significantly larger than those of the original matrix. The maximal
eigenvalue and the condition number of the matrix corresponding to γ = 0.01 are
2659.0 and 1.44×108, respectively, whereas for A (i.e., for γ = 0) they are 506.42 and
2.32× 106, respectively.

Figure 4.3 examines the condition number and shows similar behavior to Figure
4.1. There is a range of values of γ, roughly between 10−6 to 10−3, for which the
condition numbers of the (1,1) block and the system’s indefinite matrix are close to
their minimum. (‖A‖/‖B‖2 = 3.90× 10−6; thus this value is within this range.) The
condition number of the Schur complement is approximately 107 for this range of
values and is still far from its minimal value. Nevertheless, for this range of values all
three condition numbers are either close to or much smaller than their corresponding
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Fig. 4.3. Condition numbers of the (1, 1) block (“-x”), the whole KKT matrix (“-o”), and the
Schur complement (“-*”), as a function of γ, for numerical example 4.2.

values in the original problem.

5. Concluding remarks. We have discussed indefinite linear systems with a
2 × 2 block structure, possibly having a singular (1,1) block. Our focus has been on
how to modify the linear systems in a way that may make it easier to solve them.

In the main part of this paper we have examined some aspects of the augmented
Lagrangian technique. In particular, we have looked at the case where the weight
matrix W is equal to γI, and we have made some observations regarding the spectrum
of the associated matrix.

There is no obvious way to choose the parameter γ, and our analysis and experi-
ments indicate that the choice is a delicate issue. The condition numbers of the (1,1)
block, the indefinite matrix, and the Schur complement depend on γ in different ways.
For the (1,1) block (in the event that it is singular) there is typically a decrease in
the condition number as γ gets far from zero, but the condition number starts rapidly
growing again for large values of γ. The indefinite matrix has a condition number
that is monotonically increasing with γ, but the increase is rapid only for large values
of γ. Finally, the condition number of the Schur complement monotonically decreases
as γ grows larger.

The important point is that there seems to be a range of values of γ where at
least two of those condition numbers, and possibly all three, are close to their minimal
value. We have experimentally noticed that γ = ‖A‖/‖B‖2 may be a good choice.

For low nullity of the (1,1) block we have introduced a two-step procedure,
whereby in the first step a small subset of the vector of unknowns is computed.
The size of this vector is equal to the rank of the null space of the (1,1) block. It
is possible to use the Lanczos/Stieltjes procedure to evaluate the quadratic forms in-
volved, and most of the computational work is devoted to solving the linear system
associated with the rest of the unknowns. This is now a block-structured indefinite
system with a nonsingular (1,1) block, and techniques that rely on the nonsingularity
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can be straightforwardly applied.
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