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AUGMENTATION-BASED PRECONDITIONERS FOR SADDLE-POINT SYSTEMS1

WITH SINGULAR LEADING BLOCKS∗2

SUSANNE BRADLEY† AND CHEN GREIF‡3

Abstract. We consider the iterative solution of symmetric saddle-point matrices with a singular leading block.4

We develop a new ideal positive definite block-diagonal preconditioner that yields a preconditioned operator with four5

distinct eigenvalues. We offer a few techniques for making the preconditioner practical, and illustrate the effectiveness6

of our approach with numerical experiments. The novelty of the paper lies in the generality of the assumptions made:7

as long as the saddle-point matrix is nonsingular, there is no assumption on the specific rank of the leading block.8

Current ideal preconditioners typically rely either on invertibility or a high nullity of the leading block, and the new9

technique aims to bridge over this gap. A spectral analysis is offered, accompanied by numerical experiments.10
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1. Introduction. Consider the saddle-point system13

(1.1)
[
A BT

B 0

] [
x
y

]
=

[
f
g

]
,

where A ∈ Rn×n is symmetric positive semidefinite and B ∈ Rm×n has full row rank, with
m < n. We denote the coefficient matrix by

K =

[
A BT

B 0

]
.

We assume throughout that K is invertible. A necessary and sufficient condition for this is14

that ker(A) ∩ ker(B) = {0}; see [1, Theorem 3.2]. Thus, the nullity of A must be no greater15

than m, or K will necessarily be singular. We therefore say that a leading block A with nullity16

m is lowest-rank or maximally rank-deficient. Under the assumptions above, the matrix K is17

symmetric and indefinite, and the solution of the linear system (1.1) poses several numerical18

challenges; we refer to the survey of [1] for an overview of solution methods.19

Our focus is on positive definite preconditioners, which maintain symmetry of the precon-
ditioned operator and can therefore be used with a symmetric iterative solver such as MINRES
[16]. When A is positive definite, the preconditioner of Murphy, Golub, and Wathen [14]

M1 =

[
A 0
0 BA−1BT

]
has the property that the preconditioned operator M−11 K has three distinct eigenvalues,20

meaning that a preconditioned iterative solver (such as MINRES) will converge within three21

iterations in exact arithmetic. In practice, the matrices A and BA−1BT are too expensive to22

form and solve for exactly, so approximations must be sought.23

The case in which A is singular has been less studied; see [6, 10, 11] for preconditioning
approaches in this setting. Golub, Greif, and Varah [10] have analyzed the positive definite
block-diagonal preconditioner

M2 =

[
A+BTWB 0

0 B(A+BTWB)−1BT

]
,
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where W ∈ Rm×m is a positive semidefinite matrix such that A + BTWB is positive24

definite. This can be considered a generalization of M1, in which a semidefinite term is25

first added to the leading block to make it positive definite. Because of the requirement that26

ker(A) ∩ ker(B) = {0}, the matrix A + BTWB is necessarily positive definite if W is27

positive definite (though this is not a necessary condition unless A is lowest-rank).28

While the preconditioned operatorM−12 K is not guaranteed to have a fixed, small number29

of distinct eigenvalues, it is shown in [10, Theorem 2.5] that the eigenvalues are bounded30

within the intervals
[
−1, 1−

√
5

2

]
∪
[
1, 1+

√
5

2

]
. However, from [6, Theorem 3.5] and [11,31

Theorem 4.1], we can observe thatM−12 K does have exactly two distinct eigenvalues when A32

has maximal nullity.33

Contribution of this paper. At present, to the best of our knowledge the literature34

provides ideal positive definite block-diagonal preconditioners that yield preconditioned35

operators with a small number of distinct eigenvalues (and, therefore, will lead to convergence36

of a preconditioned iterative solver in a small number of iterations in the absence of round-off37

error) in the cases where A has full rank and where A has maximal nullity. In this work,38

we bridge the gap between the full-rank and minimal-rank (or maximal-nullity) cases by39

providing such a preconditioner for cases in which (n − m) < rank(A) < n. This is40

potentially meaningful because on the one hand we cannot invert A and given its assumed41

rank deficiency, the Schur complement BA−1BT does not exist either, making it difficult to42

develop standard preconditioners. And on the other hand unique algebraic properties that have43

been studied in [6, 10, 11] for the maximal-nullity case cannot be applied either.44

Outline. We provide relevant mathematical background in Section 2 and describe our45

preconditioning approach in Section 3. We then provide numerical experiments in Section 446

and concluding remarks in Section 5.47

2. Mathematical background. In this section, we provide some existing results that48

will aid us in developing and analyzing our preconditioner. Section 2.1 describes previous49

strategies in the literature for augmenting a rank-deficient leading block A, and Section 2.250

describes some special properties of matrices with maximally rank-deficient leading blocks.51

We then use these techniques to provide an alternative proof of a result in [11] for matrices52

with a maximally rank-deficient A, and we use the insights of this alternative proof to adapt53

this approach to matrices with non-maximally rank-deficient A in Section 3.54

2.1. Leading block augmentation. Our strategy for preconditioning involves augment-
ing the leading block A so that it becomes positive definite, rather than semidefinite. We
observe that (1.1) can be reformulated as (see, for example, [8, 9]):[

A+BTWB BT

B 0

] [
x
y

]
=

[
f +BTWg

g

]
,

where W is an m ×m matrix. We will assume W is positive semidefinite and the leading55

block56

(2.1) AW = A+BTWB

is positive definite. An advantage of this approach is that a positive definite leading block will57

provide flexibility in both forming and analyzing our preconditioners later in this paper. This58

approach proved effective in [2] for fluid flow problems. We also recall the following result59

[8, 9]:60

LEMMA 2.1. Let

K(W ) =

[
AW BT

B 0

]
,
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where W ∈ Rm×m. If K and K(W ) are both nonsingular, then

K−1 = (K(W ))−1 +

[
0 0
0 W

]
.

2.2. Matrix properties when nullity(A) = m. When A has maximal nullity – that is,61

when nullity(A) = m – the blocks of K and those of the augmented matrix K(W ) interact in62

unique ways, which provide useful tools in the design and analysis of preconditioners.63

Estrin and Greif [6, Theorem 3.5] provide the following result on the Schur complement64

of K(W ):65

PROPOSITION 2.2. Suppose nullity(A) = m and let W ∈ Rm×m be an invertible
matrix. Then

B(A+BTWB)−1BT = W−1.

We also recall the following result [7, Corollary 2.1] applying to more general matrices,66

which we will use repeatedly in our analyses:67

LEMMA 2.3. For matrices M,N ∈ Rn×n with rank(M) = r, rank(N) = n − r and
M +N nonsingular, the matrix (M +N)−1M is a projector with rank r. Moreover,

M(M +N)−1N = 0.

A recent article by the authors [3] provides eigenvalue bounds for saddle-point systems68

with a rank-deficient leading block. We will use the following result [3, Theorem 7] in our69

analyses:70

THEOREM 2.4. When rank(A) = n−m, the positive eigenvalues of K are greater than
or equal to

min
{
µ+
min(1− cos(θmin)), σmin

√
1− cos(θmin)

}
where: µ+

min denotes the smallest positive eigenvalue of A; σmin the smallest singular value71

of B; and θmin the minimum principal angle between range(A) and range(BT ).72

2.3. Preconditioning when nullity(A) = m. We consider the block-diagonal precondi-73

tioner [11]74

(2.2) MW =

[
AW 0

0 W−1

]
,

where W is positive definite and AW is as defined in (2.1). Let us denote the blocks of the
split preconditioned operatorM−1/2W KM−1/2W as follows:

M−1/2W KM−1/2W =

[
A
−1/2
W AA

−1/2
W A

−1/2
W BTW 1/2

W 1/2BA
1/2
W 0

]
=:

[
Ã B̃T

B̃ 0

]
.

LEMMA 2.5. When rank(A) = n − m, the blocks of M−1/2W KM−1/2W satisfy the75

following:76

(i) All nonzero eigenvalues of Ã are equal to 1;77

(ii) All singular values of B̃ are equal to 1;78

(iii) The subspaces range(Ã) and range(B̃T ) are orthogonal.79
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Proof. To prove (i), we note that Ã is similar to A−1W A, which is a projector by Lemma
2.3. Lemma 2.2 gives us that BA−1W BT = W−1, and therefore

B̃B̃T = W 1/2BA−1W BTW 1/2 = I,

which proves (ii). We prove (iii) by showing that range(B̃T ) ⊆ ker(Ã). We write

ÃB̃T = A
−1/2
W AA−1W BTW−1/2 = 0,

where the second equality follows from the result of [6, Proposition 2.6], which shows that80

A−1W BT is a null-space matrix of A.81

We now consider what the results of Lemma 2.5 tell us about the eigenvalues ofM−1W K82

when rank(A) = n − m. The orthogonality of range(Ã) and range(B̃T ) means that the83

value of cos(θmin) in Theorem 2.4 is 1, and thus that the positive eigenvalues are greater than84

or equal to the minimum of the smallest positive eigenvalue of Ã and the smallest singular85

value of B̃. These are both equal to 1, by parts (i)-(ii) of Lemma 2.5. Because the maximal86

eigenvalues of Ã and singular values of B̃ are also equal to 1, all negative eigenvalues are87

equal to −1 and all positive eigenvalues are less than or equal to 1 (as a consequence of [17,88

Lemma 2.1]). This yields the following result, which is also shown via a different proof89

method in [11, Theorem 4.1]; we refer to their proof for derivation of the multiplicities of the90

eigenvalues.91

PROPOSITION 2.6. When rank(A) = n − m, the matrix M−1W K has two distinct92

eigenvalues given by 1 and −1 with algebraic multiplicities n and m, respectively.93

Proposition 2.6 tells us that when A has maximal nullity there is a block-diagonal precon-94

ditioner that yields a preconditioned operator with two distinct eigenvalues. This is similar to95

the block-diagonal preconditioner of [14], which yields a preconditioner with three distinct96

eigenvalues in the case that A is positive definite. What has not yet been developed is a97

preconditioner that gives a small fixed number of distinct eigenvalues for the “in-between”98

case where A is rank-deficient, but not lowest-rank. This is the focus of the next section.99

3. Block diagonal preconditioning for non-maximal nullity.100

3.1. Preconditioner derivation. Let us now consider the case in which A has nullity101

k, with k < m. We will now consider how we can devise a preconditioner to preserve102

(perhaps approximately) the properties listed in Lemma 2.5 in the case where we no longer103

have maximal nullity.104

Let us consider a general block-diagonal preconditioner of the form

M =

[
A+G 0

0 C

]
,

where C is positive definite and G is a semidefinite matrix such that A+G is positive definite.
As before, let us define the split preconditioned system:

M−1/2KM−1/2 =

[
(A+G)−1/2A(A+G)−1/2 (A+G)−1/2BTC−1/2

C−1/2B(A+G)−1/2 0

]
=:

[
Ã B̃T

B̃ 0

]
.

Property (i) of Lemma 2.5 holds whenever rank(G) = k; see Lemma 2.3. It is also
straightforward to verify, using a similar process as in the proof of Lemma 2.5, that Property
(ii) holds if and only if

C = B(A+G)−1BT .
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Property (iii) of Lemma 2.5 holds because, in that Lemma’s setting,

A(A+G)−1BT = 0.

We can write this as

A(A+G)−1BT = (A+G−G)(A+G)−1BT

= B −G(A+G)−1BT .
(3.1)

Suppose that G has rank k, as we have already established will ensure Property (i). Then, as a
consequence of Lemma 2.3, G(A+G)−1 is a projector onto the range of G. From (3.1) we
see that Property (iii) will hold if G(A+G)−1 is a projector onto the range of BT ; however,
this is clearly not possible if rank(G) = k < m. But we note that if we set

G = BTWkB,

where Wk is a symmetric positive semidefinite matrix of rank k, this matrix will be a projector105

onto a rank-k subspace of range(BT ). While Property (iii) will not hold in this case because106

we will not have ÃB̃T = 0, we instead have that nullity(ÃB̃T ) = k (which is the highest107

nullity we can achieve, as from (3.1) we have a rank-k term being subtracted from B).108

Thus, we consider the preconditioner:109

(3.2) Mk =

[
Ak 0
0 Sk

]
,

where Ak = A + BTWkB and Sk = BA−1k BT , with rank(Wk) = nullity(A) = k.110

This is the same preconditioner analyzed in [10], but with the additional assumption that111

rank(Wk) = k.112

Remark 1. We note that, when A has maximal nullity, the preconditionerMk reduces113

to that of Greif and Schötzau defined in eq. (2.2). When A is positive definite, thenMk is114

equivalent to the preconditionerM1.115

3.2. Analysis ofMk. We present some lemmas that will be necessary for our analysis.116

LEMMA 3.1. When rank(Wk) = nullity(A) = k,

(BA−1k BT )−1 = Wk + (BBT )−1B(A−AV A)BT (BBT )−1,

where V = Z(ZTAZ)−1ZT with Z ∈ Rn×(n−m) being a null-space matrix of B.117

Proof. The proof follows by considering the block inverses of K and

K(Wk) :=

[
Ak BT

B 0

]
.

Let Z ∈ Rn×(n−m) denote a matrix whose columns form a basis for ker(B). The inverse of
K is (see [1, Eq. (3.8)]):

K−1 =

[
V (I − V A)BT (BBT )−1

(BBT )−1B(I −AV ) −(BBT )−1B(A−AV A)BT (BBT )−1

]
,

where V = Z(ZTAZ)−1ZT ; we note that ZTAZ must be nonsingular for any nonsingular118

K (see [1]). The result then follows from Lemma 2.1 and the fact that the (2,2)-block of119

(K(Wk))−1 is equal to −(BA−1k BT )−1 (see [1, Eq. (3.4)]).120

LEMMA 3.2. The matrix V A is a projector. Moreover, when rank(Wk) = nullity(A) =121

k, the following results hold:122
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(i) The matrix A−1k A is a projector;123

(ii) The matrices V A and A−1k A commute.124

Proof. By writing V A = Z(ZTAZ)−1ZTA, it is clear that V A is a projector onto125

ker(B). Item (i) holds because of Lemma 2.3.126

To verify (ii), we first note that

V AA−1k A = V A,

because AA−1k is a projector (this follows from the fact that A−1k A = (AA−1k )T is a projector)
onto the range of A. Because A−1k A = I −A−1k BTWkB, we can write

A−1k AZ = Z −A−1k BTWBZ = Z.

Therefore,

A−1k AV A = A−1k AZ(ZTAZ)−1ZTA

= Z(ZTAZ)−1ZTA

= V A

= V AA−1k A.

127

THEOREM 3.3. Let K be nonsingular with A having nullity k, and let Wk ∈ Rm×m128

be a rank-k matrix such that A+BTWkB is positive definite. The preconditioned operator129

M−1k K has four distinct eigenvalues:130

• λ = −1 with multiplicity k;131

• λ = 1 with multiplicity n−m+ k;132

• λ = 1±
√
5

2 , each with multiplicity m− k.133

Proof. We consider the eigenvalue equations for the preconditioned system:

Ax+BT y = λAkx;(3.3a)
Bx = λSky.(3.3b)

From (3.3b) we obtain y = 1
λS
−1
k Bx. Substituting this into (3.3a) and re-arranging yields134

(3.4) A−1k Ax+
1

λ
A−1k BTS−1k Bx− λx = 0.

By Lemma 3.1, we can write

A−1k BTS−1k B = A−1k BTWkB

+A−1k BT (BBT )−1B(A−AV A)BT (BBT )−1B.
(3.5)

As was discussed in the proof of Lemma 3.2, V A is a projector onto ker(B), meaning that
I − V A is a projector onto range(B). Because BT (BBT )−1B is an orthogonal projector
onto this subspace, we have

(I − V A)BT (BBT )−1B = I − V A.

Similarly, BT (BBT )−1B(I − AV ) = I − AV . Thus, we can further simplify (3.5), using
relations we developed in Lemma 3.2:

A−1k BTS−1k B = A−1k BTWkB +A−1k (A−AV A)

= I −A−1k AV A

= I − V A.
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We can thus rewrite (3.4) as135

(3.6) A−1k Ax− 1

λ
V Ax+

(
1

λ
− λ
)
x = 0.

By Lemma 3.2, A−1k A and V A are commuting projectors; thus, they have the same eigenvec-
tors. Because V A has rank n−m and A−1k A has rank n− k, we have

range(V A) ⊆ range(A−1k A) and ker(A−1k A) ⊆ ker(V A).

We now consider x in the ranges/kernels of these projectors.136

Case I: When x ∈ ker(A), (3.6) becomes137

(3.7)
(

1

λ
− λ
)
x = 0.

We note that x cannot be zero, as (3.3a) would necessarily imply y = 0. Thus, (3.7) gives k138

eigenvectors corresponding to each of the eigenvalues λ = ±1.139

Case II: When x ∈ range(V A) (and therefore also in range(A−1k A)), (3.6) becomes

(1− λ)x = 0,

which gives n−m additional eigenvectors corresponding to the eigenvalue λ = 1.140

Case III: if x ∈ ker(V A) and range(A−1k A) (we know there are m − k such vectors
because the projectors commute), (3.6) becomes(

1 +
1

λ
− λ
)
x = 0,

which gives the eigenvalues λ = 1±
√
5

2 , each with geometric multiplicity m− k.141

Cases I-III account for all n+m eigenvectors ofM−1k K.142

3.3. Schur complement approximations. In practice, the blocks Ak and Sk of the ideal143

preconditionerMk defined in (3.2) are too expensive to invert exactly. While developing144

suitable approximation strategies for these terms often requires some knowledge of the problem145

at hand, we provide here two strategies for approximately inverting the Schur complement Sk.146

First, recall from Lemma 2.2 that when A has maximal nullity we have S−1k = Wk. Thus,147

when A has high but not maximal nullity, it is reasonable to use an approximation of the form148

(3.8) S−1k ≈Wk + βI,

where β is a small positive value. We add the βI term because if A is not maximally rank-149

deficient then Wk will be singular. We refer to this strategy as the “WkI Schur complement150

approximation.”151

For our second strategy, recall that Lemma 3.1 tells us that

S−1k = Wk + (BBT )−1B(A−AV A)BT (BBT )−1

= Wk + (BBT )−1BA (I − V A)︸ ︷︷ ︸
=:P

BT (BBT )−1.

Since V A is a projector whose range is ker(B) and whose kernel is ker(ZTA), the matrix
P = (I − V A) has range given by ker(ZTA) and kernel given by ker(B). Thus, we consider
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replacing the projector (I − V A) by the orthogonal projector onto range(B), defined by
PB = BT (BBT )−1B. This matrix has the same kernel as P but a different range, and has
the advantage of yielding a considerably simpler second term, as we can write:

(BBT )−1BAPBB
T (BBT )−1 = (BBT )−1BABT (BBT )−1BBT (BBT )−1

= (BBT )−1BABT (BBT )−1.

Thus, we can also consider the Schur complement approximation:152

(3.9) S−1k ≈Wk + (BBT )−1BABT (BBT )−1.

We note that this modified second term is similar to the BFBt preconditioner proposed by Elman153

[5] for the Navier-Stokes equations; thus, we refer to this as the “BFBt Schur complement154

approximation.”155

4. Numerical experiments. In this section we consider implementations of the block-156

diagonal preconditioner described in Section 3. All experiments are run in MATLAB R2021a157

on a commodity desktop PC. We report computation times for all experiments. The code is158

not optimized for efficiency and the measurements do not represent what would be possible159

with an optimized, state-of-the-art code base; they are included as a way to compare the160

computational costs of different approaches and validate our analytical observations.161

4.1. Selection of weight matrix. Here we detail our general approach for choosing Wk.162

For simplicity, all our matrices Wk are diagonal matrices with either 1 or 0 on the diagonal;163

thus, the augmented matrix Ak is equal to A in addition to k terms of the form bT b, where b is164

a single row of B. Hence, our task of selecting Wk becomes the task of selecting which rows165

of B to use in to augment A.166

We begin by forming a matrix Adrop formed by eliminating very small elements of A (for167

our purposes, we eliminate those matrix entries whose absolute values are less than machine168

epsilon times the largest magnitude entry in A). We then select rows of B that increase the169

structural rank of Adrop until the matrix Adrop +
∑
i b
T
i bi has full structural rank. These170

selected rows of b do not guarantee that the augmented matrix A+
∑
i b
T
i bi has full numerical171

rank or is sufficiently well-conditioned to avoid convergence problems, so in some cases we172

add additional rows of B; in this case, we greedily select the sparsest rows of B to reduce173

fill-in of Ak.174

We note that, in general, this approach of selecting Wk does not guarantee a “minimal-175

rank” augmentation; that is, the rank of Wk may be greater than the nullity of A. Finding a Wk176

with rank exactly equal to the nullity of A such that the augmented matrix Ak is sufficiently177

well-conditioned to avoid numerical difficulty requires knowledge of the null-space of A and178

of which vectors in B will span that null space. That said, in many practical applications, for179

example in problems arising from discretizations of PDEs, some information on the discretized180

differential operators and their null space is often available and comes handy.181

4.2. Constrained optimization problems.182

Problem statement. Given a positive semidefinite Hessian matrix H ∈ Rn×n, vectors
c ∈ Rn and b ∈ Rm and a Jacobian matrix J ∈ Rm×n, consider the primal-dual pair of
quadratic programs (QP) in standard form:

min
x
cTx+

1

2
xTHx s.t. Jx = b, x ≥ 0;(4.1a)

min
x,y,z

bT y − 1

2
xTHx s.t. JT y + z −Hx = c, z ≥ 0,(4.1b)
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where y and z are vectors of Lagrange multipliers. In linear programming problems, we have183

H = 0.184

Each step of a primal-dual interior-point method (IPM) to solve (4.1) requires solving a
linear system of the form [15]:[

H +X−1Z JT

J 0

] [
∆x
∆y

]
=

[
−c−HxJT y + τX−1e

b− Jx

]
.

Here X and Z are diagonal matrices whose diagonal entries are the components of x and z,185

respectively, and τ > 0 is the barrier parameter, which governs the progress of the interior-186

point iterations; see [15] for full details. Some entries of the diagonal matrices X and Z187

approach zero as the IPM iterations proceed, so the leading block of the saddle-point matrix188

becomes increasingly ill-conditioned, with the largest magnitude entries occurring along189

the diagonal. Thus the leading block may become nearly singular or numerically singular,190

particularly if H is singular.191

Description of test problems. We use an implementation of the predictor-corrector192

algorithm of Mehrotra [13]. The matrices for linear programming problems were obtained193

from the Sparse Suite matrix collection [4], and the quadratic programming problems are from194

TOMLAB*. A summary of the test suite of LP problems used in our experiments is given in195

Table 4.1.196

Problem ID m n nnz(K)
lp_80bau3b 2,262 12,061 35,325
lp_bandm 305 472 2,966
lp_capri 271 482 2,378
lp_finnis 497 1,064 3,824
lp_fit1p 627 1,677 11,545
lp_ganges 1,309 1,706 8,643
lp_lofti 153 366 1,502

lp_maros_r7 3,136 9,408 154,256
lp_osa_14 2,337 5,497 371,894
lp_osa_30 4,350 104,374 708,862
lp_pilot87 2,030 6,680 81,629
lp_scfxm1 330 600 3,332
lp_scsd8 397 2,750 11,334
lp_stair 356 614 4,617

lp_standmps 467 1,274 5,152
lp_stocfor2 2,157 3,045 12,402
lp_truss 1,000 8,806 36,642

lp_vtp_base 198 346 1,397

Table 4.1: Summary of linear programming (LP) problems used in numerical experiments.
The value nnz(K) gives the number of nonzeros arising in the saddle-point system in each
interior-point method iteration.

*Test matrices available at https://tomopt.com/tomlab/.
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Comparison of different augmentation and approximation strategies. In this experi-197

ment we consider preconditioners of the form198

(4.2) M =

[
Ãaug 0

0 BÂ−1augB
T

]
,

where Ãaug and Âaug are approximations (potentially the same approximation) of an aug-199

mented leading block A. Our experiments are on matrices that arise while applying an200

interior-point method on an LPs, so the leading block A is diagonal. We consider three201

augmentation strategies:202

1. Partial augmentation: we takeAaug = A+BTWkB, where we formWk by selecting203

just enough rows of B such that Adrop + BTWkB has full structural rank, where204

Adrop is the matrix obtained by setting to zero all elements of A with absolute value205

less than or equal to machine-epsilon times the largest absolute magnitude value of206

A.207

2. Full augmentation: we take Aaug = A+BTB.208

3. Identity augmentation: we take Aaug = A+ ρI , for some positive ρ.209

For Aaug arising from partial and full augmentation, we consider three approximations for210

Ãaug and Âaug in (4.2):211

1. Ideal approximation (ID): Ãaug = Âaug = Aaug. (This is too expensive to use in212

practice but we include it here for comparison purposes.)213

2. Diagonal approximation (D): Ãaug = Âaug = diag(Aaug).214

3. Incomplete Cholesky approximation (IC) : Ãaug = IC(Aaug) and Âaug = diag(Aaug).215

We use ICT with drop tolerance of 0.01.216

For the identity-based augmentation, the matrix Aaug is diagonal, so we invert it exactly (that217

is, Ãaug = Âaug = Aaug).218

Problem ID Partial Full Identity
ID D IC ID D IC ID

80bau3b 5 (0.03) 22 (0.03) 230 (0.02) 18 (2.0) 122 (0.02) 254 (0.01) 43 (0.02)
maros_r7 22 (3.7) 22 (0.2) 56 (0.1) 2 (2.2) 19 (0.1) 26 (0.1) 11 (0.1)

Table 4.2: MINRES iteration counts for partial, full and identity-augmentation preconditioners
for the lp_80bau3b and lp_maros_r7 problems, using various block approximation
strategies (ID=ideal, D=diagonal, IC=incomplete Cholesky). Time per iteration (in seconds) is
given in parentheses.

Problem ID Partial augmentation Full augmentation
Rank(W ) nnz(AW ) nnz(IC(AW )) Rank(W ) nnz(AW ) nnz(IC(AW ))

80bau3b 2 12,249 12,101 2,262 456,943 14,183
maros_r7 2,511 1,101,752 31,343 3,136 1,230,928 10,761

Table 4.3: Comparison of memory usage for partial and full augmentation for the
lp_80bau3b and lp_maros_r7 problem.

We use matrices that arise from IPMs on the test problems lp_80bau3b and lp_maros_r7.219

Iteration counts and time per iteration are given in Tables 4.2 and 4.3.220

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

PRECONDITIONING FOR SINGULAR LEADING BLOCKS 11

We observe that for lp_80bau_3b, the partial augmentation preconditioner outperforms221

the full augmentation preconditioner in terms of both iteration count and memory usage. This222

is because the leading block of this matrix is only mildly rank-deficient, so we only need a223

low-rank augmentation to make it nonsingular (which leads to a much sparser augmented224

matrix than the full augmentation); additionally, when we fully augment this matrix we are225

far away from the “ideal” amount of augmentation (i.e., the rank of augmentation that would226

yield a small fixed number of distinct eigenvalues in an ideally-preconditioned iterative solver)227

because the leading block is nowhere near lowest-rank.228

In contrast, the leading block for lp_maros_r7 is highly rank-deficient, as even the229

minimal amount of augmentation to obtain a structurally nonsingular leading block requires230

using most of the rows of B (2,511, when m for this problem is 3,136). And we observe that,231

in cases like these where the nullity of the leading block is high, we are close enough to the232

lowest-rank case that full augmentation performs well. In this case, it actually performs better233

than the partial augmentation in terms of iteration counts and computation time because the234

fully augmented leading block is more well-conditioned than the partially augmented leading235

block. Recall that our procedure for choosing Wk only looks at structural rank, and does236

not guarantee that the augmented matrix is actually nonsingular (so we may still encounter237

numerical difficulties without further augmentation).238

Finally, we note that the incomplete Cholesky approximation strategy is less effective than239

the diagonal approximation strategy. One reason for this is that by the time IPM matrices are240

singular, the largest magnitude entries tend to occur along the diagonal; thus, a diagonal leading241

block approximation is generally effective (as we will see in the next set of experiments). The242

other reason is that, as previously mentioned, when we used the incomplete Cholesky in the243

leading block we avoided using the inverse of the incomplete Cholesky factors in the Schur244

complement approximation to avoid introducing too much computational expense. Thus,245

the Schur complement approximation is not equal to BÃ−1augB
T (where Ãaug is the selected246

leading block approximation); and as we saw in Section 3, this has an impact on the theoretical247

properties of the preconditioned operator.248

Running partial augmentation preconditioners on LP test suites. Here we consider249

preconditioning the complete set of problems described in Table 4.4. The matrices reported250

below are the first matrices for which the IPM generates a matrix with a numerically singular251

leading block. We consider the partial augmentation preconditioner of the form (4.2) with the252

diagonal leading block approximation strategy: that is, we define PD using Ãaug = Âaug =253

diag(Aaug). In all cases, we select Wk by augmenting A until the matrix Adrop +BTWkB is254

structurally nonsingular. MINRES solver tolerance is set to a relative residual norm of 10−8.255

Eigenvalues of the preconditioned operator P−1D K are shown in Figure 4.1 for lp_fit1p256

problem. There is strong clustering of eigenvalues near 1, 1±
√
5

2 .257

Using preconditioned MINRES iterations in an IPM. Here we consider using precon-258

ditioned inner solves in an IPM solver. For our test problems, we use the LP lp_stocfor2259

and the TOMLAB QP problem 37 (which has m = 490; n = 1275; 3,288 nonzeros in the260

Jacobian matrix; and 290 in the Hessian). Our preconditioning approach at each iteration is as261

follows:262

• If the leading block A is nonsingular, we use the preconditioner

MLP =

[
A 0
0 BA−1BT

]
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Problem ID rank(Wk) nnz(Ak)
PD

Iters Time per iter
80bau3b 1 12,117 20 0.02
bandm 5 1,444 40 0.003
capri 13 2,230 67 0.003
finnis 29 11,184 77 0.006
fit1p 5 2,545 28 0.06
ganges 88 2,690 41 0.01
lofti 13 966 194 0.001

maros_r7 64 73,102 26 0.2
osa_14 34 98,459,317 171 0.06
osa_30 4 354,880,632 80 0.1
pilot87 5 133,798 37 0.2
scfxm1 1 840 32 0.003
scsd8 36 16,826 6 0.003
stair 33 9,994 11 0.006

standmps 2 557,906 65 0.004
stocfor2 61 3,411 9 0.1
truss 15 18,468 34 0.005

vtp_base 10 3,126 125 0.002

Table 4.4: MINRES iteration counts and time per iteration (in seconds) of the partial augmen-
tation preconditioners with diagonal approximations of Ak.
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Fig. 4.1: Eigenvalues of preconditioned operator P−1D K for matrix arising in the IPM solution
of the lp_fit1p problem. Horizontal lines are shown at y = ±1, 1±

√
5

2 .
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for the LP (recall that in this context A is diagonal), and

MQP =

[
IC(A) 0

0 B(diag(A))−1BT

]
for the QP, with an ICT drop tolerance of 0.01.263

• If the leading block A is singular, we select the lowest-rank Wk to make Adrop +
BTWkB nonsingular, and use the preconditioner

M =

[
diag(Ak) 0

0 B(diag(Ak))−1BT

]
.

We solve the IPM to a duality gap tolerance of 10−6 and use an inner tolerance of 10−7 for264

the MINRES solves.265

We see that for both problems, using inexact solves results in modestly more IPM266

iterations, as we would expect. For the LP, the leading block was nonsingular for the first267

21 iterations and numerically singular for the final 10. For the QP, the leading block was268

nonsingular for the first 22 iterations and singular for the last 16. Notice that the average269

MINRES iteration counts are correspondingly higher for the QP. This is because, at the LP270

steps with a nonsingular leading block, we were able to use an ideal preconditioner because271

the leading block is diagonal, and convergence was always achieved in roughly three iterations.272

Additionally, the nonzero Hessian in the QP has some additional terms in the leading block273

that are dropped in the diagonal leading block approximation once the leading block becomes274

singular.275

Problem Direct inner solve MINRES inner solve

ID Type IPM iterations IPM iterations Inner iters (average)
Predictor Corrector

stocfor2 LP 27 31 4.1 4.1
TOMLAB37 QP 31 38 35.1 36.6

Table 4.5: Comparison of IPM iterations using a direct vs. preconditioned MINRES solver for
the inner linear system solves. Average number of inner MINRES iterations are reported for
both the predictor and corrector steps.

Testing different block approximation strategies. Here we test the WkI Schur comple-276

ment approximation strategy (see Eq. (3.8)). We use a matrix that arises at the 20th iteration277

of the IPM solution for the LP maros_r7 and use β = 0.5. As we have seen in our earlier278

LP experiments, by the time the IPM iterations have advanced enough to create a numerically279

singular leading block, the diagonal has enough large entries that the augmented matrix Ak is280

mostly diagonally dominant. Thus, using diag(Ak) is often effective in approximating Ak.281

We include comparisons between the preconditioners in which:282

• Ak approximated by diag(Ak) and S−1k is approximated by B diag(Ak)−1BT (the283

preconditioner PD explored in the previous set of experiments);284

• Ak is approximated by diag(Ak) and S−1k is approximated by Wk + βI (“Diago-285

nal+WkI” or “D+WkI”).286

For this experiment, our weight matrix Wk has rank 2,911 (the minimum required to achieve287

structural nonsingularity of Adrop +BTWkB).288
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A convergence plot is shown in Figure 4.2. The PD preconditioner converges in 11289

iterations and 1.4 seconds (0.1 seconds per iteration), and the Diagonal+WkI preconditioner in290

102 iterations and 0.18 seconds (0.0018 seconds per iteration). While this is a significantly291

higher iteration count, we notice that this preconditioner is extremely cheap (in that it is292

fully diagonal) and thus results in faster computational time overall. We note that a basic293

Jacobi iteration on the original system (or Jacobi on the leading block combined with the WkI294

approximation of the Schur complement) does not lead to convergence. Thus, the leading295

block augmentation has utility in arriving at this surprisingly simple-looking preconditioner.296
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Fig. 4.2: Comparison of block approximation strategies (diagonal leading block +
B(diag(Ak))1BT Schur complement; Diagonal leading block+WkI Schur complement) for a
matrix arising from an IPM on the lp_maros_r7 problem.

4.3. A geophysical inverse problem.297

Problem statement. Here we consider the example of a geophysical inverse problem
described in [12], which involves recovering a model based on observations of a field. The
regularized problem is defined by

min
m,u

1

2
||Qu− b||2 +

β

2
||W (m−mref )||2

s.t. A(m)u = q,

where β is a regularization parameter, m is a model, mref is a reference model, W is a weight
matrix, and A(m) is a nonlinear map that encodes the model conditions of the field being
considered. If Gauss-Newton iterations are used, the linear system to be solved at each step
takes the form QTQ 0 FT

0 βWTW GT

F G 0

 δuδm
δλ

 = −

rurm
rλ

 ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

PRECONDITIONING FOR SINGULAR LEADING BLOCKS 15

where F is a sparse, large, nonsingular matrix that stands for the value of the nonlinear map A298

at the current iterate, mk, and G is the Jacobian of A evaluated at the current iterate, mk. In299

the typical case of sparse observations, G is sparse and QTQ has high nullity.300

Testing different block approximation strategies. In this experiment we test the BFBt301

Schur complement approximation strategy (Eq. (3.9)). We set the regularization parameter302

β = 10−3. The leading block is highly singular, so we augment A by all of B to avoid303

numerical difficulties (as simply augmenting by enough rows of B to make the augmented304

matrix structurally nonsingular still leads to a matrix that is highly ill-conditioned).305

Recall that the BFBt Schur complement approximation requires two solves for BBT .306

Fortunately, for the geophysics problem, this term is sparse and banded. Thus, in computing307

this approximation, we will solve exactly for the BBT terms.308

We note that the augmented matrix A+BTB has an interesting structure, as we can see309

in Figure 4.3: if we partition the matrix into four blocks with the (1,1)-block of size m and the310

(2,2)-block of size n−m, we observed that the (1,1)- and (2,2)-blocks are banded (e.g., for a311

problem with m = 9, 261 and n = 17, 261, the bandwidths are 848 and 421, respectively),312

and can therefore be solved less expensively than the entire matrix A+BTB. Thus, we use313

block Jacobi as a preconditioner for an inner preconditioned conjugate gradient (PCG) solver314

for Ak.315
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Fig. 4.3: Sparsity pattern of Ak = A+BTB for a geophysics problem with m = 9, 261 and
n = 17, 261.

Thus, in these experiments, we compare the preconditioners in which:316

• Ak is inverted exactly (which is generally not practical for large problems but is317

included here for validation and comparison), and S−1k is approximated with the318

BFBt approximation. We denote this by “Akinv+BFBt.”319

• Ak is inverted approximately using CG to an inner tolerance of 0.1, with block Jacobi320

as a preconditioner, and S−1k is approximated by the BFBt approximation. We denote321
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this by “CG+BFBt.”322

We use MINRES for the Akinv+BFBt preconditioner and FGMRES(30) for the CG+BFBt.323

m n
Akinv+BFBt CG+BFBt

Iters Time per iter Iters Time per iter
2,197 3,195 6 0.21 9 0.20
4,913 9,009 6 1.07 10 0.76
9,261 17,261 8 2.87 10 2.26

Table 4.6: Results (solver iteration counts and time per iteration) geophysics problems of
varying size. Akinv+BFBt = exact solve for Ak, BFBt approximation for Sk; CG+BFBt =
block Jacobi preconditioned CG for Ak, BFBt for Sk.

Results are shown in Table 4.6. The Akinv+BFBt preconditioner performs well in terms324

of iteration count, but includes a very expensive term in the Ak solve. We note, however, that325

the number of preconditioned iterations is very close to what we would expect of the ideal326

preconditioner (with exact solves for both Ak and Sk), which highlights the effectiveness of327

the BFBt Schur complement approximation for this problem. The CG+BFBt preconditioner328

achieves similar convergence to the Akinv+BFBt – in particular, the number of iterations329

appears to be independent of problem size – and is modestly less expensive per iteration330

in terms of compute time (we avoid the direct solve for Ak, but have some added expense331

from the inner CG solves and additional orthogonalization for FGMRES). On average, the332

inner PCG solves required 28.7 iterations for the first test problem (with m = 2, 197 and333

n = 3, 195), 35.1 iterations for the second problem (with m = 4, 913 and n = 9, 009), and334

35.8 iterations for the third (with m = 9, 261 and n = 17, 261). For larger problems, we335

speculate that CG+BFBt will outperform Akinv+BFBt by larger margins.336

5. Concluding remarks. We have developed a block-diagonal preconditioner for saddle-337

point systems with a singular leading block. We showed how, by augmenting A with a weight338

matrix of just high enough rank to overcome its nullity, we yield a preconditioned operator339

with a small fixed number of distinct eigenvalues. In doing so, we have closed a gap in the340

existing literature, in analyzing a preconditioning approach for a scenario where the leading341

block of the saddle-point matrix is neither full rank nor does it have nullity equal to the number342

of rows of B.343

Specifically, we have considered block preconditioners that are based on approximating344

the augmented leading block of the saddle-point matrix and the augmented Schur complement.345

Typically, the construction of the weight matrix Wk and the selection of effective approxima-346

tions may be guided by the problem at hand (for example, in cases where the matrix blocks347

and Schur complement arise from well-studied discretized differential operators). We have348

provided some general approaches that may work for different problems. For Ak, we have349

included diagonal (for LPs), incomplete Cholesky (for QPs), block Jacobi and inner PCG350

iterations (for geophysics); and for Sk, the B(diag(Ak))−1BT and WkI approximations (for351

the optimization problems), and the BFBt approximation (for the geophysics problem).352

We have restricted our attention to diagonal weight matrices with all ones and zeros along353

the diagonal and have described a method that looks only at the structural rank of a modified354

augmented matrix. Future work may include more sophisticated choices of the weight matrix,355

which may in turn yield faster convergence.356

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

PRECONDITIONING FOR SINGULAR LEADING BLOCKS 17

REFERENCES357

[1] M. BENZI, G. H. GOLUB, AND J. LIESEN, Numerical solution of saddle point problems, Acta Numerica, 14358

(2005), pp. 1–137.359

[2] M. BENZI AND M. A. OLSHANSKII, An augmented Lagrangian-based approach to the Oseen problem, SIAM360

J. Sci. Comput., 28 (2006), pp. 2095–2113.361

[3] S. BRADLEY AND C. GREIF, Eigenvalue bounds for double saddle-point systems, Journal of Computational362

and Applied Mathematics, 424 (2023).363

[4] T. A. DAVIS AND Y. HU, The university of florida sparse matrix collection, ACM Trans. Math. Softw., 38364

(2011).365

[5] H. C. ELMAN, Preconditioning for the steady-state Navier–Stokes equations with low viscosity, SIAM Journal366

on Scientific Computing, 20 (1999), pp. 1299–1316.367

[6] R. ESTRIN AND C. GREIF, On nonsingular saddle-point systems with a maximally rank deficient leading368

block, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 367–384.369

[7] , Towards an optimal condition number of certain augmented Lagrangian-type saddle-point matrices,370

Numerical Linear Algebra with Applications, 23 (2016), pp. 693–705.371

[8] R. FLETCHER, An Ideal Penalty Function for Constrained Optimization, IMA Journal of Applied Mathematics,372

15 (1975), pp. 319–342.373

[9] G. H. GOLUB AND C. GREIF, On solving block-structured indefinite linear systems, SIAM J. Sci. Comput.,374

24 (2003), pp. 2076–2092.375

[10] G. H. GOLUB, C. GREIF, AND J. M. VARAH, An algebraic analysis of a block diagonal preconditioner for376

saddle point systems, SIAM Journal on Matrix Analysis and Applications, 27 (2005), pp. 779–792.377

[11] C. GREIF AND D. SCHÖTZAU, Preconditioners for the discretized time-harmonic Maxwell equations in mixed378

form, Numer. Linear Algebra Appl., 14 (2007), pp. 281–297.379

[12] E. HABER, U. M. ASCHER, AND D. OLDENBURG, On optimization techniques for solving nonlinear inverse380

problems, Inverse Problems, 16 (2000), p. 1263.381

[13] S. MEHROTRA, On the implementation of a primal-dual interior point method, SIAM Journal on Optimization,382

2 (1992), pp. 575–601.383

[14] M. F. MURPHY, G. H. GOLUB, AND A. J. WATHEN, A note on preconditioning for indefinite linear systems,384

SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972.385

[15] J. NOCEDAL AND S. J. WRIGHT, Numerical optimization, Springer Series in Operations Research and386

Financial Engineering, Springer, New York, second ed., 2006.387

[16] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM Journal388

on Numerical Analysis, 12 (1975), pp. 617–629.389

[17] T. RUSTEN AND R. WINTHER, A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix390

Anal. Appl., 13 (1992), pp. 887–904.391

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

