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STRUCTURED SHIFTS FOR SKEW-SYMMETRIC MATRICES∗
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Abstract. We consider the use of a skew-symmetric block-diagonal matrix as a structured shift. Properties of
Hamiltonian and skew-Hamiltonian matrices are used to show that the shift can be effectively used in the iterative
solution of skew-symmetric linear systems or nonsymmetric linear systems with a dominant skew-symmetric part.
Eigenvalue analysis and some numerical experiments confirm our observations.
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1. Introduction. The increasing importance of the numerical solution of problems re-
lated to Hamiltonian and port-Hamilitonian systems [5, 27] generates a potential interest in
designing faster numerical solvers for skew-symmetric linear systems and nonsymmetric linear
systems with a dominant skew-symmetric part. A real skew-symmetric matrix S satisfies

ST = −S.

Such a matrix has zero diagonal elements, and its eigenvalues have been known for well
over a century [26, 30] to be zero or purely imaginary, appearing in complex conjugate pairs.
This immediately implies that skew-symmetric matrices are singular if their dimension is an
odd number, and they may, of course, be singular also when their dimension is even. Direct
solvers [6, 13, 15] require special pivoting strategies due to the presence of zeros on the
diagonal. Iterative solvers [16, 18, 19] tend to be slow and challenging. Despite the Lanczos
process being attractively simple for skew-symmetric matrices, the conjugate gradient (CG)
method cannot be directly applied and in practice one has to resort to applying it to the normal
equations, having implications on conditioning and convergence rate. Minimum residual
methods face similar challenges [19, 22].

Hamiltonian and skew-Hamiltonian matrices are intimately connected to skew-symmetric
matrices. Let us define them and describe a few of their properties; see [27] for a thorough
review.

DEFINITION 1.1. Consider the 2n× 2n matrix

Ĵ =

[
0 In
−In 0

]
,

where In denotes the n× n identity. Then a matrix A ∈ R2n×2n is Hamiltonian if (AĴ)T =
AĴ . A matrix B is skew-Hamiltonian if (BĴ)T = −(BĴ).

The following three relations are equivalent [27, Theorem 2.1.1]:
1. A is Hamiltonian.
2. A = ĴH , where H is symmetric.
3. ĴA is symmetric.
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Among important properties of Hamiltonian matrices we mention Hamiltonian eigensym-
metry: if λ is an eigenvalue of a real Hamiltonian matrix, then so are −λ, λ̄, and −λ̄; if λ is
an eigenvalue of a real skew-Hamiltonian matrix, then so is λ̄ and each eigenvalue has even
algebraic multiplicity. See [10, Proposition 1.2] and [27, Proposition 2.3.1].

Let us also mention a special type of Hamiltonian matrices:
DEFINITION 1.2. A matrix A is Hamiltonian-positive if it is Hamiltonian and its symmet-

ric generator H = ĴTA is positive definite.
All eigenvalues of Hamiltonian-positive matrices are purely imaginary [1]. Properties and

fast numerical computation of the eigenvalues of Hamiltonian and skew-Hamiltonian matrices
have been extensively studied; see [9, 24, 25] and the references therein. In the context of
iterative methods for eigenvalue problems, the symplectic Lanczos method [7, 8, 31] is a Krylov
subspace method featuring short recurrences and based on the notion of J-orthogonality, i.e.,
orthogonality with respect to Ĵ . The algorithm generates a so-called J-Hessenberg matrix on
the projected subspace.

In this paper we consider a symmetric permutation of Ĵ and use it as a structured shift for
solving skew-symmetric linear systems. The theory of Hamiltonian and skew-Hamiltonian
matrices is useful for performing an eigenvalue analysis of the matrices involved. In Section 2
we introduce the idea of a skew-symmetric shift and in Section 3 we perform spectral analysis
to illustrate its merits. In Section 4 we briefly discuss how skew-shifted linear systems
may be iteratively solved. In Section 5 we analyze a variant of the Hermitian and skew-
Hermitian splitting method using the proposed skew-symmetric shift. In Section 6 we offer
brief concluding remarks.

2. Structured skew-symmetric shifts. Let

J2 =

[
0 1
−1 0

]
,

and consider

(2.1) J = In ⊗ J2.

The matrix J is a block-diagonal skew-symmetric 2n × 2n matrix with respect to 2 × 2
blocks, with copies of J2 along its main 2× 2 block-diagonal. For example, for n = 3, the
corresponding matrix J is 6× 6 and is given by

J =


0 1
−1 0

0 1
−1 0

0 1
−1 0

 .

J is banded and there is no loss of generality here with respect to the notion of Hamiltonian or
skew-Hamiltonian matrices, because J = P ĴPT , where P is a permutation matrix associated
with the permutation vector

p = (1, 3, 5, . . . , 2n− 1, 2, 4, 6, . . . , 2n).

We can then refer to permutations Ĥ = PHPT and Ŝ = PSPT in Definition 1.1 for
Hamiltonian and skew-Hamiltonian matrices.
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It is easy to see that:
• J is orthogonal: JT = −J and JTJ = JJT = I2n; from this it also follows that
J2 = −I2n.

• The eigenvalues of J are ±i, where

i =
√
−1,

and each of them is of algebraic multiplicity n.
The above properties apply to Ĵ as well. The matrix J was used, for example, in [7, 14] in the
context of the SR decomposition and symplectic Lanczos for Hamiltonian matrices.

A common way of handling the numerical difficulties related to solving linear algebra
problems with a given skew-symmetric matrix, S, is to shift it if possible, namely to add a
scaled identity to it. The standard shift is S + αI , where α is a real scalar and I is the identity.
The eigenvalues of S are shifted by α and the eigenvectors are preserved. The spectral effect of
the shift is thus simple and fully understood. In the case of singular skew-symmetric matrices,
the standard shift allows for eliminating zero eigenvalues and hence the singularity. Similarity
transformations are easy to perform. If QTSQ = T with Q orthogonal and T tridiagonal and
skew-symmetric, then QT (S + αI)Q = T + αI . Iterative linear solvers have been based on
shifts and have been proven to be effective; see [21, 22, 23, 29, 33].

The standard shift does not preserve skew-symmetry. Therefore, a solver that relies on the
skew-symmetry of the original matrix S needs to be adjusted if S is shifted. It is thus useful to
extend our set of computational tools by considering structure-preserving alternatives.

This leads us to the main idea of this work.
DEFINITION 2.1. Given a real scalar α and a skew-symmetric matrix, S, consider

(2.2) S(α) = S + αJ,

where J is defined in (2.1). We call this operation a skew-symmetric shift and refer to the
matrix S(α) as skew-shifted with respect to S ≡ S(0).

The operation defined in (2.2) preserves skew-symmetry. We refer to it as a shift even
though it does not behave the same way as the standard shift by a scaled identity matrix.
The skew-symmetric shift does not generally preserve the eigenvectors and does not shift the
eigenvalues additively by α, but it does, nonetheless, have a shifting effect on the spectrum,
which we analyze next.

3. The eigenvalues of skew-shifted matrices. Let us consider the effect of the skew-
symmetric shift on the eigenvalues of S. We will assume without loss of generality that α > 0.
(With some trivial adjustments, all forthcoming analytical observations can be adapted to
α ≤ 0.)

We start with a simple example, which allows us to make some basic analytical observa-
tions. Suppose S is a 2n × 2n skew-symmetric matrix that has the same nonzero structure
as J :

S = D ⊗ J2,

where D is a diagonal n × n matrix. Without loss of generality, let us assume that D has
positive diagonal entries, dj , j = 1, . . . , n. The eigenvalues of S are given by

λj(S) = ±idj , j = 1, . . . , n.

By known properties of eigenvalues of Kronecker products, the eigenvalues of the skew-shifted
matrix are

λj(S(α)) = ±i(dj + α), j = 1, . . . , n.
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The magnitudes of the shifted purely imaginary eigenvalues are |i(dj + α)| = dj + α, j =
1, . . . , n, and the effect on the eigenvalues for this simple case is different from the effect
caused by a standard shift by the identity matrix. For the matrix S,

λj(S + αI) = ±idj + α, j = 1, . . . , n.

The shifted eigenvalues, when a scaled identity is used, move in one direction only, along the
horizontal (real) axis, and their magnitudes are

√
d2j + α2, j = 1, . . . , n. Since

√
d2j + α2 ≤

dj + α, the skew-symmetric shift moves away the eigenvalues further from 0 compared to the
standard shift.

Figure 3.1 illustrates the difference in the effect of the skew-symmetric shift vs. the
standard shift for this simple example.
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FIG. 3.1. An illustration of the effect of a skew-symmetric shift for a simple block-diagonal case. The matrix is
given by S = D ⊗ J2, where D is a diagonal 16× 16 matrix with uniformly-spaced positive diagonal entries from
1 to 16. Shown are the eigenvalues of S, S + αJ and S + αI , with α = 20.

For general skew-symmetric matrices that do not have the structure of J we typically
cannot explicitly compute the eigenvalues of the skew-shifted matrix and Figure 3.1 is no
longer representative of the spectral distribution. But we can make a few observations about
the effect on the spectrum for α sufficiently large.

THEOREM 3.1. Suppose without loss of generality that the eigenvalues of S are given by

λj(S) = ±iµj , j = 1, . . . , n,
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where µj ≥ 0, listed in descending order:

µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0.

Then, if α > µ1, the skew-shifted matrix S(α) = S+αJ is nonsingular and its eigenvalues are
grouped within two distinct intervals on the imaginary axis, denoted by iI and corresponding
to rotating the interval

(3.1) I =
[
− µ1 − α, µ1 − α

]⋃[
− µ1 + α, µ1 + α

]
⊂ R

by 90 degrees onto the imaginary axis.
Proof. Weyl’s eigenvalue inequality theorem [32] leads to several useful eigenvalue

inequalities, and one such result [20, Corollary 4.3.15] states that ifC andD are two Hermitian
matrices, say of size n × n, whose eigenvalues are ordered in decreasing order, λ1(C) ≥
λ2(C) ≥ · · · ≥ λn(C) and λ1(D) ≥ λ2(D) ≥ · · · ≥ λn(D), then the eigenvalues of C +D,
λj(C +D), j = 1, . . . , n, satisfy

λj(C) + λn(D) ≤ λj(C +D) ≤ λj(C) + λ1(D).

Since J and S are skew-symmetric, the matrices iJ and iS are Hermitian (indefinite) and
the eigenvalues of iS are given by −µ1 ≤ −µ2 ≤ · · · ≤ −µn ≤ 0 ≤ µn ≤ · · · ≤ µ2 ≤ µ1,
whereas the eigenvalues of iJ are 1 and−1, each of algebraic multiplicity n. Setting C = iαJ
and D = iS and assuming α > µ1, we have iS(α) = C + D and obtain the following 2n
conditions on its eigenvalues:

−µ1 − α ≤ λ−j (iS(α)) ≤ µ1 − α < 0, j = 1, . . . , n,

and

0 < −µ1 + α ≤ λ+j (iS(α)) ≤ µ1 + α, j = 1, . . . , n.

Thus, the eigenvalues of S(α) are within the intervals defined by iI with I defined in (3.1),
as stated in the theorem. Since α > µ1, the two intervals defining I are decoupled and are
located on both sides of the origin, and S(α) is nonsingular as claimed.

We remark that it is possible to obtain the bound on the maximum modulus directly by
using the fact that S and S+αJ are unitarily diagonalizable. The spectral radius of S satisfies
ρ(S) = maxj |λj(S)| = µ1 = ‖S‖2, and

max
j
|λj(S + αJ)| = ρ(S + αJ) = ‖S + αJ‖2

≤ ‖S‖2 + α = ρ(S) + α = µ1 + α,

giving the absolute value of the endpoints of iI , which are symmetric about the origin.
COROLLARY 3.2. Under the conditions of Theorem 3.1, an upper bound on the spectral

condition number of S(α) = S + αJ is given by

(3.2) κ2(S + αJ) ≤ α+ µ1

α− µ1
.

Consequently, if κ(S) > 1, a sufficient condition for S + αJ to be better conditioned than S
is

(3.3) α ≥ µ1
µ1 + µn
µ1 − µn

= µ1
κ(S) + 1

κ(S)− 1
> µ1.
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Proof. Denote the eigenvalues of S + αJ by λj(S + αJ), j = 1, . . . , n. By skew-
symmetry, the condition number of S + αJ is given by

κ(S + αJ) =
maxj |λj(S + αJ)|
minj |λj(S + αJ)|

.

Using the symmetry of I about the origin and taking its endpoints, it can be algebraically
confirmed that if (3.3) is satisfied, then by (3.2)

κ(S + αJ) ≤ α+ µ1

α− µ1
≤ µ1

µn
= κ(S),

which gives a sufficient condition for S + αJ to be better conditioned than S.
Let us make a few remarks on the results stated in Corollary 3.2.

1. If κ(S) = 1, S is perfectly conditioned and skew-shifting it is of no practical interest.
Therefore, we assume κ > 1 and α in (3.3) is well defined. On the other hand, when
S is very ill-conditioned, namely κ(S)� 1, (3.3) means α ' µ1.

2. We note that (3.2) is an analytical upper bound for κ(S + αJ), whereas κ(S) is
known exactly in terms of the eigenvalues of S. In practice, we have observed that
the range of values of α for which S + αJ is better conditioned than S is larger
than the range predicted by the analysis, which is just a sufficient but not a necessary
condition.

3. The bound on the condition number goes down monotonically towards 1 as α in-
creases, and may suggest taking α as large as possible. A similar situation holds for
the standard shift. However, aiming to minimize the condition number of S + αJ
is not the only consideration, as the discussion in Section 5 shows. Therefore, we
cannot always aim for selecting an arbitrarily large value of α.

4. Solving skew-shifted systems. Consider a CG-type solver for solving the linear
system

(4.1) (S + αJ)x = b.

Due to the skew-symmetry, double steps must be considered, and this amounts to applying
CG to the normal equations [19]. In [18] we presented a version of CGNE that uses Golub-
Kahan bidiagonalization [17]. Algorithm 1, which contains trivial notational modifications
of [18, Algorithm 4], lays out the iterative process.

Algorithm 1 Golub-Kahan bidiagonalization-based CGNE for (S + αJ)x = b.
Given b, compute u1β1 := b, v1γ1 := −(S + αJ)u1, τ1 := β1/γ1, x1 := v1τ1
for j = 1 step 1 until convergence do
uj+1βj+1 := (S + αJ)vj − ujγj
vj+1γj+1 := −(S + αJ)uj+1 − vjβj+1

τj+1 := −τjβj+1/γj+1

xj+1 := xj + vj+1τj+1

end for

EXAMPLE 4.1. Consider the convection-diffusion equation in three dimensions with
constant convective coefficients,

−∆u+ (σ, τ, µ)∇u = f,
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on the unit cube, subject to homogeneous Dirichlet boundary conditions. We discretize it using
a uniform mesh with mesh size h = 1/(n+ 1) and applying centered finite differences. This
yields an n3 × n3 linear system. Denoting the mesh Reynolds numbers by β = σh

2 , γ = τh
2 ,

and δ = µh
2 , the discretization is numerically stable if β, γ, δ < 1. Those three values

determine the skew-symmetric part of the discrete operator associated with the linear system.
We discard the symmetric part and use the skew-symmetric part as the matrix for the linear
system; we denote it by S.

We take size 4096×4096 and apply Algorithm 1 to solve linear system (4.1). The infinity
norm of S is 3.6, and it is an effective upper bound on the maximal eigenvalue of S, which
is approximately 3.54. We pick three values of α. For α = 1 there is no convergence. The
middle value, α = 4, is a bit larger than the maximal modulus of S and its infinity norm and
it guarantees that S + αJ is nonsingular by Theorem 3.1, as well as better conditioned than
S, by Corollary 3.2. Convergence in this case is slow but steady. For α = 10 convergence is
fast and the residual norm is reduced to approximately 10−7 within eight iterations, i.e., 16
matrix-vector products.
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FIG. 4.1. Convergence behavior of CGNE (Algorithm 1) for the 4096× 4096 skew-symmetric linear system
described in Example 4.1. We use β = 0.5, γ = 0.6, δ = 0.7. The right-hand side, b, was set such that the solution
of the linear system is the vector of 1s. The initial guess was zero, and the initial residual norm was ‖b‖ = 49.83.

5. Hermitian/skew-Hermitian splitting iterative schemes. The Hermitian and skew-
Hermitian splitting (HSS) iteration scheme [4] for solving a nonsymmetric linear system
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Ax = b is given by

(5.1)
{

(αI +H)xk+ 1
2

= (αI − S)xk + b,

(αI + S)xk+1 = (αI −H)xk+ 1
2

+ b,

where H and S are the symmetric and skew-symmetric parts, respectively, of A:

H =
(A+AT )

2
, S =

(A−AT )

2
.

In [4], where the scheme was first introduced, the authors assumed that H is positive definite
and derived an optimal value of α that minimizes an upper bound on the spectral radius of
the iteration matrix. Krylov subspace methods can accelerate the convergence of the scheme
while relaxing the boundedness requirement on the spectral radius of the iteration matrix.
Spectral analysis of this scheme and extensions have been given in several papers; see, for
example, [2, 3, 4, 11, 12].

5.1. A skew-shifted HSS iterative scheme. We now consider a scheme based on replac-
ing the standard shift in the original HSS scheme (5.1) by the skew-symmetric shift. Consider

(5.2)
{

(αJ +H)xk+ 1
2

= (αJ − S)xk + b,

(αJ + S)xk+1 = (αJ −H)xk+ 1
2

+ b.

In the second half-iteration S + αJ is skew-symmetric. Therefore, we can directly apply
a standard short-recurrence Krylov subspace method for skew-symmetric matrices without
having to resort to special schemes such as [21, 22, 33].

Let us establish the nonsingularity of the two matrices in (5.2) that are to be inverted.
PROPOSITION 5.1. For α sufficiently large, the matrices αJ + H and αJ + S are

nonsingular, and therefore scheme (5.2) is well defined.
Proof. The matrix αJ + H is nonsingular if and only if JT (αJ + H) = αI − JH is

nonsingular, and for the latter, if H is symmetric positive definite then JH is Hamiltonian-
positive (Definition 1.2) and all its eigenvalues are purely imaginary. Therefore αI − JH is
nonsingular for α 6= 0, which implies that αJ +H is nonsingular.

As for αJ + S, by Theorem 3.1 and Corollary 3.2, for α sufficiently large αJ + S is
nonsingular and better conditioned than S.

Scheme (5.2) is mathematically equivalent to applying HSS to the transformed linear
system −JAx = −Jb by considering the split JA = (−JH) + (−JS):{

(αI − JH)xk+ 1
2

= (αI + JS)xk − Jb,
(αI − JS)xk+1 = (αI + JH)xk+ 1

2
− Jb.

Let us denote the iteration matrix for (5.2) as

TJJ = (αJ + S)−1(αJ −H)(αJ +H)−1(αJ − S).

Equivalently, in terms of standard shifts of Hamiltonian/skew-Hamiltonian matrices, we have

TJJ = (αI − JS)−1(αI + JH)(αI − JH)−1(αI + JS).

It is possible to avoid the loss of symmetry in solving for H + αJ in (5.2) by considering
an alternative scheme that skew-shifts S by αJ and shifts H by the standard shift:

(5.3)
{

(αI +H)xk+ 1
2

= (αI − S)xk + b,

(αJ + S)xk+1 = (αJ −H)xk+ 1
2

+ b.
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The parameter α in the first half of the iteration may be replaced by a different parameter
in the second half of the iteration. This scheme preserves symmetry for iterations involving
inversion of a shifted version of H and skew-symmetry for iterations involving a skew-shifted
version of S. Here, too, we can obtain a mathematically equivalent scheme involving shifted
Hamiltonian and skew-Hamiltonian matrices:{

(αI +H)xk+ 1
2

= (αI − S)xk + b,

(αI − JS)xk+1 = (αI + JH)xk+ 1
2
− Jb.

The iteration matrix for (5.3) is

TIJ = (αJ + S)−1(αJ −H)(αI +H)−1(αI − S),

and here, too, it is possible to express TIJ as a product of shifted Hamiltonian and skew-
Hamiltonian matrices.

5.2. Spectral analysis. Let us assess the convergence of (5.2). We use here the technique
applied in [4]. Applying a similarity transformation

T̂JJ = (αJ + S) TJJ (αJ + S)−1,

TJJ and T̂IJ have have same eigenvalues. We write the latter as a product of two matrices:

T̂JJ = (αJ −H)(αJ +H)−1︸ ︷︷ ︸
T̂H

(αJ − S)(αJ + S)−1︸ ︷︷ ︸
T̂S

.

The spectral radius of TJJ is bounded as follows:

ρ(TJJ) = ρ(T̂JJ) ≤ ‖T̂H‖2‖T̂S‖2,

and we now examine each of the matrices T̂S and T̂H .
LEMMA 5.2. If H is symmetric positive definite, the eigenvalues of

T̂H = (αJ −H)(αJ +H)−1

are all equal to 1 in modulus.
Proof. Let T̂Hx = λx. The eigenvalue problem can be written as a generalized eigenvalue

problem of the form

(αJ −H)y = λ(αJ +H)y.

Alternatively, T̂H can be written as a Cayley transform of −JH:

T̂H = (αI + JH)(αI − JH)−1.

Either way, we get that the eigenvalues of T̂H are related to those of JH by

JHy =

(
α
λ− 1

λ+ 1

)
y.

Since H is positive definite, JH is Hamiltonian-positive and all its eigenvalues are purely
imaginary [1] (see Definition 1.2). Suppose its eigenvalues are given by ±iµj , j = 1, . . . , n.
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Then

α
λj − 1

λj + 1
= ±iµj , j = 1, . . . , n,

from which it follows that the eigenvalues of T̂H are given by

λj =
α± iµj
α∓ iµj

, j = 1, . . . , n.

Therefore |λj | = 1 for all j = 1, . . . , n.
LEMMA 5.3. The eigenvalues of

T̂S = (αJ − S)(αJ + S)−1

satisfy

λj =
α+ νj
α− νj

,

where νj are the eigenvalues of the skew-Hamiltonian matrix JS.
Proof. Repeating the steps of the proof of Lemma 5.2, the eigenvalues of T̂S satisfy the

generalized eigenvalue problem

(αJ − S)y = λ(αJ + S)y,

from which it follows that

JSy =

(
α
λ− 1

λ+ 1

)
y.

The required result follows. Similarly to Lemma 5.2, it can also be obtained by writing down
the Cayley transform of the skew-Hamiltonian matrix −JS:

T̂S = (αI + JS)(αI − JS)−1,

and proceeding to compute the eigenvalues.
Given that the spectral radii of T̂S and T̂H may not be closely below their respective

spectral norms, convergence of the scheme cannot be analytically guaranteed. Nonetheless,
from Lemmas 5.2 and 5.3 it follows that the availability of a suitable analytical choice of α
may primarily depend on the spectral distribution of JS. Since the spectral radius of T̂H is
1, a reasonable strategy is to aim to minimize the spectral radius of T̂S . We show below a
scenario where this may be possible to accomplish.

DEFINITION 5.4. Let S be a nonsingular 2n × 2n skew-symmetric matrix. Denote its
main 2× 2 diagonal blocks by

T` =

[
0 s`,`+1

−s`,`+1 0

]
, ` = 1, 3, . . . , n.

We say that S is skew-diagonally dominant if

‖T`‖ = |s`,`+1| ≥
∑

j 6=`,`+1

(|s`,j |+ |s`+1,j |) , ∀ ` = 1, 3, . . . , n.
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Definition 5.4 basically extends the standard notion of diagonally-dominant matrices to
be defined with respect to 2× 2 blocks, which is suitable for skew-symmetric matrices, due
to having zero diagonal elements. The skew-symmetric shift makes a given skew-symmetric
matrix skew-diagonally dominant for a sufficiently large value of α.

Going back to Lemma 5.3, it may be possible to find a suitable value of α if the skew-
symmetric part of A is skew-diagonally dominant. For example, in the simple case where
S ≈ ϕJ with ϕ > 0, the lemma indicates that taking α ≈ ϕ may provide a good choice for
the shift. (In practice we may want to take α ' ϕ to improve the conditioning and spectral
distribution of the skew-shifted matrix.)

While Lemma 5.2 applies toH symmetric positive definite (for which JH is Hamiltonian-
positive), scheme (5.2) may still work for H mildly indefinite. The Hamiltonian-positivity is
lost in this case, but if the spectral radius stays close to 1, it may still be possible to obtain
convergence of the scheme.

The scheme (5.3) is potentially more practical than (5.2) because the symmetry with
respect to H-related solves is preserved. Eigenvalue problems

(αJ −H)x = λ(αI +H)x ; (αI − S)y = µ(αJ + S)y

need to be solved in order to evaluate the spectral radius of the iteration matrix. These
eigenvalue problems may be rewritten as

(λ+ 1)(J − λI)−1Hx = αx; (µ+ 1)(I − µJ)−1Sy = αy,

where the matrices J − λI and I − µJ are block diagonal with respect to 2× 2 blocks.

5.3. Acceleration using Krylov subspace iterations. From the analysis in Section 5.2
it is evident that it is difficult to find a choice of the parameter α that guarantees boundedness
of the spectral radius of the iteration matrix, and hence convergence. We thus consider relaxing
this requirement by using the proposed scheme as a preconditioner for a Krylov subspace
solver.

Similarly to the algebraic derivations in [12, Section 3], we can write schemes (5.2)
and (5.3) as

xk+1 = Txk + c,

where T = I −M−1A and c = M−1b. For (5.2), the iteration matrix is T = TJJ and we
use the notation M = MJJ . Similarly, we denote by M = MIJ the matrix corresponding
to T = TIJ , related to (5.3). Adapting the algebraic steps of [12, Section 3] to the current
scheme, it follows that

MJJ = − 1

2α
(αI − JH)(αJ + S)

for (5.2), and

MIJ =
1

2α
(αI +H)(I − J)(αJ + S)

for (5.3).
We can thus takeMIJ orMJJ as preconditioners for a suitable Krylov subspace solver, for

example GMRES. In practice there is no need to keep the constants± 1
2α in the preconditioners

because they do not make a difference in the iteration; this is done also in [12, Section 4]. The
nonsingularity of the two potential preconditioners follows from Proposition 5.1.
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The matrix MIJ is potentially more appealing as a preconditioner for GMRES than MJJ ,
because it involves inversions that can be carried out easily. The matrix I−J is block diagonal
with respect to 2× 2 blocks and it is trivial to solve for directly. The shifted matrix αI +H is
symmetric positive definite, and CG can be used here as an inner iteration. The skew-shifted
matrix αJ + S is well conditioned for α sufficiently large, and we have shown in Section 4
that CGNE can be effectively applied to solve such linear systems. Based on the theory of
inner-outer iterations [28], it is possible to apply inner iterations of CG and CGNE to a crude
tolerance throughout the GMRES outer iteration.

EXAMPLE 5.5. We return to the convection-diffusion equation in three dimensions
with constant convective coefficients, specified in Example 4.1, but allow a shift that makes
the symmetric part of the coefficient matrix indefinite. In other words, we allow having
a Helmholtz-type operator rather than a Laplacian for the symmetric part of the discrete
differential operator. The problem corresponds to a discretization of the PDE

−(∆ + k2)u+ (σ, τ, µ)∇u = f

on the unit cube, subject to homogeneous Dirichlet boundary conditions. We use the same
discretization as described in Example 4.1, and make two choices of mesh Reynolds numbers.
On the left-hand side of Figure 5.1 we show the result of using the same mesh Reynolds
numbers used in Example 4.1, and on the right-hand side we show an example where the
matrix is skew-diagonally dominant, as per Definition 5.4. We select k so that the symmetric
part of the coefficient matrix (scaled by h2, where h is the mesh size) is H = L− ξI , where
L is the discrete Laplacian (scaled by h2) and I is the identity matrix, and test for ξ = 0 (for
which H is the discrete Laplacian) as well ξ = 1 and ξ = 2. We use MIJ (scaled by −2α).
Details on the convective coefficients used are given in the caption of Figure 5.1.

We apply a loose inner stopping criterion, to accelerate convergence. Our experiments
show that the iterative scheme is robust even when an inner tolerance as low as 0.01 and a
maximum of five or six matrix-vector products for each of the CG and the CGNE schemes
are imposed. In the last few outer iterations, close to convergence, the tolerance for the inner
iterations was tightened. As evident from the figures, the overall computational cost of the
scheme is modest.

In the skew-diagonally dominant case, the preconditioned Krylov scheme is rather robust
with respect to higher values of ξ and we show convergence also for ξ = 2. When the matrix
is not skew-diagonally, dominant convergence deteriorates more rapidly when H becomes
indefinite, as can be observed on the left-hand plot, but the scheme still converges.

We note that the stationary scheme (5.3) converges for this example when the matrix is
strongly skew-diagonally dominant and H is positive definite or mildly indefinite, but did not
converge otherwise, for example in the setup of the left-hand figure. Altogether it is less robust
as a standalone solver than the preconditioned Krylov solver.

6. Concluding remarks. We have introduced structured shifts for skew-symmetric ma-
trices, which are shown to be useful in solving linear systems with a strong skew-symmetric
component. Hamiltonian and skew-Hamiltonian matrices provide a valuable tool for per-
forming an eigenvalue analysis. An HSS-like solver using skew-symmetric shifts has been
introduced. Obtaining analytical bounds on convergence is challenging, but it is possible to
obtain some results connecting the bounds to the spectra of skew-symmetric, Hamiltonian,
and skew-Hamiltonian matrices, and the scheme seems robust when used as a preconditioner
for Krylov subspace solvers.

Acknowledgments. I am grateful to Volker Mehrmann for his careful reading and in-
sightful comments on an earlier version of this paper and to the referees for their very helpful
reviews.
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FIG. 5.1. Convergence behavior of GMRES, preconditioned with MIJ applied to variations of the problem
described in Example 5.5. On the left-hand side we use β = 0.5, γ = 0.6, and δ = 0.7. The values of ξ are given
in the legends of the figures. On the right-hand side β = 5, γ = 0.6, and δ = 0.7. We select for all experiments
α = 10. The right-hand side was set so that the solution is the vector of all 1s. The initial guess was the zero vector.
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