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Abstract—Registration using the least-squares cost function is
sensitive to the intensity fluctuations caused by the blood oxygen
level dependent (BOLD) signal in functional MRI (fMRI) exper-
iments, resulting in stimulus-correlated motion errors. These er-
rors are severe enough to cause false-positive clusters in the ac-
tivation maps of datasets acquired from 3T scanners. This paper
presents a new approach to resolving the coupling between regis-
tration and activation. Instead of treating the two problems as in-
dividual steps in a sequence, they are combined into a single least-
squares problem and are solved simultaneously. Robustness tests
on a variety of simulated three–dimensional EPI datasets show that
the stimulus-correlated motion errors are removed, resulting in a
substantial decrease in false-positive and false-negative activation
rates. The new method is also shown to decorrelate the motion es-
timates from the stimulus by testing it on different in vivo fMRI
datasets acquired from two different 3T scanners.

Index Terms—Activation, fMRI, GLM, least-squares, registra-
tion.

I. INTRODUCTION

I T has been shown that functional MRI (fMRI) experiments
are highly sensitive to patient movement. Failure to correct

gross subject motion can corrupt the resulting activation map,
and lead to both false-positive and false-negative activations [1].
Rigid-body motion detection and correction, also known as reg-
istration, can greatly reduce the effect of motion and yield acti-
vation maps with improved accuracy [2]–[4]. But, the success of
motion correction depends on the accuracy of the motion detec-
tion algorithm. If the motion estimates are flawed, the resulting
resampled dataset will reflect these motion errors.

Among the most common techniques for motion detection of
serially acquired MR images is the intensity-based least-squares
algorithm [5]. The least-squares method is both fast and accu-
rate for aligning volumes that differ only by a rigid-body trans-
formation and Gaussian noise [6].
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However, the least-squares cost function is known to be sensi-
tive to outliers. Since the error measure is the sum of the squared
residuals, outliers contribute a disproportionately large amount
to the overall error. In studies conducted by Freireet al. [7],
[8], motion estimates on fMRI datasets from a 3T scanner ex-
hibited errors that were correlated with the amount of blood
oxygen level dependent (BOLD) signal. They hypothesized that
the voxels containing the BOLD signal act as outliers, and dis-
rupt the least-squares registration.

It has been shown that the registration errors induced by acti-
vation are proportional to the magnitude of the BOLD signal [9].
Hence, with the increased prevalence of high-field MR scan-
ners, we can expect this effect to take on greater significance.
Higher field strengths result in increased BOLD signals, which
in turn manifest themselves as larger registration errors.

Some registration algorithms, such as those that employ mu-
tual information [6] or robust estimators [10], [11], are less sen-
sitive to outliers than least-squares [7], [12]. Robust estimators
remove the over-emphasis of outliers by utilizing an asymp-
totic error function that bounds the error contribution from each
voxel. These methods, however, do not explicitly incorporate
the time-varying activation present in fMRI data. As a result,
it is not clear how these registration methods perform under all
situations involving activation. It is likely that increased BOLD
signal from scanners with higher field strengths will cause erro-
neous motion estimates. A method should be devised that fully
incorporates, rather than down-plays, the activation signal.

One fMRI registration method that incorporates the stimulus
function has been developed [13]. The method performs mo-
tion compensation in two registration steps. An initial registra-
tion step removes most of the patient motion, but is likely to
leave some stimulus-correlated motion errors. Then, activation
detection is used to construct a binary mask of voxels that ex-
hibit a BOLD signal. This mask of activated voxels is dilated
before a second pass of the registration algorithm is performed,
involving only unmasked voxels. The author points out that as
the size of the region of activation increases, the second regis-
tration pass must be carried out with fewer samples (voxels),
thereby reducing its statistical significance. Furthermore, re-
gions of false-positive activation in the activation map can cause
inactive regions to be excluded from the second registration
step.

The fundamental contribution of this paper is the formulation
of two processing steps, registration and activation detection,
into a single model that incorporates both motion and activa-
tion. This method is called thesimultaneous registration and
activation(SRA) method, and solves the least-squares registra-
tion and least-squares activation detection problems simultane-
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ously. In Section II, we review the theoretical formulation of the
individual problems, and outline a strategy for solving the com-
bined problem. In Sections III and IV, we demonstrate the SRA
method’s feasibility and effectiveness on case studies involving
simulated fMRI datasets and twoin vivo fMRI datasets from
different scanners. Finally, in Section V, we discuss the advan-
tages and disadvantages of our approach, and suggest directions
for further investigation.

II. THEORY

A. Registration

Determining the patient’s head motion from a time series
of volumes is often posed as a least-squares optimization
problem. In particular, given two volume datasets,and ,
the objective is to find the motion parametersthat define
a -degree-of-freedom rigid-body transformation, ,
such that . For three-dimensional (3-D) datasets,

is usually six. To solve this in the least-squares sense, we
seek an that minimizes the sum of squared residuals between

and

(1)

In (1), the delimiter refers to the square of the Frobe-
nius norm, while the subscriptedth specifies a single voxel
in a volume. The variables and refer to column vectors of
length containing the intensity of all voxels of their re-
spective volumes (as a convention, volumes will be stored in
columns because rows will later be used to represent voxel time
series). In this context, we call the “reference volume”, and
the “floating volume”.

Alternatively, we can seek the transformation that mini-
mizes the sum of squared residuals between and . A
rigid-body transformation is nonlinear and cannot be repre-
sented using a finite number of linear transformations. We can,
however, linearize the operator by ignoring the higher-order
terms in the Taylor expansion

(2)

It should be noted that this linearization is valid for small mo-
tions, and becomes less accurate as the motion gets larger. The
matrix (and, thus, ) is an matrix in which
the th row holds the gradient vector of the intensity of theth
voxel in with respect to the motion parameters. Equation (3)
shows one row of containing the six partial derivatives of
with respect to the three translations and three rotations of 3-D
rigid-body motion

...

...

(3)

The derivatives in can be estimated using a finite difference
approximation by applying small motions to.

The vector in (2) holds the linear motion parameters. By
substituting the approximation for into , we get

(4)

The least-squares solution to (4) can be written analytically [14],
[15] as

(5)

where the matrix is the pseudoinverse of , and equals
when is of full rank.

After finding , the floating volume can be resampled using
the inverse of , and another motion estimate can be obtained
from the new dataset. By applying this approximation itera-
tively, we generate a sequence of linear motion estimates,.
These increments are accumulated into a current best guess set
of motion parameters by simple addition. If this best guess is de-
noted , then we can represent theth resampled volume
as a transformed version of the original floating volume

(6)

Under certain mild conditions, the motion increments will con-
verge as each iteration brings closer to align-
ment with . This technique is calledfixed point iteration.

This type of registration is often performed on a time series
of fMRI volumes, aligning each with the reference volume.
The above notation is general enough to represent the registra-
tion of all volumes at once, achieved by defining the matrix
with columns, each holding one of the volumes in the dataset.
Since now has columns, the motion parameter matrix must
have columns, one set of motion parameters for each volume
in the time series. Hence, we defineas just such a matrix. We
must also define as a matrix that holds a copy of the refer-
ence volume in each of itscolumns. Thus, the full time-series
registration problem is depicted by

(7)

If represents the resampled dataset in which
the cumulative rigid-body transformations held in are
applied to the columns of , then our th-volume registration
problem can be solved by iterating the system

(8)

until the motion increments are sufficiently small.

B. Activation

Determining whether or not a voxel time series exhibits syn-
chrony with the stimulus can also be posed as a least-squares
problem using the general linear model (GLM). The idea behind
the GLM is that a voxel time series is the sum of effects from
different sources. For example, not only does each voxel have
a constant, baseline intensity, but it may also have a component
that increases over time, or a component that fluctuates with the
stimulus. These components are called “regressors”. The GLM
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is based on the idea that some linear combination of the regres-
sors produces a time series that is close to the voxel’s actual time
series. Activation detection consists of decomposing a voxel’s
time series by finding a scalar multiplier (fit coefficient) for each
of these regressors.

Suppose we haveregressors, not including the voxel’s base-
line intensity (the baseline intensity can easily be accounted for
by including a constant regressor, but at this point we choose to
explicitly separate the baseline intensity). Conforming to the no-
tation in Section II-A by keeping time series in rows, the GLM
is

(9)

where is a row-vector containing the voxel’s time series,is a
row-vector with copies of the voxel’s baseline value, andis
a row-vector of parameters that correspond to theregressors
held in the rows of the matrix . It is more common to see
this relationship in the form of its transpose, but we choose to
keep time series in rows to maintain consistent notation with the
registration least-squares formulation.

Using matrix pseudoinversion again, we can solve this least-
squares problem analytically

(10)

Like in the registration case, we can combine the GLM of all
the voxel time series into a single matrix equation

(11)

where and are the same as in Section II-A, holds the
regressors, and is an matrix containing the regression
fit coefficients for each voxel/regressor combination. Thus, the
solution to the least-squares activation detection problem is

(12)

Traditionally, fMRI processing proceeds by first solving the
registration problem by itself, followed by solving the activation
problem on the motion-“corrected” dataset [16], [17]. However,
this strategy allows the BOLD signal to interfere with the reg-
istration algorithm. The resulting resampled dataset may depict
less motion than the original, but may include stimulus-corre-
lated motion induced by systematic registration errors. For the
remainder of this paper, we will refer to this traditional, sequen-
tial solution as thestandardmethod.

C. Simultaneous Registration and Activation

We propose a new approach, called the SRA algorithm, that
avoids the interference of the BOLD signal in the least-squares
registration algorithm. Observe that (7) and (11) are similar in
nature. By combining them, a model to account for both motion
and activation effects can be stated in a single matrix equation

(13)

Recall that holds a full volume in each column. For a
dataset of volumes with dimensions 6464 30, the matrices

, , and have 122 880 rows each. Hence, columns
represent the spatial component of the dataset. On the other
hand, rows represent the temporal component of the dataset.
The matrices , , and all hold time series in their rows.
For a dataset with 80 volumes, they each have 80 columns. If
we are using six-degree-of-freedom motion, and two stimulus
regressors, then our matrix dimensions are

Since is only an approximation to the rigid-body
transformation, (13) is also an approximation, and must be
solved iteratively just like in the original registration problem.
However, the advantage here is that the effects of both motion
and activation can be accounted for. Hence, we can solve the
least-squares problem for and simultaneously. The solu-
tion gives the rigid-body motion increment and activation

that minimizes the sum of squared residuals between
and , accounting for both motion and BOLD contrast in
parallel.

Our new problem formulation involves an iterative process,
requiring the solution of the least-squares problem

(14)

for each iteration. Here, again refers to the Frobenius norm,
and we have replaced with .

D. General Solution

The problem stated in (14) does not have a unique solution.
To illustrate this fact, assume that is a solution, and con-
sider the perturbation . Substituting this into
(14) gives us

Thus, if is zero, then is also
a solution. It can be shown that and must have the form

and , where is an arbitrary matrix with
dimensions ( is the number of degrees of freedom in
the motion, and is the number of stimulus regressors ). Thus,
the problem in (14) has an infinite number of solutions, and the
solution space is the -dimensional space

(15)

where is any particular solution.
When an optimization problem does not have a unique solu-

tion, or is ill-posed, a common strategy used to steer the problem
toward a sensible, unique solution is regularization. This can be
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accomplished by reformulating (14) to include an additional pa-
rameter-dependent term, as follows:

(16)

The regularization term, , is chosen to alter the cost
function in a way that steers the optimization toward a solution
which achieves a compromise between minimizing the orig-
inal cost function and minimizing the function. The relative
weighting of the original cost function and the regularization
term is controlled by the regularization parameter,. One of the
challenges for this type of formulation is choosing an appro-
priate value for (see [18] for details). Once a value is chosen,
there are numerical methods (depending on the form of) that
solve such optimization problems [19]–[21].

In our case, however, we already know that (15) is a parame-
terization of the solution space of (14). Solving the constrained
optimization problem can then be accomplished with a two-step
process. First, we find a particular solution, , to use as
the anchor of our parameterized general solution. Then, we use
an additional constraint to find the that gives us our desired,
unique solution. Once we have found, we can calculate our
constrained solution using (15).

E. Particular Solution

In order to obtain the general solution stated in (15), we must
first find a particular solution to (14). To do this, we can use QR
decomposition (see [15, section 5.2]) to decoupleand . We
start by performing a full QR decomposition on, which gives
us

(17)

where and are block matrices such that is
, is , is and is upper-triangular,

and the remaining rows of contain all zeros. Our
problem then becomes

(18)

Since the matrix is orthogonal, we can multiply by it (or
its transpose) without changing the norm [15]. Multiplying on
the right by the orthogonal matrix gives us the equiva-
lent problem

(19)

Notice that in (19), the elements of are only present in the
first columns of the product .

Multiplying a row-vector on the right by is essen-
tially a coordinate transformation to a reference-frame for which
the columns of form an orthogonal basis. The matrix

has columns spanning the row-space of, while has
columns spanning the orthogonal space. Thus, the ma-

trix corresponds to the components ofthat are in the
row-space of . Since our goal is to findany particular solu-
tion to (14), these components can be set to zero without loss

of generality because our general solution already includes the
row-space of . Hence, ignoring the term in (19)
simply results in an solution that is orthogonal to the rows of

. In doing so, we also completely decoupleand , breaking
the single least-squares problem into two separate problems

(20)

(21)

Assuming is nonsingular (which must be the case if all the
regressors in are linearly independent) and that has full
column rank, the solution is

(22)

(23)

It should be noted that an equivalent approach is to take the
QR decomposition of the matrix . However, is much larger
than . For a 64 64 30 voxel volume, has 122 880 rows,
one row for each voxel. The resulting matrix would contain
over 15 million elements, and require over 57 GB of RAM to
store. The matrix , on the other hand, has one row for every
time-step, which is typically less than 200.

III. M ETHODS

In the above theoretical derivation, (22) and (23) yield a par-
ticular solution of (14). That particular solution is used in (15) to
get the general solution. The task remains to determine which
solution in the multidimensional solution space is appropriate
for our needs. We need a mathematical expression that distin-
guishes one solution from all the others in the solution space.
That is, what additional constraint can we impose on our gen-
eral solution to obtain a solution that is
meaningful in the context of fMRI? For this, we focus on the
activation maps.

The very nature of an activation map is that it contains re-
gions of high intensity where the brain shows correlated activity
(the active regions). The rest of the activation map is low-inten-
sity “background” (the inactive regions). This property, in which
many of the elements are close to zero, is calledsparsity. We can
expect the true activation map to exhibit some sparsity.

Because we know that the general solution contains activa-
tion maps of the form , any particular solution we
obtain is composed of the true, desired activation mixed with
the columns of . Moreover, other equivalent solutions can be
derived from the particular solution by adding linear combina-
tions of the columns of .

Recall that each column of holds the partial derivative of
with respect to one of the motion parameters, and is generally

nonzero near brain edges. Thus, adding linear combinations of
the columns of to the true activation map will cause edge arti-
facts to appear, thus reducing its sparsity. To isolate the true acti-
vation, we seek an that removes these-components from our
particular solution, causing to be more sparse (i.e., to
have more voxels close to zero). It is critical to understand that
the sparsity of the true activation map itself is not as important
as the degree to which these unwanted-componentsdecrease
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the sparsity. Hence, removing them yields an activation map that
is moresparse. One constraint found to enforce sparsity is

(24)

where the sum is over all voxels, andis a chosen constant.
This constraint is similar in nature to the Geman-McClure ro-
bust estimator [11]. Another constraint that has been found to
favor sparse images [22] is

(25)

where represents the norm (sum of the absolute values
of the elements). Many other constraints might also work, but
the remainder of this paper is a case study on the effectiveness
of the constraint in (24).

There is a danger in choosing a particular frame as the refer-
ence volume, . If, for example, the chosen volume happens to
be somewhat darker than the others, then the model will not be
able to accurately represent the dataset, forcing all the frames
except for the first to be treated as outliers. This issue becomes
more important as the noise in the dataset increases.

We can instead allow the model to calculate its own optimal
baseline volume by simply appending a row of ones to the ma-
trix and a corresponding column to. That column of will
hold the reference volume and is calculated in (23) just like the
other columns of . In this context, (13) could be written using
block-matrices

(26)

where and are as before, the 1 refers to a row of ones, and
is an undetermined baseline volume. By making the appropriate
substitutions for , and , the same solution process can be
used as with the fixed reference volume case.

However, adding a row of ones to increases the dimen-
sion of our solution space (see (15)), and we need six additional
constraints to get a unique solution. That is, the row of ones in

allows every row of to contain a different constant offset.
We cannot use (24) or (25) to constrain this new freedom be-
cause the corresponding column ofis not an activation map
and does not need to be sparse. Instead, notice that we can ar-
bitrarily choose one frame as stationary since all the motion pa-
rameters are relative to each other. Simply subtracting the sta-
tionary frame’s motion parameters from all frames shifts all the
volumes in the same way. Hence, we set the last column into
the negative of the stationary frame’s motion parameters. This
approach is valid only because we assumed the motion incre-
ments are small, allowing us to treat the rigid-body transforma-
tion as a linear operator.

In our implementation, we let the model calculate the optimal
baseline volume at each iteration, and used the Nelder/Mead
simplex method [23] (also known as the Downhill simplex
method) to find the other columns of. Once the desired was
established, the constrained motion parameters and activation
maps were found using (15).

A. Simulated Data

Testing of the algorithm included analyses on simulated fMRI
time-series datasets. The datasets were created using an initial
64 64 30 echo-planar imaging (EPI) volume with in-plane
resolution of 3.75 mm and slice thickness of 4 mm. An ac-
tivation mask was manually drawn, covering a large portion
of the occipital region, as well as some small regions in the
parietal lobes. A stimulus function was created using a slightly
smoothed “box-car” function with a maximum value of 0.05,
nonzero for frames 5–15, 25–35, 45–55, and 65–75. Both mo-
tion-free and motion-corrupted datasets were generated by per-
forming the following steps.

1) Duplicate the original volume 80 times.
2) Add the appropriate amount of activation to the volumes.

Activation was added to voxels under the activation mask
by multiplying their intensities by , where is the
relative signal change due to BOLD contrast, specified by
the stimulus function.

3) Apply rigid-body motion (motion-corrupted datasets
only). The transformations were applied using AFNI’s

program [24], selecting the option for Fourier
interpolation. The rotations were implemented as a com-
position of four shears [25], [26].

4) Add Gaussian-distributed, additive noise with a standard
deviation of 2.5% of the average brain voxel intensity.

5) Apply spatial Gaussian smoothing to each volume (full-
width at half-maximun 5 mm).

Our SRA method was implemented in C++, using routines
from Numerical Recipes in C[27] for QR decomposition and
the Nelder/Mead simplex method. The algorithm involves an
iterative process, just like in the standard least-squares motion
detection algorithm. During each iteration, the general solution
to (14) is found and constrained using (24). From the resulting
motion parameters, the cumulative transformations were incre-
mented, and the dataset was resampled and used in the next it-
eration.

The SRA method and the standard approach were each tested
on simulated datasets that were produced with varying motion
and activation characteristics. Ten datasets were generated for
each of the following four scenarios:

Scenario 1: The datasets contain activation and random
motion.
Scenario 2:The datasets contain activation and true stim-
ulus-correlated random motion. Motion profiles were gen-
erated using a random mixture of the stimulus function and
random motion.
Scenario 3:The datasets contain activation, but no motion.
Scenario 4:The datasets contain no activation, but contain
stimulus-correlated random motion.

For each of the 40 trials, both motion detection algorithms
(standard least-squares, and SRA) were used to estimate the mo-
tion. These motion estimates were used to resample the datasets
before an activation map was generated. Calculation of the ac-
tivation maps was done using the GLM, and solved in the least-
squares sense (see (12) in Section II-B ) yielding a linear fit co-
efficient for each voxel. We also calculated the correlation coef-
ficient of each voxel’s time-course with the stimulus function.
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Fig. 1. Errors in the motion parameters for a motion-corrupted dataset (scenario 1). The standard method (“Std.”) exhibits errors that are correlated to the stimulus
function, while the SRA method does not. The stimulus function is shown in the posterior translation plot, and the corresponding correlation coefficients are listed
above each graph.

Finally, a binary activation mask was produced by thresholding,
taking only those voxels with a correlation coefficient bigger (in
magnitude) than 0.363, and a fit coefficient bigger (in magni-
tude) than 40 (approximately 15% of the maximum fit coeffi-
cient). A true activation mask was also produced in the same
way, but from a dataset that was neither motion corrupted or
motion compensated. The true mask contained a total of 3267
active voxels.

The activation masks were compared to the true activation
mask yielding false-positive and false-negative counts for each
trial. These counts were then averaged over the ten trials in each
of the four scenarios.

B. In Vivo Data

The SRA method was also tested on twoin vivo fMRI
datasets from different patients and different scanners. Dataset I
is an EPI scan of 180 volumes (192 in total, but the first 12 were
discarded) acquired at two-second intervals on a 3T Bruker
scanner. Each volume consists of 30 contiguous slices (4 mm
thick), each having 64 64 voxels (3.75 3.75 mm). The
subject was presented with two alternating visual stimuli, each
lasting for nine frames. Dataset II is an EPI scan containing
60 volumes acquired at three-second intervals on a Philips
3T scanner. Each volume consists of 24 contiguous slices
of 4-mm thickness. The slices have dimensions 128128
(1.719 1.719 mm). The stimulus alternated between a visual
and motor task, each lasting for ten frames.

Both registration methods were applied to both datasets,
using the first frame as the stationary frame. In an effort to
remove any authentic subject motion, the motion parameter
curves were detrended by subtracting their low-frequency
components. These low-frequency components were computed
using a one-stimulus-period windowed averaging (18 frames
for dataset I, and 20 frames for dataset II). The detrended
motion parameter curves were then compared to the stimulus
function by way of correlation coefficient.

IV. RESULTS

A. Simulated Data

Fig. 1 shows the errors in the six motion parameters (which
are stored in the rows of ) when the two registration methods
are applied to a simulated dataset. The method labeled “Std”
refers to the standard, sequential algorithm, while “SRA” refers
to our simultaneous registration and activation algorithm. The
errors in the standard registration method show significant cor-
relation to the stimulus. The SRA method does not exhibit stim-
ulus-correlated errors.

The motion estimates were used to resample the datasets be-
fore activation masks were produced. The activation masks cor-
responding to the dataset in Fig. 1 are shown in Fig. 2. In the
mask resulting from the standard approach, regions of false-pos-
itive activation are evident on the anterior edge of the brain. The
mask resulting from the SRA method looks very much like the
true activation, with virtually no false-positive regions of acti-
vation.

The performance of the two methods over the various sce-
narios outlined in Section III-A is summarized in the false-pos-
itive and false-negative activation rates shown in Fig. 3. Consis-
tently, the standard method resulted in approximately 50% (be-
tween 42% and 72%) more false-positives and approximately
40% (between 31% and 49%) more false-negatives than the
SRA method on the datasets containing activation.

B. In Vivo Data

Improved separation of motion and activation is also evident
in results obtained forin vivodataset I. Fig. 4 plots the detrended
motion profiles for dataset I for both the standard least-squares
method and the SRA method. A marked reduction in the corre-
lation coefficients (also shown in the figure) demonstrates the
ability of the SRA method to avoid stimulus-correlated motion
errors. In particular, the pitch angle estimates returned by the
standard approach are visibly correlated to the stimulus (corre-
lation coefficient is 0.735), while they are much less so in the
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Fig. 2. Activation maps for motion-corrupted dataset (scenario 1). The highlighted voxels exhibit high correlation to the stimulus, determined by aStudent’s
T-test withp = 0:001. The activation map in (a) shows the actual, uncorrupted activation, while (b) shows the activation resulting from motion compensation
based on the estimates from the standard method, and (c) shows the results after motion compensation based on the motion estimates returned by SRA.

Fig. 3. False-positive (a) and false-negative (b) activation rates for simulated datasets. Note that there are no false-negative activations for scenario 4 because
these datasets have no activation.

estimates returned by the SRA method (correlation coefficient
is 0.170). The remaining observable oscillatory fluctuations, es-
pecially in the posterior translation, suggest that the motion is
authentic because they are not consistently in phase with the
stimulus function.

The detrended motion estimates forin vivo dataset II are
shown in Fig. 5. As with dataset I, the correlation coeffi-
cients are lower for the SRA method than for the standard
least-squares registration method. Again, the subject motion
seems to contain some stimulus related motion, although it is
not strictly stimulus-correlated motion.

V. DISCUSSION ANDCONCLUSION

Registration using the standard least-squares algorithm ex-
hibits errors that are correlated to the BOLD signal in fMRI
experiments. As MR scanners of higher field strengths become
more commonly used for fMRI, the predominance of these stim-
ulus-correlated mis-registrations can be expected to increase.
Using a stimulus-contaminated motion estimate to resample a

dataset has the potential to introduce voxels with the appearance
of activation, resulting in false-positives. However, the simul-
taneous registration and activation algorithm accounts for the
intensity changes due to the BOLD signal, and minimizes the
sum of squares cost function for both the registration and ac-
tivation detection least-squares problems in parallel. Consider-
able decreases in stimulus-correlated motion errors resulted in a
dramatic decrease in the number of false-positive and false-neg-
ative activations.

The SRA algorithm is very robust, and can handle datasets
that contain various combinations of stimulus-independent mo-
tion, authentic stimulus-correlated motion, and activation. Pa-
tient motion that is in-step with the stimulus does not confound
the SRA algorithm’s ability to decouple motion effects from ac-
tivation effects. The result is accurate registration despite any
actual confluence between patient motion and the stimulus.

Preliminary results onin vivo datasets indicate that the SRA
method can reduce the correlation between the stimulus func-
tion and the motion estimates. While these results are promising,
further tests onin vivodatasets with known motion will help to
validate the SRA method for clinical use.
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Fig. 4. Detrended motion parameters forin vivodataset I. The corresponding correlation coefficients are listed above each graph. For the purpose of comparison,
the stimulus function is also represented in the posterior translation graph, as well as in the pitch angle graph.

Fig. 5. Detrended motion parameters forin vivodataset II. The corresponding correlation coefficients are listed above each graph. For the purpose of comparison,
the stimulus function is also represented in the left translation graph, as well as in the pitch angle graph.

One of the issues facing the solution of the combined problem
is the fact that the least-squares solution is not unique. An ad-
ditional constraint is needed to arrive at a single solution. As a
case study for this paper, a particular constraint was used to max-
imize the sparsity of the activation map. However, there remains
an abundance of different constraints that can be used instead.

In its current implementation, the SRA method is designed to
work only on datasets that have small movements (up to 5-mm
translation, and 5rotation). This is not a serious limitation. A
different registration method could be used as a first-pass reg-
istration step to bring the volumes to near-alignment. Then, the
SRA method could be used to fine-tune the motion parameters
and remove the activation bias. This first-pass step could also be
built into the SRA program.

The simultaneous method is generalizable to scaled least-
squares registration, in which a seventh parameter is added to

the motion detection cost function. This parameter incorporates
global intensity scaling [28] and can be used to adjust for global
intensity changes, such as the slow, linear trend often observed
in EPI datasets. It should be noted that including this option and
the option to find the optimal baseline volume creates an addi-
tional cross-term between the registration and activation detec-
tion problems. The influence of this coupling on the final solu-
tion is an area of future investigation.

Furthermore, the method can also incorporate experimental
paradigms with multiple stimulus regressors. Although this
paper only includes results obtained using a single stimulus
regressor, our implementation has been successfully run on
experiments with two stimulus regressors, and can be run with
many more. Nonstimulus regressors can also be added to the
analysis (eg. physiological variation). However, in order to
incorporateany regressor, an appropriate additional constraint
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must be devised (since sparsity might not pertain). Investigation
into these extensions is in progress.

The combined registration/activation model itself is
amenable to solution using other cost functions. In this
paper, we found the least-squares solution. But one could find
the motion and activation that minimizes some other measure
of the difference between the right-hand side and left-hand side
of (13). The feasibility of using other cost functions needs to
be investigated.

In addition to being robust and reliable, the SRA algorithm is
very efficient. Even though it involves the consideration of all
voxels from all time steps simultaneously, it is computationally
inexpensive and its memory requirements are modest. The pro-
cessing time for both the standard and SRA methods are linear
in the number of volumes in the dataset. All processing for this
paper was done on a 1.2-GHz PC-based computer with 512 Mb
of memory. In our implementation of the SRA algorithm, pro-
cessing of the 180 volumes from dataset I converged in less than
10 min after achieving motion increments of less than 0.001
mm and 0.001. Considering the superior results of the SRA
method, the stringent convergence criteria, and the fact that the
SRA code can be further optimized and parallelized, the overall
performance of the method is impressive and promising.

Finally, we are developing an alternative method to solve the
combined problem. This method involves the iterative applica-
tion of two separate programs: one that does least-squares reg-
istration, and one that does least-squares activation detection.
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