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A MULTIPRECONDITIONED CONJUGATE GRADIENT
ALGORITHM∗

ROBERT BRIDSON† AND CHEN GREIF†

Abstract. We propose a generalization of the conjugate gradient method that uses multiple
preconditioners, combining them automatically in an optimal way. The algorithm may be useful
for domain decomposition techniques and other problems in which the need for more than one
preconditioner arises naturally. A short recurrence relation does not in general hold for this new
method, but in at least one case such a relation is satisfied: for two symmetric positive definite
preconditioners whose sum is the coefficient matrix of the linear system. A truncated version of
the method works effectively for a variety of test problems. Similarities and differences between
this algorithm and the standard and block conjugate gradient methods are discussed, and numerical
examples are provided.
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1. Introduction. The conjugate gradient (CG) method celebrated a few years
ago a milestone 50th anniversary. In the years since its conception in 1952 [9], the
preconditioned version of CG (PCG) has established itself as the method of choice
for iteratively solving large sparse symmetric positive definite (SPD) linear systems,
Ax = b. Throughout the years the method has seen many variants and generalizations,
blossoming into a large family of Krylov subspace solvers.

This paper is concerned with a variation of the standard PCG method that em-
ploys multiple preconditioners. We call the algorithm MPCG: multipreconditioned
conjugate gradient. The motivation is that for preconditioning certain problems there
are several alternative approaches with different desirable properties, but it may be
difficult to combine them into a single effective preconditioner. A multipreconditioned
solver could automatically take advantage of all available preconditioners.

Our new iterative method obtains an energy norm minimization property, while
maintaining A-conjugation and orthogonality properties similar to PCG, but with
iterates constructed in a generalized Krylov space incorporating an arbitrary set of
preconditioners.

As with flexible CG [10], our approach cannot generally maintain one of the
most attractive features of standard PCG: the famous three-term recurrence relation.
However, in practice a truncated version of the method works efficiently in many
cases we have tested. Moreover, we are able to show analytically that for the case of
two preconditioners whose sum is equal to the coefficient matrix, a short recurrence
relation does hold.

Block versions of CG have been proposed in the literature, but none of them
considers using multiple preconditioners. O’Leary [11] derived a block CG method
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designed to handle multiple right-hand sides, which is also capable of accelerating the
convergence of linear systems with a single right-hand side. The method uses a single
preconditioner and can be classified as a block Krylov method.

Brezinski [3] proposes an effective adaptation of the block CG method for solving
with a single right-hand side, partitioning the initial residual into multiple search
directions (see also Bantegnies and Brezinski [1]). This partitioning approach makes
it possible to group together blocks of components which might have distinct behavior,
possibly due to representing different physical properties. A variety of multiparameter
methods have been derived using this methodology; see [3] and references therein.

A block method designed for a parallel computing environment is proposed by Gu
et al. in [7, 8]. The unknowns are partitioned into disjoint subdomains, taking into
consideration the number of parallel processors available, but for any given search
direction the conjugation property is weakened by zeroing out components of the
search directions in other subdomains, eliminating global communication bottlenecks
in a parallel environment at the price of slower convergence.

Related work that should also be mentioned is the family of flexible or inexact
methods [5, 10, 12, 14]. In those methods the preconditioner changes throughout
the iteration, whereas in the method that we propose, MPCG, the preconditioners
are fixed and are determined a priori. (We note, however, that a flexible variant of
MPCG can be applied in a straightforward fashion.)

The remainder of this paper is structured as follows. In section 2 we derive
a multipreconditioned steepest descent method. In section 3, the main part of the
paper, we derive the MPCG algorithm and discuss its properties. Section 4 is devoted
to numerical experiments. Finally, in section 5 we draw some conclusions and point
out possible directions for future research.

Throughout we will assume without loss of generality that our initial guess is
x0 = 0, with initial residual r0 = b; generally quantities computed at the ith iteration
of an algorithm will have the subscript i. The matrix A is symmetric positive definite,
and the preconditioners are Mj , j = 1, . . . , k, where M−1

j ≈ A−1. This is the one case
where the subscript does not indicate the iteration at which the quantity is computed:
M1, . . . ,Mk are fixed throughout the algorithm.

2. Multipreconditioned steepest descent (MPSD). Since A is symmetric

positive definite, it is possible to employ the notion of an energy norm: ‖e‖A =
√
eTAe.

The basic steepest descent (SD) algorithm for solving Ax = b is to take the negative
gradient of the energy norm of the error, i.e., the steepest descent direction, which
also happens to be the current residual vector ri, as the search direction for a step
that minimizes the energy norm of the error associated with the new guess:

pi+1 = ri,

αi+1 = (pTi+1Api+1)
−1(pTi+1ri),

xi+1 = xi + αi+1pi+1,

ri+1 = ri − αi+1Api+1.

Of course, convergence is much faster if the search direction is closer to the actual error
A−1ri, so it is natural to precondition this iteration by instead choosing pi+1 = M−1ri,
where M−1 ≈ A−1, obtaining a preconditioned SD algorithm (PSD).

One possible approach to further improve the new residual is to enlarge the search
space from one dimension to multiple dimensions: use a set of search directions
p1, . . . , pk. In particular, if multiple preconditioners M1, . . . ,Mk are available, use
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pji+1 = M−1
j ri+1. Let Pi = [p1

i | . . . |pki ]. To get the same energy norm minimization,
we derive an MPSD algorithm:

pji+1 = M−1
j ri for j = 1, . . . , k,

αi+1 = (PT
i+1APi+1)

−1(PT
i+1ri),

xi+1 = xi + Pi+1αi+1,

ri+1 = ri −APi+1αi+1.

Note that, as is the case for other block methods, αi+1 is now a vector of coefficients
specifying the linear combination of search directions for updating the guess.

3. MPCG. Although the SD method converges, it is inefficient compared with
the CG method. This section establishes the multipreconditioned analogue of CG
in a similar fashion to the derivation of the standard PCG, whose first step is an
iteration of PSD. The analogy to the derivation of the standard method with a single
preconditioner allows us to make the reasonable assumption that MPCG will improve
on MPSD in a way similar to the improvement obtained by using CG (or PCG) rather
than SD (or PSD).

3.1. Derivation. One way of looking at CG and why it is so much faster than
SD is to interpret it as a generalized SD with multiple search directions. At step i+1,
the search directions are simply p1, . . . , pi+1, i.e., the new search direction plus all the
previous ones. Thus we get a global energy norm minimum, not just a local greedy
minimization. The clever part about CG is choosing the search directions to be A-
conjugate, so that PT

i+1APi+1 is just diagonal and trivial to invert. Furthermore, due
to the global minimization, the previous search directions Pi are orthogonal to the
most recent residual, and thus PT

i+1ri is zero except for the last component, making
the update even simpler.

We will want to preserve these features in generalizing PCG to have multiple
search directions per step (generated from multiple preconditioners). That is, we
want the property

PT
i APj = 0 for i �= j.

We begin with one step of MPSD:

pj1 = M−1
j r0 for j = 1, . . . , k,

α1 = (PT
1 AP1)

−1(PT
1 r0),

x1 = x0 + P1α1,

r1 = r0 −AP1α1.

Then we generate the preconditioned residuals to increase the dimension of the search
space:

zj2 = M−1
j r1 for j = 1, . . . , k.

Let Zi = [z1
i | . . . |zki ]. We will want to get P2 from Z2 by making it A-conjugate to

the previous directions:

P2 = Z2 − P1(P
T
1 AP1)

−1PT
1 AZ2,
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pj1 = zj1 = M−1
j r0 for j = 1, . . . , k,

P1 = [p1
1|p2

1| . . . |pk1 ],
α1 = (PT

1 AP1)
−1(PT

1 r0),
x1 = x0 + P1α1,
r1 = r0 −AP1α1,
Repeat i = 1, 2, . . . until convergence

Zi+1 = [M−1
1 ri|M−1

2 ri| . . . |M−1
k ri],

Pi+1 = Zi+1 −
∑i

j=1 Pj(P
T
j APj)

−1PT
j AZi+1,

αi+1 = (PT
i+1APi+1)

−1(PT
i+1ri),

xi+1 = xi + Pi+1αi+1,
ri+1 = ri −APi+1αi+1,

end

Fig. 3.1. The MPCG algorithm.

or more generally,

Pi+1 = Zi+1 −
i∑

j=1

Pj(P
T
j APj)

−1PT
j AZi+1.

Now, with the new A-conjugate search direction, we can again seek a global minimum
that simplifies to a local computation:

αi+1 = (PT
i+1APi+1)

−1(PT
i+1ri),

xi+1 = xi + Pi+1αi+1,

ri+1 = ri −APi+1αi+1.

The algorithm is given in Figure 3.1. Each iteration involves k preconditioner solves.
Vector operations in the original PCG are now replaced by operations on n × k ma-
trices. The matrices PT

j APj are k× k, hence their inversion (for computing Pi+1 and
αi+1) is computationally negligible. We can say, then, that the cost of each MPCG
iteration with k preconditioners is approximately k times more expensive than a single
PCG iteration, provided that the computational cost of the preconditioner solves is
similar.

3.2. Orthogonality properties. Since we do a global minimization of energy
norm at the previous steps, we get the usual orthogonality property

PT
i rj = 0 for i ≤ j.(3.1)

From (3.1) it follows that

rTj Zi = rTj
(
Pi + Pi−1(P

T
i−1APi−1)

−1PT
i−1AZi

)
(3.2)

= rTj Pi + rTj Pi−1 (. . .)

= 0 + 0 for i ≤ j.

Up to this point we have derived properties which are valid for any choice of the
Zi’s, e.g., even with random nonsymmetric preconditioners chosen independently at
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each step. However, let us now use the fact that our preconditioners are symmetric
and do not change throughout the iteration (as opposed to a flexible method). Then

rTj z
s
i = rTj M

−1
s ri−1 = rTj (M−1

s )T ri−1 = (M−1
s rj)

T ri−1 = (zsj+1)
T ri−1.

In combination with (3.2), we conclude that

rTj Zi = 0 for j �= i− 1.(3.3)

3.3. Breakdown. The MPCG algorithm could break down if PT
j APj is singular

for any j, which happens, for example, if two or more of the preconditioners are
identical to each other. As previously mentioned, PT

j APj is k-by-k, where k is the
number of preconditioners. It is thus a very small matrix whose singularity can be
easily detected. Since preconditioners are typically selected so that they produce
linearly independent search directions, a breakdown should rarely occur. In any case
an automatic way to avoid breakdown may be, for example, to use the singular value
decomposition of PT

j APj to eliminate redundant search directions.

3.4. A case where PCG and MPCG are equivalent. Consider the following
case of polynomial preconditioning.

Proposition 3.1. If roundoff errors are ignored, the 2jth iteration (j = 1, 2, . . .)
of PCG with a preconditioner M is identical to the jth iteration of MPCG with M−1

1 ≡
M−1 and M−1

2 ≡ M−1AM−1.
Proof. Assuming an initial guess of x0 = 0 with initial residual r0 = b, the

standard PCG algorithm solves for x2j as the vector from the Krylov subspace

K2j(M−1A;M−1r0) = span{M−1r0, (M
−1A)M−1r0, . . . , (M

−1A)2j−1M−1r0}

that minimizes the energy norm of the error. Let us show that the same sub-
space is obtained with j iterations of MPCG with M1 and M2. Since Z1 = P1 =
[M−1r0|M−1AM−1r0] and r1 = r0 − AP1α1, we have r1 ∈ span{r0, AM−1r0,
AM−1AM−1r0}. The corresponding subspace from which x is chosen is spanned by
M−1r0 and M−1AM−1r0 in the first iteration, and is extended by M−1(AM−1)2r0
and M−1(AM−1)3r0 in the second iteration. The rest of the proof readily follows by
induction, for any given integer j, by repeating the same argument. Since MPCG
finds the vector from this subspace that minimizes the energy norm of the error, just
as PCG does, it must produce the same iterates as PCG.

The result in Proposition 3.1 can be extended to more than two precondition-
ers: MPCG with the k preconditioning matrices (M−1A)j−1M−1, j = 1, . . . , k, is
equivalent in the same fashion as above to PCG with a preconditioner M .

3.5. The recurrence relation. For regular PCG observe that

pTj Azi+1 = (Apj)
T zi+1

=

(
rj−1 − rj

αj

)T

zi+1

= 0 for j < i.

Thus the A-conjugation step may ignore all but the previous search direction, giving
the short recurrence. Unfortunately in MPCG, α is a vector and cannot be inverted, so
the above does not easily generalize. However, note that in MPCG, APjαj = rj−1−rj .
Using (3.3), this means that for j < i

αT
j P

T
j AZi+1 = 0,(3.4)
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and then after expanding αT
j ,

(
(PT

j APj)
−1(PT

j rj−1)
)T

PT
j AZi+1 = 0,

rTj−1

(
Pj(P

T
j APj)

−1PT
j AZi+1

)
= 0.

We also know rTs (Pj(P
T
j APj)

−1PT
j AZi+1) = 0 for s ≥ j since then rTs Pj = 0. Thus

even if the update Pj(P
T
j APj)

−1PT
j AZi+1 is not zero, it is orthogonal to all residuals

from rj−1 up.

While this orthogonality condition is as close to a short recurrence relation as
MPCG generally gets, there is an important case in which it is provably short and
there is no error in the truncation: we now formulate and prove this result, beginning
with a lemma.

Lemma 3.2. Suppose A = B+C, where B and C are used as the preconditioners
for MPCG. Then the 2 × 2 matrix ZT

j AZi+1 is diagonal for j �= i + 1.

Proof. Write out the columns of each Z matrix and perform the multiplication
explicitly:

ZT
j AZi+1 =

[
B−1rj−1|C−1rj−1

]T
(B + C)

[
B−1ri|C−1ri

]
=

[
rTj−1B

−1(B + C)B−1ri rTj−1B
−1(B + C)C−1ri

rTj−1C
−1(B + C)B−1ri rTj−1C

−1(B + C)C−1ri

]

=

[
(. . .) rTj−1(B

−1 + C−1)ri
rTj−1(B

−1 + C−1)ri (. . .)

]

=

[
(. . .) rTj−1(Z

1
i+1 + Z2

i+1)

rTj−1(Z
1
i+1 + Z2

i+1) (. . .)

]

=

[
(. . .) 0

0 (. . .)

]
,

where the last step uses (3.3).

We now prove the short recurrence for this A = B + C case, as follows.

Theorem 3.3. Suppose A = B + C, where B and C are SPD and are used as
the preconditioners for MPCG. Then the search directions satisfy the short recurrence
relation

Pi+1 = Zi+1 − Pi(P
T
i APi)

−1PT
i AZi+1.(3.5)

Proof. To show that the sum in the general A-conjugation formula for Pi+1

collapses to just the one term as in (3.5), we will prove that PT
j AZi+1 = 0 for j < i.

We begin our induction argument with the j = 1 case.

For j = 1, P1 = Z1. By Lemma 3.2, PT
1 AZi+1 is diagonal. Also recall from (3.4)

that αT
1 (PT

1 AZi+1) = 0. We argue that α1 has all nonzero entries unless r0 = 0: a
zero entry would indicate that no energy norm improvement in the solution is possible
along the corresponding search direction; i.e., for that column, say the ath column pa1
of P1, we have rT0 p

a
1 = 0. But pa1 = M−1

a r0, so rT0 p
a
1 cannot be zero, assuming that

the preconditioners are positive definite. The only diagonal matrix that has a vector
with all nonzero entries in its null-space is the zero matrix. Thus PT

1 AZi+1 = 0.

Now assume that PT
s AZi+1 = 0 for all s < j, and let us work on the case for j.



1062 ROBERT BRIDSON AND CHEN GREIF

Substituting the general summation formula for Pj gives

PT
j AZi+1 =

(
Zj −

j−1∑
s=1

Ps(P
T
s APs)

−1PT
s AZj

)T

AZi+1

= ZT
j AZi+1 −

j−1∑
s=1

ZT
j APs(P

T
s APs)

−1PT
s AZi+1.

Since s ≤ j − 1 < i in the above sum, the factor PT
s AZi+1 in each term is zero

by induction, so the sum is zero. We are left with PT
j AZi+1 = ZT

j AZi+1. Just
as in the base case, we know this is a diagonal matrix by Lemma 3.2, and that
αT
j (PT

j AZi+1) = 0 by (3.4). Also as in the base case note that, by the energy norm
minimization property, if an entry of αj were zero, then it would have to be that the
corresponding column of Pj was orthogonal to rj−1. Say that such a column is paj
and the corresponding column of Zj is zaj . Using the definition of Pj , we can expand:

rTj−1p
a
j = rTj−1z

a
j −

j−1∑
s=1

rTj−1Ps(P
T
s APs)

−1PT
s Azaj .

Since s ≤ j − 1, the factors rTj−1Ps are zero by (3.1). We are left with rTj−1z
a
j =

rTj−1M
−1
a rj−1, which must be positive if the preconditioners are positive definite.

Thus every entry of αj is nonzero, and so, just as in the base case, we must have that
PT
j AZi+1 is the zero matrix.

3.6. Truncated MPCG. Theorem 3.3 shows that in certain cases there is no
need to use the full MPCG. Even when the recurrence relation is not short, numerical
experiments indicate that it often is acceptable to truncate the A-conjugation step
to the standard short recurrence (that is, only make Pi+1 A-conjugate to Pi instead
of all previous search directions). The terms we truncate are often very small, and
convergence is often not significantly slowed down by the omission. Numerical results
that demonstrate this are given in section 4.

While we do not have a full analytical justification for the expectation that a
truncated version of MPCG will be effective, some insight may be provided by refer-
ring to the result that was obtained earlier in this section, namely that the update
Pj(P

T
j APj)

−1PT
j AZi+1 is orthogonal to all the residuals from rj−1 up.

We define MPCG(m) to be a truncated version of MPCG in which only the last
m search directions are used in each iteration. Note that another parameter necessary
for defining (full as well as truncated) MPCG is k, the number of preconditioners.
However, to maintain simplicity of notation, we do not incorporate it into the defini-
tion.

4. Examples. We now present numerical examples and discuss different ideas
for how to choose multiple preconditioners.

4.1. ADI examples. We start this section by considering two simple model
problems with ADI preconditioning.

4.1.1. Two-dimensional Poisson with weak coupling in one direction.
Consider

−uxx − εuyy = f(x, y)
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Fig. 4.1. Convergence history for the example in section 4.1.1: Relative residuals and the
components of α throughout the MPCG iteration for ε = 0.5.

on Ω = (0, 1)× (0, 1), with Dirichlet boundary conditions. We set the right-hand side
and the boundary conditions so that u(x, y) = cos(πx) cos(πy) is the exact solution.

Using the standard second order centered difference scheme with n grid points in
each direction (that is, with mesh size h = 1

n+1 ), the coefficient matrix is n2×n2, given
by A = In ⊗ Tn + εTn ⊗ In, where Tn = tri[−1, 2,−1]. We select two preconditioners
in an ADI fashion: Mx = In ⊗ Tn and My = εTn ⊗ In. Thus, Mx is tridiagonal
and corresponds to the discretized operator −uxx, and My is a discrete operator
corresponding to −εuyy. Since A = Mx+My by construction, Theorem 3.3 holds and
MPCG(1), which is based on short recurrences, produces the same iteration sequence
as full MPCG (up to roundoff errors). Setting ε = 1 corresponds to the standard
Poisson equation, for which the symmetry between x and y implies that MPCG with
Mx and My as preconditioners is tied with the standard PCG with either Mx or
My in terms of overall computational work. (Numerical experiments confirm this.)
However, for smaller values of ε the equality of the roles played by x and y is lost, and
differences between using Mx and My are expected. We take ε = 0.5 and compare
the convergence of PCG and MPCG(1). Figure 4.1 illustrates the behavior of α and
the convergence of MPCG(1). A 32 × 32 grid was used. As expected, Mx dominates
the search space; the graphs for α confirm this.

Note that each iteration of MPCG(1) involves solving for two preconditioners and
hence is more computationally expensive than a PCG iteration by a factor of nearly 2.
The iteration counts that are presented in the graphs are 206 for PCG using My, 102
for PCG using Mx, and 66 for MPCG(1) using Mx and My. Thus, PCG with Mx

outperforms MPCG(1), whereas PCG with My is inferior.
The point that we are making in this example is that while there might be a single

preconditioner whose performance is better than a combination of preconditioners,
the detection of the preconditioning for MPCG is done automatically, and does not
rely on knowledge of the underlying continuous problem or properties of the matrix.
MPCG could be useful in cases where one particular preconditioner clearly dominates
but cannot be easily identified beforehand: a few iterations could be executed to
determine what the most effective preconditioner is, and then one could switch to
regular PCG with that choice.

4.1.2. ADI for three-dimensional Poisson. The three-dimensional Poisson
equation, −∇2u = f on the unit cube with Dirichlet boundary conditions, is dis-
cretized using standard centered finite differences and is solved using three precondi-
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Table 4.1

The Poisson equation in three dimensions, using three preconditioners, in an ADI fashion. The
right-hand-side vector in this case was random, with normal distribution.

n n3 MPCG (1) Full MPCG
8 512 32 31
16 4096 61 60
24 13824 88 88

tioners in an ADI fashion: discrete operators that correspond to −uxx,−uyy,−uzz.
We used a random right-hand side and ran the program for several meshes. The short
recurrence relation does not hold in this case; this was observed by keeping track
of PTAZ throughout the iteration. However, numerical experiments indicate that
MPCG(1) performs as well as full MPCG. In other words, the convergence behavior
is practically unaffected by the truncation. Results are given in Table 4.1. We do not
have an analytical explanation for this result.

4.2. Domain decomposition. One of the natural applications for MPCG is
domain decomposition: each preconditioner corresponds to (approximately) solving
a restriction of the PDE to a subdomain. MPCG will then automatically provide
something akin to a coarse grid correction: the matrix equation for α is a Galerkin
projection of the matrix onto a small subspace with one degree of freedom per subdo-
main. This allows for much greater scalability than the corresponding PCG method
using just a fixed combination of subdomain solves. Note that the preconditioners for
each subdomain will be singular.

For preliminary experiments we solved the standard 5-point Poisson problem on
a square grid with Dirichlet boundary conditions. For preconditioners we partition
the domain into disjoint rectangles, in each of which we exactly solve the restriction of
the problem, i.e., inverting the submatrix of A corresponding to those unknowns. For
regular PCG, we assemble these into a standard block diagonal preconditioner. For
MPCG, we treat each subdomain solve as a separate preconditioner that can supply
a unique search direction.

Our first observation is that if we have just two subdomains, then MPCG appar-
ently (observed to roundoff error) preserves the short recurrence—though this situa-
tion is not covered by Theorem 3.3. In this case, MPCG is noticeably more efficient
than PCG; e.g., to solve on a 100 × 100 grid (with 100 × 50 subdomains) to 10−10

relative residual reduction took PCG 49 iterations but MPCG just 37. The cost of
these iterations is dominated by the subdomain solves, so the small amount of extra
work that MPCG does per iteration is more than compensated for by the enhanced
convergence rate. Figure 4.2 shows the residual norm histories.

For more subdomains, the short recurrence property is lost. However, we can see
that the full (nontruncated) form of MPCG actually has significantly better scalability
than standard PCG, at least in terms of iteration counts. If we keep the subdomain
size constant as we increase the grid size, then the iteration count for PCG increases
linearly with the side length of the grid. However, for full MPCG, the iteration count
appears to increase only logarithmically; see Table 4.2 for the numbers from our
numerical experiment.

Unfortunately with truncation—even keeping two or three previous iterations’
search directions and not just one—the scalability is diminished and the results are
noticeably slower. We conjecture that truncating to one search direction leads to
a linear convergence (like PCG, but slower), but retaining more search directions
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Fig. 4.2. Residual norm history of PCG and MPCG for a two-dimensional Poisson problem
on a 100 × 100 grid, preconditioned with two 100 × 50 subdomain solves.

Table 4.2

Iteration counts for a two-dimensional domain decomposition scalability test, using approxi-
mately 8 × 8 subdomain solves for the preconditioners.

Truncated Truncated Truncated
Grid size PCG MPCG (1) MPCG (2) MPCG (3) Full MPCG

25 39 69 45 44 19
50 70 131 77 67 22

100 126 257 125 107 24

steadily improves the scalability, ultimately towards O(log n) for full MPCG. For
example, MPCG(3) (keeping three previous search direction groups) appears from
Table 4.2 to lead to O(n2/3) iterations for an n× n grid.

4.3. A model bending problem. Our motivation for this example is plate
and shell elasticity problems, or more generally PDEs where the matrix to solve is the
sum of relatively easy to precondition parts (e.g., second order differential operators)
and more challenging parts (e.g., fourth order differential operators). We used the
standard centered finite difference discretization of

B∇4u− S∇2u +
1

Δt
u = f

with clamped boundary conditions (u = ∂u
∂n = 0) on a unit square domain as a model

for an implicit time step in a bending simulation.

The biharmonic term in this problem gives rise to a non-M -matrix and can cause
standard incomplete Cholesky methods to break down, though modified incomplete
Cholesky, for example, works very well for the other terms. A robust alternative that
has been successfully applied to difficult shell problems is stabilized AINV [2]. We
investigate using both SAINV (on the full matrix, permuted with a minimum degree
ordering, with drop tolerance 0.1) and modified incomplete Cholesky (on all terms
except the biharmonic operator, using the regular grid ordering, with level 0 fill) in
MPCG.

Our test case uses a 100 × 100 grid, B = 10−6, Δt = 10−2, and various values
for S. Our motivation for these specific choices is related to scaling of the operators.
We present iteration counts for PCG with the two different preconditioners as well as
their sum (i.e., giving them equal weight), for full MPCG and for truncated MPCG(1)
and MPCG(2), in Table 4.3.
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Table 4.3

Iteration counts (to reduce the residual by 10−10) for a model bending problem. The parameter
S is the coefficient that appears in the PDE.

SAINV MIC(0) Combined Full Truncated Truncated
S PCG PCG PCG MPCG MPCG(1) MPCG(2)

10−3 63 146 143 48 65 57
10−2 49 126 117 40 47 47
10−1 56 81 70 35 41 41

1 122 58 54 41 54 46
10 171 56 54 44 58 50
102 186 56 54 44 61 50
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Fig. 4.3. Plots of how the two components of α (one for the SAINV preconditioner and the
other for the modified incomplete Cholesky preconditioner) evolve over the iterations for full MPCG
applied to the S = 0.1 bending problem. The right-hand plot shows the relative change from the
initial value of α.

Observe that as the relative importance of the second order term changes, the
effectiveness of PCG with a particular choice of preconditioners varies significantly.
Meanwhile, full MPCG followed closely by truncated MPCG(2) robustly achieve the
minimum iteration counts—though of course doing more work per iteration. For the
more imbalanced problems (S very small or very large) it is almost certain that PCG
with the appropriate preconditioner will be the clear winner in terms of actual time,
but for the more interesting balanced cases—where it is unclear a priori what the
appropriate preconditioner is—truncated MPCG could be a very competitive, robust
choice.

To illustrate some of the dynamic behavior of MPCG, we plot the two components
of α for full MPCG in the S = 0.1 problem in Figure 4.3. While the contribution from
the SAINV preconditioner remains steady, the contribution from the modified incom-
plete Cholesky preconditioner steadily grows. We hypothesize this is due to SAINV
being more effective overall, but MIC(0) doing a better job on low frequencies—which
eventually are all that is left after SAINV deals with the rest of the spectrum. These
steadily changing weights could not be duplicated by a fixed combination in regular
PCG. Interestingly, we do not see the upwards trend in truncated MPCG: further
investigation is required to understand this behavior.

We have observed variations on this problem where MPCG does not fare as well.
From these experiments it appears that MPCG usually behaves in one of two ways
(excepting the scalable domain decomposition results in the previous section, where we
get the coarse grid correction effect). In some problems the multiple preconditioners
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act synergistically, and the full and truncated forms of MPCG perform comparably:
the additional search directions from the multiple preconditioners more than make
up for the loss of global orthogonality and attendant loss of global optimality. For
other problems truncated MPCG performs poorly, and while full MPCG necessarily
converges in fewer iterations than simple PCG, it appears not to afford a major
improvement: the extra search directions are nearly redundant, so PCG with its
guarantee of global optimality is more efficient than truncated MPCG.

5. Conclusions. The MPCG method derived in this paper is an algorithm that
incorporates multiple preconditioners automatically and obtains optimality in an en-
ergy minimization sense. The algorithm constructs a generalized Krylov space whose
dimension is proportional to the number of preconditioners incorporated. Short recur-
rences cannot generally be preserved when more than one preconditioner is involved,
but we were able to show analytically (Theorem 3.3) that for two preconditioners
whose sum is equal to the coefficient matrix itself, a short recurrence relation holds,
and the truncated algorithm MPCG(1) can be used without giving away anything.
In addition, we have experimentally observed two situations which our analysis does
not cover: in the three-dimensional Poisson equation with three ADI preconditioners,
MPCG(1) converges as fast as full MPCG, even though the short recurrence rela-
tion does not hold. And in a nonoverlapping domain decomposition test problem the
short recurrence holds for two subdomains. When more than two subdomains are
applied, the short recurrence is lost, but scalability remains good, as is demonstrated
in section 4.2.

In many complicated and large-scale problems, the choice of a preconditioner is
not obvious, and if more than one candidate is available, a fixed combination of the
preconditioners may not work well enough. This is one place where the mechanism
of MPCG may come in handy, since it determines throughout the iteration how to
combine the preconditioners. Even if MPCG ultimately is not faster than PCG with
the right selection of preconditioner, a few iterations of MPCG may robustly identify
what that selection should be.

Parallelism may be another aspect worth exploring. While we have not imple-
mented our algorithm in a parallel environment, it is evident that the time-consuming
step Zi+1 = [M−1

1 ri|M−1
2 ri| . . . |M−1

k ri] can be straightforwardly parallelized. There
may be useful parallel speed-up even from highly sequential preconditioners: for ex-
ample, instead of running PCG with incomplete Cholesky, leaving half of a dual-
processor workstation sitting idle, two variations on incomplete Cholesky could be
run in parallel with MPCG.

Domain decomposition applications naturally lend themselves to an approach
such as MPCG, particularly if the physics of one domain is significantly different
from the physics of another domain (e.g., due to material interfaces). Singular pre-
conditioners that practically affect only one particular subdomain could be used. Also,
a flexible variant of MPCG might prove useful, allowing the preconditioners to vary
throughout the iteration, for example, if they are applied to subproblems using PCG
with a rough convergence tolerance.

Again recall that in the domain decomposition example our preconditioners were
singular. Regular PCG of course cannot tolerate preconditioners whose null-spaces
overlap the span of the right-hand side. It is tempting to ask whether we can push this
further, with preconditioners that are even slightly indefinite (in different subspaces).
A motivating case here is the sparse approximate inverse SPAI [6], whose definiteness
is difficult to determine.
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Another possible research direction is the derivation of multipreconditioned solvers
for other classes of linear systems. In particular, since GMRES [13] does not possess
a short recurrence relation, a multipreconditioned version of GMRES might be very
competitive.

A Matlab implementation of the MPCG method is available at [4]. The authors
welcome comments and suggestions.
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