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1. Introduction

Consider the saddle-point system[
A BT

B 0

][
x
y

]
=

[
f
g

]
, (1)

where A ∈ Rn×n is symmetric positive semidefinite and B ∈ Rm×n has full row rank, with m < n. We denote the coefficient
matrix by

K =

[
A BT

B 0

]
. (2)

We assume throughout that K is invertible. Our goal in this paper is to derive eigenvalue bounds for K under the
assumption that A is singular.

Matrices of the form (2) with a singular A arise in several applications. Examples include: the time-harmonic Maxwell
equations [1]; constrained weighted least-squares [2, sec.2.2]; geophysical inverse problems [3]; dual–dual finite element
formulations [4,5]; boundary element tearing and interconnecting methods [6]; the Darcy–Stokes equations [7]; and some
finite element formulations of the Stokes equations [8,9]. See, for example, [10, Chapter 2] for detailed formulations and
additional discussion.

Related work. The eigenvalues of saddle-point matrices have been considered in a variety of papers, under different
assumptions on the blocks A and B. A seminal paper in this area is that of Rusten and Winther [11]. They assume that the
leading block A is positive definite. Their eigenvalue bounds still apply when A is singular (as we discuss in more detail
in Section 2), but in that case their lower positive eigenvalue bound is impractical, as it reduces to zero.

A refinement of the lower positive eigenvalue bound of Rusten and Winther is proposed by Ruiz, Sartenaer, and
Tannier [12]. As in the case of Rusten and Winther, they assume A is positive definite but their analyses do not require
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this, and extend to the case when A is singular. Their bound is more intricate and is generally nonzero, even for singular A
(with some exceptions; we discuss their bound in more detail in Section 3.3). However, the analysis of Ruiz et al. requires
orthonormality of the columns of B. As pointed out in their paper, this can be achieved by preconditioning, but means
that the applicability of their bound is rather limited. It applies only to preconditioned matrices that satisfy this rather
stringent orthonormality requirement, and does not generally apply to unpreconditioned saddle-point matrices.

Spectral properties of saddle-point matrices have also been considered for matrices with indefinite leading blocks [13];
matrices with a stabilization term in the (2,2)-block [14]; and in matrices arising from specific applications, such as interior
point methods [15,16]. Recent papers have also generalized some of these results to block-3 × 3 or block-n× n multiple
addle-point systems; see, for example, [17–19].

ontribution of this paper. We derive a lower bound on the positive eigenvalues of K that does not require invertibility of
, by considering the principal angles between the ranges/kernels of A and B, similar to what is done in Ruiz et al. [12].
ur analysis removes some of the restrictions of other works: in particular, we do not have any requirements on positive
efiniteness or eigenvalue scaling of A, and we do not require orthogonality of the columns of B.

otation. Our analysis will rely on the eigenvalues and singular values of A and B, as well as some other matrices we will
ntroduce later in the text. We will denote the eigenvalues of a matrix M ∈ Rn×n by

µi(M), i = 1, . . . , n,

nd in terms of ordering we will assume that

µ1(M) ≥ µ2(M) ≥ · · · ≥ µn(M).

e follow the same convention for singular values of a rectangular matrix N , but we use σ rather than µ: i.e., the singular
alues of N ∈ Rm×n are denoted by

σ1(N) ≥ σ2(N) ≥ · · · ≥ σm(N) ≥ 0.

To increase clarity, we will often refer to the maximal eigenvalues/singular values µ1(M) and σ1(N) by µmax(M) and
max(M) respectively. Similarly, we will refer to the minimal values µn(M), σm(N) by µmin(M) and σmin(M). The positive
igenvalues of a matrix will be denoted by a ‘‘+’’ superscript — for instance, we denote the smallest nonzero eigenvalue
f a semidefinite matrix M by µ+

min(M).

rincipal angles. Our analysis relies on the principal angles between certain subspaces. We include below a definition
20,21] based on the singular value decomposition (SVD):

efinition 1. Let the columns of matrices X ∈ Cn×p and Y ∈ Cn×q denote orthonormal bases of the subspaces X and Y ,
espectively. Let UΣVH denote the SVD of XHY , where U and V are unitary matrices and Σ is a p×q diagonal matrix with
real diagonal elements c1, . . . , cr , with r = min(p, q). The singular values c1, . . . , cr denote the cosines of the principal
angles between X and Y . The principal vectors associated with this pair of subspaces are given by the first r columns of
XU and YV , correspondingly.

Outline. In Section 2 we discuss our general approach of augmenting the leading block of a saddle-point matrix to obtain
a lower bound on the positive eigenvalues. In Section 3 we provide new bounds, which rely on the angles between the
kernels of A and B. We then present numerical experiments in Section 4 and concluding remarks in Section 5.

2. Lower positive eigenvalue bounds using leading block augmentation

To illustrate the challenge posed by the problem in hand, recall the following result of Rusten and Winther [11, Lemma
2.1]. In their analysis it is assumed that A is positive definite (as opposed to semidefinite); however, the proof of this lemma
does not rely on this, so the result still holds when A is semidefinite.

Lemma 2. Let the eigenvalues of A lie in [µmin(A), µmax(A)], with µmin(A) ≥ 0, and the singular values of B lie in
[σmin(B), σmax(B)], with σmin(B) > 0. Then the eigenvalues of K (2) are bounded in the union of intervals

I− ∪ I+,

where

I− =

[
1
2
(µmin(A) −

√
µ2

min(A) + 4σ 2
max(B)),

1
2
(µmax(A) −

√
µ2

max(A) + 4σ 2
min(B))

]
and

I+ =

[
µmin(A),

1
(µmax(A) +

√
µ2

max(A) + 4σ 2
max(B))

]
.

2
2



S. Bradley and C. Greif Journal of Computational and Applied Mathematics 424 (2023) 114996

b
i
t
m

w

K

When A is singular, the upper bounds on both positive and negative values of K are unchanged, and the lower negative
ound reduces to −σmax(B). The main difficulty is that the lower bound on positive eigenvalues reduces to zero, which
s not a useful bound, especially in situations where K is known to be nonsingular (which is our assumption throughout
his paper). When the null spaces of A and B are well separated, the matrix K may in fact be well-conditioned and its
inimal positive eigenvalue bounded away from zero.
As a motivating example that illustrates the range of possibilities, consider the coefficient matrix

K =

[ 1 0 b1
0 0 b2
b1 b2 0

]
where A =

[
1 0
0 0

]
and B =

[
b1 b2

]
, (3)

ith b21 + b22 = 1 and b1, b2 > 0. The eigenvalues of A and singular value of B are the same for all such b1, b2, but
the lowest positive eigenvalue of K varies depending on b1 and b2. The eigenvalues λ of K are the roots of the cubic
polynomial p(λ) = λ3 −λ2 −λ+ b22. This polynomial has two positive roots and one negative root [17, Corollary 2.2]; the
smaller positive root approaches zero as b2 goes to zero (i.e., when A and B have overlapping null spaces), but as b2 goes
to 1 (i.e., when A and B have orthogonal null spaces) the smaller positive root approaches 1.

We now present a general approach for deriving nonzero bounds for the lower positive eigenvalues of K when A is
singular. We recall the following result [22,23]:

Lemma 3. Let

K(W ) =

[
A + BTWB BT

B 0

]
, (4)

where W ∈ Rm×m. If K and K(W ) are both nonsingular, then

K−1
= (K(W ))−1

+

[
0 0
0 W

]
. (5)

We will assume that W is positive semidefinite and the leading block AW := A + BTWB of K(W ) is positive definite.
We can use this along with (5) to derive a nonzero bound on the lower positive eigenvalues of K, using a free matrix
parameter W .

Theorem 4. Let W ∈ Rm×m be a symmetric positive semidefinite matrix and let AW = A + BTWB be positive definite. Then
the positive eigenvalues of K are greater than or equal to

min
{
µmin(AW ),

1
µmax(W )

}
.

Proof. We derive a lower bound on the positive eigenvalues of K by considering an upper bound on the eigenvalues of
−1. By combining [2, Equation (3.4)] and (5), we obtain

K−1
=

[
A−1
W − A−1

W BT S−1
W BA−1

W A−1
W BT S−1

W
S−1
W BA−1

W −S−1
W + W

]
, (6)

where SW = BA−1
W BT . Notice that we can write

K−1
=

[
A−1
W 0
0 W

]
−

[
A−1
W BT

−I

]
S−1
W

[
BA−1

W −I
]
.

Because the subtracted term is positive semidefinite, we conclude that the eigenvalues of K−1 are less than or equal to
the eigenvalues of[

A−1
W 0
0 W

]
.

The stated result follows. □

3. Augmentation-based bounds when W = γI

As in Section 2, we consider the augmented matrix K(W ), but in this case we restrict ourselves to the case where
W = γ I,

3
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as is done in [23,24]. For simplicity we write

Aγ = A + γ BTB; Kγ = K(γ I).

In this case, the lower bound on positive eigenvalues presented in Theorem 4 reduces to min
{
µmin(Aγ ), 1

γ

}
.

We first consider the special case where rank(A) = n − m and K is nonsingular. We say here that A is lowest-rank
because, if its rank were any lower, then K would necessarily be singular. It was shown in [24,25] that Aγ and Kγ have
unique properties, which we will use here to refine the bound on lower positive eigenvalues given in Theorem 4. We
return in Section 3.2 to the general case, where A is assumed to be rank-deficient but not lowest-rank.

3.1. Bounds when rank(A) = n − m

Theorem 5. When rank(A) = n − m and Aγ = A + γ BTB, we have

µmin(Aγ ) ≥ ρ · min
{
µ+

min(A), γ σ
2
min(B)

}
, (7)

where ρ ≤ 1 is a constant that does not depend on γ .

Proof. We begin by writing a decomposition of Aγ as was done in [24]. Let

A = UΛUT , B = QSV T (8)

be the reduced (economy-size) singular value decompositions of A and B.
The matrices Λ ∈ R(n−m)×(n−m) and U ∈ Rn×(n−m) comprise the eigenpairs of A that correspond to its nonzero

eigenvalues, and the columns of V ∈ Rn×m are the set of eigenvectors of BTB that correspond to its nonzero eigenvalues.
We can then write

Aγ = PΣPT , (9)

where

P =
[
U V

]
, Σ =

[
Λ 0
0 γ S2

]
.

The decomposition in (9) resembles an eigenvalue decomposition, but is not an eigenvalue decomposition in general
because the columns of V will not be orthogonal to those of U .

We then derive a lower bound on the eigenvalues of Aγ by obtaining an upper bound on the eigenvalues of A−1
γ . We

can write

µmax(A−1
γ ) = ∥A−1

γ ∥ = ∥P−TΣ−1P−1
∥ ≤ ∥Σ−1

∥ · ∥P−1
∥
2. (10)

The largest eigenvalue of Σ−1 is equal to max
{

1
µ+

min(A)
, 1
γ σ2

min(B)

}
. The stated result follows by setting ρ = ∥P−1

∥
−2 in (10).

We claim that ρ ≤ 1, with equality when U and V are mutually orthogonal (that is, when the range of A is orthogonal to
the range of BT ). To show that this is the case, consider x ∈ ker(A). We then have

PT x =

[
UT x
V T x

]
=

[
0

V T x

]
.

Defining q = PT x, since V is orthogonal we have

∥q∥ ≤ ∥P−Tq∥ ≤ ∥P−T
∥∥q∥,

meaning that ∥P−T
∥ (and therefore ∥P−1

∥) is greater than or equal to 1. Thus, ρ ≤ 1. □

We now provide a value for ρ = ∥P−1
∥

−2 in terms of the principal angles between range(A) and range(BT ). Let

θi, i = 1, . . . , r,

where r = min{n − m,m}, denote these angles. The cosines cos(θi) of these angles are given by the singular values of
TV (or V TU).

emma 6. When rank(A) = n − m, let θmin denote the minimum principal angle between range(A) and range(BT ), and let
P =

[
U V

]
∈ Rn×n where the columns of U are the eigenvectors corresponding to the nonzero eigenvalues of A and the

columns of V are the right singular vectors of B. Then

∥P−1
∥ =

1√
1 − cos (θmin)

,

which implies that ρ defined in (7) is given by

ρ = 1 − cos (θmin).
4
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Proof. We proceed by analyzing the eigenvalues of PTP , using the fact that

∥P−1
∥ =

1√
µmin(PTP)

.

We write PTP in block form:

PTP =

[
UT

V T

] [
U V

]
=

[
I UTV

V TU I

]
.

he (1,1)-block of PTP is size (n−m)×(n−m) and the (2,2)-block is size m×m. We now assume without loss of generality
hat n − m ≥ m. (If n − m < m, we can reorder the blocks of PTP such that the (1,1)-block is larger, and use the same
analysis as below.)

Letting v =
[
xT yT

]T be an appropriately partitioned eigenvector, we write the eigenvalue equations for PTP:

x + UTVy = λx; (11a)

V TUx + y = λy. (11b)

There is an eigenvalue λ = 1 with multiplicity n − 2m, which we observe by choosing x ∈ ker(V TU) (because
V TU ∈ R(n−m)×m and has full rank if K is nonsingular, the dimension of the kernel is n−2m) and y = 0. For the remaining
2m eigenvalues, we assume λ ̸= 1. From (11a) we have x =

1
λ−1U

TVy, which we substitute into (11b) to obtain

y =
1

(λ− 1)2
V TUUTVy. (12)

he eigenvalues of V TUUTV are given by cos2(θi), where θi are the principal angles between range(A) and range(BT ). Thus,
for each θi we can write (12) as

y =
cos2(θi)
(λi − 1)2

y,

implying that

λi = 1 ± cos(θi).

Thus each θi yields two distinct eigenvalues. Together with the n − 2m eigenvalues with λ = 1, this accounts for all n
eigenvalues of PTP . Therefore, the smallest eigenvalue of PTP is given by 1 − cos(θmin); the stated result follows. □

We can use the results we have established for matrices with lowest-rank A to derive a lower bound on the positive
igenvalues of K that does not require us to know the eigenvalues of Aγ . We saw in Theorem 4 that for W = γ I , the

bound is given by min
{
µmin(Aγ ), 1

γ

}
. As γ decreases, the value of µmin(Aγ ) approaches zero (because Aγ approaches A);

thus, we achieve the best possible lower bound when

1
γ

= µmin(Aγ ).

Since we do not generally know the value of µmin(Aγ ), we can instead select 1
γ
to be equal to the reciprocal of the lower

ound on µmin(Aγ ) given by Theorem 5 and Lemma 6. That is, we find a γ that satisfies

1
γ

=
(
1 − cos(θmin)

)
min

{
µ+

min(A), γ σ
2
min(B)

}
.

Depending on which of the arguments to the min function is smaller, we either have

1
γ

= µ+

min(A)(1 − cos(θmin))

or we have 1
γ

= (1 − cos(θmin)) · γ σ 2
min(B), which implies that

1
γ

= σmin(B)
√
1 − cos(θmin).

Therefore, if we select

1
γ

= min
{
µ+

min(A)
(
1 − cos(θmin)

)
, σmin(B)

√
1 − cos(θmin)

}
,

we know that µ (A ) will be greater than or equal to this value of 1 . This gives the following result:
min γ γ

5
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Theorem 7. Let rank(A) = n − m and let θmin denote the minimum principal angle between range(A) and range(BT ). The
ositive eigenvalues of K are greater than or equal to

min
{
µ+

min(A)
(
1 − cos(θmin)

)
, σmin(B)

√
1 − cos(θmin)

}
.

emark 8. Depending on the properties of the problem, there may be no way to avoid a bound very close to zero.
pecifically, if cos(θmin) ⪅ 1, then the range of A and the range of BT contain vectors that are nearly linearly dependent.

When rank(A) = n − m, this implies that we are close to the case where rank(range(A) ∩ range(BT )) < n, which yields a
ingular K. Thus, cos(θmin) ⪅ 1 implies that K is ill-conditioned and a near-zero eigenvalue bound is appropriate.

emark 9. The computation of cos(θmin) is somewhat involved, as it requires a full eigenvalue decomposition of A and
singular value decomposition of B. As such, it is mainly of theoretical value. That said, the quantity required is the
aximal singular value of UTV , which is computationally cheap once U and V are available. In contrast, the bound in [12]
equires one or more of the smallest cosine values (and therefore the smallest singular values), which is more expensive
o compute.

In some cases, more may be known about the null spaces of A and B than the ranges of A and BT . For these settings,
t is convenient to re-frame the result of Theorem 7 to rely on the angle between kernels rather than the angle between
anges. Because ker(A) and ker(B) are the respective orthogonal complements of range(A) and range(BT ), the principal
ngles are the same as those between ker(A) and ker(B). The following result then holds.

orollary 10. Let rank(A) = n−m and let ψmin denote the minimum principal angle between ker(A) and ker(B). The positive
igenvalues of K are greater than or equal to

min
{
µ+

min(A)
(
1 − cos(ψmin)

)
, σmin(B)

√
1 − cos(ψmin)

}
.

3.2. Bounds when rank(A) ≥ n − m

We now return to the case in which A is rank-deficient but not lowest rank, and discuss how the results of the previous
section can be extended to this case.

As before, if we consider a weight matrix W = γ I , a lower bound on the positive eigenvalues of K is given by

min
{
1
γ
, µmin(Aγ )

}
,

s this bound does not depend on the nullity of A. When A is not lowest rank, the bound of Theorem 5 for µmin(Aγ ) is
not immediately applicable.

We consider an additive splitting of A:

A = A1 + A2, (13)

where rank(A1) = n−m and A1, A2 are positive semidefinite. The eigenvalues of Aγ are all greater than or equal to those
of

A1 + γ BTB =: Āγ .

Let ¯θmin denote the minimum principal angle between range(A1) and range(BT ). By Theorem 5 and Lemma 6, we have

µmin(Aγ ) ≥ µmin(Āγ ) ≥
(
1 − cos(θ̄min)

)
· min

{
µ+

min(A1), γ σ 2
min(B)

}
.

As we did before, we can select 1
γ
to be equal to the smaller of these two values to obtain a lower bound on the positive

eigenvalues of K that does not require forming an augmented matrix. The proof of the following theorem is similar to
that of Theorem 7 and is omitted.

Theorem 11. Let A1, A2 be arbitrary positive semidefinite matrices satisfying A1 +A2 = A and rank(A1) = n−m. The positive
eigenvalues of K are greater than or equal to

min
{
µ+

min(A1)
(
1 − cos(θ̄min)

)
, σmin(B)

√
1 − cos(θ̄min)

}
,

where θ̄min denotes the minimum principal angle between range(A1) and range(BT ).

Obviously, the correct choice of splitting to obtain the rank-(n−m) matrix A1 is non-trivial. The choice that maximizes
he value µ+

min(A1) is to take A1 = Umax
n−mΛ

max
n−m(U

max
n−m)

T , where Λmax
n−m ∈ R(n−m)×(n−m) is a diagonal matrix of the n−m largest

eigenvalues of A and Umax
n−m ∈ Rn×(n−m) is a matrix of the corresponding eigenvectors. The resulting bound for this choice

of A is presented below as a corollary to Theorem 11.
1

6
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Corollary 12. Let A be semidefinite with n − m ≤ rank(A) ≤ n. The positive eigenvalues of K are greater than or equal to

min
{
µn−m+1(A)

(
1 − cos(θmin

n−m)
)
, σmin(B)

√
1 − cos(θmin

n−m)
}
,

here µn−m+1(A) denotes the (n − m + 1)th largest eigenvalue of A and θmin
n−m the smallest principal angle between range(BT )

and the subspace spanned by the eigenvectors corresponding to the n − m largest eigenvalues of A. (Or, equivalently, θmin
n−m is

the smallest principal angle between ker(B) and the subspace spanned by the eigenvectors corresponding to the m smallest
eigenvalues of A – see Corollary 10.)

We note that the choice of A1 in Corollary 12 is not always ideal, in that it may lead to an overly pessimistic bound.
For example, consider the matrix (with n = 3 and m = 2):

K =

⎡⎢⎢⎢⎣
1 0 0 0 1
0 α 0 0 0
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0

⎤⎥⎥⎥⎦ =:

[
A BT

B 0

]
, (14)

here 0 < α < 1. The positive eigenvalues of K are α, 1, and 1+
√
5

2 . The eigenvector Umax
n−m that we retain to form A1,

which is in this case the eigenvector corresponding to λ = 1, is:

Umax
n−m =

[1
0
0

]
.

Because this eigenvector is in the range of BT , the value θmin
n−m is 0, meaning that Corollary 12 gives a bound of 0. We would

obtain a better bound if, instead of keeping the part of the spectrum of A that corresponds to the eigenvalue λ = 1, we
kept the portion of the spectrum corresponding to λ = α (this would in fact give a tight bound of α).

An alternative option is to select A1 in a way that attempts to minimize the value cos(θ̄min). Even restricting ourselves
to A1 of the form A1 = UsubΛsubUT

sub, where Λsub and Usub respectively contain some subset of n−m nonzero eigenvalues of
A and the corresponding eigenvectors, there are combinatorially many options to consider, making a brute force approach
impractical.

We describe a simple greedy strategy below. Let vj represent the jth column of the matrix V of right singular vectors
of B, as defined in (8). Because we want to select a matrix Usub that minimizes the maximum singular value of UT

subV , we
elect the (n − m) eigenvectors ui corresponding to positive eigenvalues for which the values of maxj=1,...,m |uT

i vj| are the
mallest. If we use this strategy on the matrix K in (14), the matrix A1 will consist of the spectrum of A corresponding to
he eigenvalue α, and Theorem 11 will yield a tight bound of α.

.3. Comparison to other bounds

Here we include a comparison between our eigenvalue bounds and those of other sources. As mentioned in the
ntroduction, the bound of Rusten and Winther [11] reduces to zero in the case we consider here with singular A.

We now include a more detailed comparison of our bound and that of Ruiz et al. [12, Theorem 4.1], stated below:

heorem 13. Consider a saddle-point matrix K where A satisfies µmax = 1 and B satisfies BBT
= I (i.e., the columns of B are

rthonormal). Let θmax
p denote the maximum principal angle between range(Umin

p ) and range(BT ), where the columns of Umin
p

re the eigenvectors corresponding to the p smallest eigenvalues of A. Then the positive eigenvalues of K are greater than or
qual to

max
1≤p≤r−1

min

(
µn−p+1(A)

2
,
µmin(A) +

4
5 cos2(θmax

p )µn−p+1(A)

1 +
4
5 cos2(θmax

p )µn−p+1(A)

)
,

where r = min(m, n − m).

We note that our bound is applicable to a wider class of matrices because we do not require that the largest eigenvalue
of A be equal to 1 or that the columns of B be orthonormal. The former condition is easily addressed by scaling the matrix
K, which still allows us to easily recover the eigenvalues of the original matrix. However, there is no way to orthonormalize
the columns of B without changing the eigenvalues of K in a way that does not allow us to easily map the eigenvalues
of the modified system to those of the original system; thus, Theorem 13 is less applicable for general B.

A consequence of Theorem 13 is that the lower positive eigenvalue bound can be no greater than the rth smallest
eigenvalue of A, where r = min(m, n − m). Thus, this bound reduces to zero for matrices where A has sufficiently high
ullity, including when A is lowest-rank.
For matrices with orthonormal B and the nullity of A less than r , sometimes our bound is tighter and sometimes the

bound of Ruiz et al. is tighter. In particular, the quality of our bound where A is not lowest-rank is vulnerable to the choice
7



S. Bradley and C. Greif Journal of Computational and Applied Mathematics 424 (2023) 114996

w

e

w

t

of matrix A1 in Theorem 11 and/or Corollary 12. As an example where Corollary 12 gives a tighter bound, consider the
following example with n = 4 and m = 2:

K =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 1 0
0 α 0 0 0 1
0 0 2α 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ =:

[
A BT

B 0

]
, (15)

here 0 < α < 0.5. The positive eigenvalues of K are given in ascending order by 2α, 1 (with multiplicity 2), and
α+

√
α2+4
2 . For our bound, the matrix Umax

n−m corresponding to the largest eigenvectors of A is given by

Umax
n−m =

⎡⎢⎣0 0
0 0
1 0
0 1

⎤⎥⎦ .
Because this is orthogonal to range(BT ), the value cos(θmin

n−m) is equal to 0, and the bound of Corollary 12 is equal to α.
For the bound of Ruiz et al. we only need to consider p = 1 (because r = 2). The vector corresponding to the smallest

igenvector of A is defined by

Umin
p =

⎡⎢⎣1
0
0
0

⎤⎥⎦ ,
hich is in range(BT ), and we therefore have θmax

p = 0. The bound of Theorem 13 reduces to

min

(
α

2
,
0 +

4α
5

1 +
4α
5

)
≤
α

2
< α,

and is thus looser than the bound given by Corollary 12.
If, on the other hand, we modify K in (15) to have

A =

⎡⎢⎣0 0 0 0
0 2α 0 0
0 0 α 0
0 0 0 1

⎤⎥⎦ ,
he smallest positive eigenvalue of K will be 2α, the bound of Ruiz et al. will still be min

(
α
2 ,

0+ 4α
5

1+ 4α
5

)
, while Corollary 12

will give a bound of zero (though this can be improved by selecting a different matrix A1 and instead using Theorem 11 –
for instance, greedily retaining the eigenvectors ui that minimize maxi=1,...,j |uT

i vj|, as described at the end of Section 3.2,
yields a bound of α).

3.4. Preconditioning

We will briefly discuss how our eigenvalue bounds could be used to derive and analyze effective preconditioning
strategies, in the spirit of the useful discussion in Ruiz et al. [12, Section 4]. Let us consider a general positive definite
block diagonal preconditioner

M =

[
M 0
0 S

]
,

where M ∈ Rn×n and S ∈ Rm×m are positive definite. Then the split preconditioned operator

M−1/2KM−1/2
=

[
M−1/2AM−1/2 M−1/2BT S−1/2

S−1/2BM−1/2 0

]
is also a saddle-point matrix with a singular leading block. In order to obtain better performance of an iterative solver
such as MINRES, we want to move the smallest positive eigenvalues of M−1/2KM−1/2 away from zero (and, ideally, close
to the largest positive eigenvalues so that all the positive eigenvalues are contained in a small interval). Theorem 7 tells
8
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I
b
p

4

C
c

d
o

us that there are three ways in which we can do this:

(i) increase the smallest positive eigenvalue of M−1/2AM−1/2;
(ii) increase the smallest singular value of S−1/2BM−1/2;
(iii) increase the minimum principal angle between range(M−1/2AM−1/2) and range(S−1/2BM−1/2).

n the lowest-rank case, the best case in terms of condition (iii) is for range(M−1/2AM−1/2) and range(S−1/2BM−1/2) to
e mutually orthogonal. See [1], [26, Lemma 5], for an example of how this applies to a time-harmonic Maxwell model
roblem where A is lowest-rank.

. Numerical experiments

We test our eigenvalue bounds on two problems. The first is an electromagnetics model problem described in [1].
onsider the time-harmonic Maxwell equations in lossless media with perfectly conducting boundaries and constant
oefficients. The problem is to find the vector field u and multiplier p such that

∇ × ∇ × u + ∇p = f in Ω,
∇ · u = 0 in Ω,
u × n = 0 on ∂Ω,

p = 0 on ∂Ω.

Discretizing with Nédéléc finite elements for u and nodal elements for p [27] yields a linear system of the form[
A BT

B 0

][
u
p

]
=

[
g
0

]
,

where A is a discrete curl–curl operator and B is a discrete divergence operator.
In the above-described problem, A has rank n − m, and hence it is lowest rank per the terminology we use in this

paper. Fig. 1 shows the predicted bound (as a solid line), the actual smallest positive eigenvalue (dashed line) for various
values of γ for a Maxwell matrix on the domain Ω = [0, 1] × [0, 1] with n = 6, 080 and m = 1, 985.

The second problem describes linear systems arising from an interior point method (IPM) solution to a quadratic
program (QP); see [28] and the references therein for a detailed description. At each iteration of the IPM, we solve a
linear system with a matrix of the form

K =

[
H + X−1Z JT

J 0

]
,

where H and J are respectively the Hessian and Jacobian matrices for the QP, and X and Z are diagonal matrices of the
current primal and dual iterates, some entries of which go to 0 as the iterations progress. Thus, the leading block becomes
progressively more ill-conditioned as the iterations proceed.

In Fig. 2 we show the results of the bound of Corollary 12 on the first IPM iteration on TOMLAB1 Problem 17 for
which the saddle-point matrix K is numerically singular. This problem has n = 293 and m = 286. For the particular
matrix shown in the experiment below (which arises in the 12th iteration of the IPM algorithm of [29]), there are 115
‘‘numerically zero’’ eigenvalues of the leading block (which we define as those less than machine epsilon times the largest
eigenvalue of that block).

In both cases the actual smallest positive eigenvalue µmin(K) occurs precisely where 1
γ

= µmin(Aγ ). The bounds for the
Maxwell matrix are rather tight, in the sense that they are of the same order of magnitude as the eigenvalue (we also see
this with Maxwell matrices of other sizes): the predicted eigenvalue bound is 0.0453 while the actual smallest positive
eigenvalue is 0.0611.

The bound for the TOMLAB problem is looser: the predicted bound is 4.716 × 10−7 while the actual smallest positive
eigenvalue is 1.817 × 10−4. Recall that our approach for deriving the bound for a matrix with A that does not have the
lowest rank consisted of two steps: (1) implicitly convert the matrix to one with a lowest-rank leading block (denoted
by A1 in Theorem 11) by subtracting some positive semidefinite portion of A; and (2) estimate the lower bound for the
matrix with the lowest-rank leading block using the results of Section 3.1, using the fact that this will also be a lower
bound for the original matrix. Because our analysis relies on ‘‘dropping’’ a positive semidefinite part of A we might in
general expect that to lead to some looseness in the bound.

However, the dropping is not the cause of the looseness in this case of the TOMLAB problem, as the saddle-point matrix
we obtain by simply replacing A with the dropped portion A1 that is used in Corollary 12 has almost the same smallest
positive eigenvalue as the original matrix (1.810× 10−4, compared with 1.817× 10−4). Thus, the looseness in this bound
oes not come from the dropping part of the spectrum of A to create a lowest-rank matrix, but rather in the estimation
f the lower positive eigenvalue bound of the modified matrix.

1 Test matrices available at https://tomopt.com/tomlab/.
9
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Fig. 1. Comparison of predicted and actual smallest positive eigenvalue bounds at various values of γ for the Maxwell matrix (lowest rank).

Fig. 2. Comparison of predicted and actual smallest positive eigenvalue bounds at various values of γ for the IPM matrix for TOMLAB QP 17.

. Conclusions

We have described a novel framework for bounding eigenvalues of saddle-point matrices by strategically augmenting
ome of their blocks. We used this approach to derive (nonzero) bounds on the lower positive eigenvalues of saddle-point
atrices with singular leading blocks. By making certain assumptions on the augmentation parameters, we were able to
erive an eigenvalue bound that does not require the formation of an augmented matrix.
Future work may include improving the bound in the non-lowest-rank case (for instance, by judiciously selecting the

ortion of the spectrum of A that is ‘‘dropped’’) and using this framework to analyze the convergence of preconditioned
terative solvers. An understanding of how the spectral properties of saddle-point matrices depend on the interactions
etween the blocks is also useful in developing preconditioning approaches, and this is the subject of a follow-up
aper [26].

ata availability

Data will be made available on request.
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