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ABSTRACT 
Done well, separation of concerns can provide many soft- 
ware engineering benefits, including reduced complexity, im- 
proved reusability, and simpler evolution. The choice of 
boundaries for separate concerns depends on both require- 
ments on the system and on the kind(s) of decompositionand 
composition a given formalism supports. The predominant 
methodologies and formalisms available, however, support 
only orthogonal separations of concerns, along sdngle dimen- 
sions of composition and decomposition. These characteris- 
tics lead to a number of well-known and difficult problems. 

This paper describes a new paradigm for modeling and im- 

plementing software artifacts, one that permits separation of 

overlapping concerns along multiple dimensions of composi- 

tion and decomposition. This approach addresses numerous 

problems throughout the software lifecycle in achieving well- 

engineered, evolvable, flexible software artifacts and trace- 

ability across artifacts. 
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1 INTRODUCTION 
The primary goals of software engineering are to im- 
prove software quality, to reduce the costs of software 
production, and to facilitate maintenance and evolution. 
In pursuit of these goals, software engineers constantly 
seek development technologies and methodologies that 
reduce software complexity, improve comprehensibility, 
promote reuse, and facilitate evolution. These prop- 
erties, in turn, induce several specific requirements on 
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the formalisms used to develop software artifacts. Re- 
duced complexity and improved comprehensibility re- 
quire decomposition mechanisms to carve software into 
meaningful and manageable pieces. They also require 
composition mechanisms to put pieces together usefully. 
Reuse requires the development of large-scale reusable 
components, low coupling, and powerful, non-invasive 
adaptation and customization capabilities. Ease of evo- 
lution depends on low coupling and also requires trace- 
c&lity across the software lifecycle, mechanisms for min- 
imizing the impact of changes, and substitutability. 

Despite much good research in the software engineer- 
ing domain, many of the problems that complicate soft- 
ware engineering still remain. Software comprehensibil- 
ity tends to degrade over time (if, indeed, it is present at 
all). Many common maintenance and evolution activ- 
ities result in high-impact, invasive modifications. Ar- 
tifacts are of limited reusability, or are reusable only 
with difficulty. Traceability across the various software 
artifacts is limited, which further complicates evolution. 

These somewhat diverse problems are due, in large part, 
to limitations and unfulfilled requirements related to 
separation of concerns [19]. Our ability to achieve the 
goals of software engineering depends fundamentally on 
our ability to keep separate all concerns of importance 
in software systems. All modern software formalisms 
support separation of concerns to some extent, through 
mechanisms for decomposition and composition. How- 
ever, existing formalisms at all lifecycle phases provide 
only small, restricted sets of decomposition and compo- 
sition mechanisms, and these typically support only a 
single, “dominant” dimension of separation at a time. 
We call this “tyranny of the dominant decomposition.” 

We believe that achieving the primary goals of software 
engineering requires support for simuktaneous separa- 
tion of overlapping concerns in multiple dimensions. We 
will illustrate how limitations on current mechanisms 
prevent this and thereby lead directly to the failure to 
achieve these goals. We propose a model of software 
artifacts, decomposition, and composition to overcome 
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these limitations. This model allows for simultaneous, 
multi-dimensional decomposition and composition. It is 
not a “universal” artifact modeling formalism; rather, it 
complements existing formalisms, giving developers ad- 
ditional modularization flexibility while continuing to 
use the formalisms of their choice. Moreover, this model 
is not particular to any phase of the software lifecy- 
cle. The extra flexibility to represent alternative de- 
compositions of artifacts within a development phase 
also enables us to relate artifacts in multiple ways across 
phases, and even to co-structure artifacts-permit dif- 
ferent artifacts, developed during different phases of the 
software lifecycle, to be structured in such a way that 
corresponding elements align clearly. We show how this 
increased flexibility can help to address the problems 
of software complexity and comprehensibility and dif- 
ficulties with reuse, facilitate software evolution, and 
enhance traceability between artifacts, both within and 
across development phases. 

The rest of this paper is organized as follows. Section 
2 motivates the need for multiple dimensions of decom- 
position and rich mechanisms for composition. Section 
3 describes our abstract model of software artifacts. It 
also shows how this model can address many of the is- 
sues raised in Section 2. Section 4 describes the issues 
involved in instantiating the model for particular arti- 
fact development formalisms, such as UML [21] or Java 
[5]. Section 5 describes related work shows how our 
approach has been partially realized in some existing 
work. Finally, Section 6 presents some conclusions and 
future work. 

2 MOTIVATION 
To illustrate some pervasive and serious problems in 
software engineering that help motivate our work, we 
present a running example involving the construction 
and evolution of a simple software engineering environ- 
ment (SEE) for programs consisting of expressions. We 
assume a simplified software development process, con- 
sisting of informal requirements specification in natural 
language, design in UML, and implementation in Java. 

The First Go-Round 
The initial set of requirements for the SEE are simple: 

The SEE supports the specification of expres- 
sion programs. It contains a set of tools that 
share a common representation of expressions. 
The initial toolset should include: an evalua- 
tion capability, which determines the result of 
evaluating an expression; a display capability, 
which depicts an expression textually; and a 
check capability, which checks an expression 
for syntactic and semantic correctness. 

Based on these requirements, we design the system us- 

ing UML. Figure 1 shows a subset of the design, which 

Key: 

11 Class (name on top; methods inside) 

Cl 4-42 C2 is a subclass of Cl 

Figure 1: Initial (Partial) Design Artifact for SEE. 

represents expressions as abstract syntax trees (ASTs) 
and defines a class for each kind of AST node. Each class 
contains accessor and modifier methods, plus methods 
evalo, display()) and check()) which realize the re- 
quired tools in a standard, object-oriented manner. 

The code that implements this design has a similar 
structure, except that it separates interfaces to AST 
nodes from implementation classes, resulting in two hi- 
erarchies instead of one. 

This simple example raises some noteworthy issues that 
occur commonly in software. Despite being representa- 
tions of the same system, each of the three kinds of ar- 
tifacts decomposes the system differently. The require- 
ments decompose by tool, or feature (e.g., [23]), while 
the design and code decompose by object. The code 
further separates interface from implementation parts. 
The difference in decomposition models leads directly to 
scattering-a single requirement affects multiple design 
and code modules-and tangling-material pertaining 
to multiple requirements is interleaved within a single 
module. These problems compromise comprehension 
and evolution, as we will see shortly. 

Evolving the SEE: An Environmental Hazard 
After using the SEE for some time, clients request some 
changes in the system: 

l Expressions should be optionally persistent. 
l Style checking should be supported as wfell as syn- 

tax and semantic checking. It should be possi- 
ble to check expressions against multiple styles. 
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Any meaningful combination of checks (e.g., syntax 
only; syntax plus style(s)) should be permitted. 

Unfortunately, these seemingly straightforward en- 
hancements have a significant impact on the design and 
code. Figure 2 shows the impact on the Java imple- 
mentation class hierarchy. A simple implementation of 
persistence requires adding “save” and “retrieve” meth- 
ods to all AST classes, and inserting additional code 
into all accessor and modifier methods to retrieve per- 
sistent objects upon first access and to flush modifi- 
cations back to the database. This represents a non- 
trivial, invasive change to all AST design classes and 
to all of the interfaces and implementation classes in 
the code, a serious case of scattering.l Code to sup- 
port retrieval and update of persistent objects becomes 
tangled with other code in the accessor and modifier 
methods, impeding comprehensibility and future evolu- 
tion. Further, the persistence code also has an impact 
on the new style checkers. If the persistence option is 
present, the style checkers must include their state infor- 
mation in the persistent representation of expressions. 
This kind of context-dependent feature is extremely dif- 
ficult to represent in modern formalisms. 

The ability to permit arbitrary combinations of checks 
is also problematic. It requires special infrastructure 
support, in both the design and implementation. This 
infrastructure is not present-it comes at high cost in 
terms of conceptual complexity and run-time overhead, 
so it was not included originally as it was not necessary. 
We choose to address this problem by retrofitting the 
Visitor design pattern [4], which permits optional com- 
binations of features, into the design and code. Visitor 
requires us to replace all AST check0 methods with 
accept (Visitor) methods, and to define a separate 
Visitor class for each type of check. The modifications 
to the check feature needed to support this capability 
are invasive, affecting every module in the design and 
code, and complicating all the artifacts and their inter- 
relationships. The presence of arbitrary checks further 
complicates the persistence capability, since the infor- 
mation to be made persistent depends on the particular 
combination of syntax and/or style checkers. Finally, 
these modifications significantly impede the future evo- 
lution of the artifacts. They introduce a higher degree 
of coupling between the AST classes and the visitor 
classes, as evident in Figure 2, and the presence of vis- 
itors in the design will necessitate extensive changes to 
accommodate modifications to the AST hierarchy [4]. 

The Postmortem 
This example demonstrates, in a microcosm, many 

5 Subclassing is a non-invasive mechanism for change, but it is 
not a reasonable option here. It produces combinatorial explo- 
sions of classes and still requires invasive changes to any client 
that creates instances of the original classes. 

problems that plague software engineers and suggests 
why we still fall short of our goals. 

Impact of change: The goal of low impact of change 
requires additive, rather than anvasa’ve, change. Yet con- 

ceptually simple changes, like those in the expression 
SEE, often have widespread and invasive effects, both 
within the modified artifact and on related pieces of 
other artifacts. This is primarily because units of change 
often do not match the units of abstraction and encap- 

sulation within the artifacts. Thus, additive changes 
in one artifact, like requirements, may not translate to 
additive changes in other artifacts, like design and code. 

Modern extensibility features, such as subclassing and 
design patterns, help but are not sufficient [16] because 
they require significant pre-planning. It is not feasible 
to pre-enable artifacts for all possible extensions, even 
if it were possible to anticipate them. 

Reuse: Despite wide recognition of its benefits, reuse is 
limited and occurs mostly on code, not requirements or 
designs. Part of the impediment to large-scale reuse is 
that larger artifacts entail more design and implementa- 
tion decisions, which can result in tangling of concerns 
and coupling of features, reducing reusability. Given 
large and complex artifacts, plus the weak set of adap- 
tation and customization capabilities available in most 
formalisms, developers face a significant amount of in- 
vasive work to adapt a component for a given context. 

Traceability: Different artifacts are written for dif- 
ferent purposes and include different levels of abstrac- 
tion. Thus, they are specified in different formalisms 
and are often decomposed and structured differently. A 
case in point is the requirements scattering and tangling 
problem illustrated earlier. No clear correspondence of 
abstraction or structure across artifacts exists, in gen- 
eral, to aid traceability. Instead, developers must cre- 
ate connections among related artifacts explicitly (e.g., 
[9]). These connections are complex, can be invalidated 
readily, and, most importantly, they do not reduce scat- 
tering or tangling. They can help developers assess the 
impact of a given change, but they cannot localize it 
or reduce its impact. Developers must therefore make 
invasive, time-consuming changes to multiple artifacts 
to propagate the effects of a given change. When time 
constraints are tight, they often choose to make changes 
only to code, letting other artifacts become obsolete. 

We believe that a major cause of these impact of change, 
reusability, and traceability problems is the Yyranny of 
the dominant decomposition.” Existing modularization 
mechanisms typically support only a small set of decom- 
positions, and usually only a single “dominant” one at 
a time. This dominant decomposition satisfies some im- 
portant needs, but usually at the expense of others. For 
example, a decomposition may be chosen to limit the 
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impact of some changes, but traceability may thereby 
be sacrificed (or, indeed, the ability to limit the im- 
pact of other changes); or, in a data decomposition de- 
signed to match application-domain concepts, code for 
a feature may be scattered across multiple application 
modules and tangled with code for other features. To 
make matters worse, different formalisms typically sup- 
port different dominant decompositions, reducing trace- 
ability across artifacts. Many different kinds of concern 
are important in a software system, and designating one 
of them as dominant in each context, at the expense 
of the others, contibutes significantly to the problems 
identified above. 

Breaking the Tyranny 
To achieve the full potential of separation of concerns, 
we need to break the tyranny of the dominant decom- 
position. In the example and related discussion, several 
kinds of concerns were identified: 

l feature: these include display, basic check, evaluate, 
persistence, and style check. Features may also be 
required or optional 

l unit of change: additions made due to user requests 
l customization: the additions or changes needed to 

customize a component for a particular purpose 
l data or object: the classes involved in the system. 

If the system could be modularized according to con- 
cerns of all these kinds, simultaneously, the problems de- 
scribed above would be greatly ameliorated. Traceabil- 
ity would be improved by encapsulating features sepa- 
rately, with clear correspondence between the represen- 
tation of a particular feature in different artifacts (i.e., 
co-structuring). Impact of change would be reduced by 
the ability to encapsulate each unit of change separately. 
Reuse would be enhanced by the improved traceability, 

Figure 2: The Java Implementation Classes, Post-Evolution. 

and by separating customization details from the base 
component, provided composition is rich enough to ap- 
ply them effectively. 

These are just a few of the dimensions of concern along 
which separation may be desirable. Others include: to 
match conceptual abstractions; to conform to a given 
modeling paradigm (object-oriented, functional, etc.) 
or to take advantage of special-purpose formalisms; to 
separate “optional” from “required” pieces; to separate 
variants for different host systems, classes of users, etc.; 
to permit distribution or parallel processing; to facilitate 
concurrent or cooperative development; etc. The po5 

sibilities are limitless, and ‘vary with context. What is 
more, different dimensions of concern are seldom orthog- 
onal: they overlap, and can affect one another. A truly 
flexible approach to modularization must allow any and 
all that are needed to apply simultaneously, and must 
be able to handle overlap and interactions a:mong them. 

3 MULTI-DIMENSIONAL SEPARATION OF 
CONCERNS 

This section introduces a model of decomposition and 
composition that we believe satisfies these needs. The 
model is used in conjunction with developers’ arti- 
fact formalism(s) of choice, giving developers additional 
power without requiring changes to the formalisms. 

We begin with a model of conventional software, to set 
the context and introduce some terminology, then de- 
scribe our model and show how it addresses many of the 
issues raised earlier. 

A Model of Conventional Software 
A particular software system is written to address some 
problem or provide some service within a problem do- 
main. To do this, it must model or implement a variety 
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of concepts of importance in that domain. These con- 
cepts include objects (e.g., “expression” in the exam- 
ple), functionality (e.g., “evaluation”), and properties 
(e.g., “persistence”). Concepts derived directly from the 
domain as well as internal software concepts (e.g., data 
structures) are both important. 

The software system itself consists of a set of artifacts, 
such as requirements specifications, designs, and code. 
Each artifact consists of descriptive material in some 
formalism, whose purpose is to model needed concepts 
in a manner appropriate for that artifact. The for- 
malisms differ for different projects, different phases, 
and different artifacts, and perhaps even within an arti- 
fact. Different artifacts often share the same concepts, 
with each concept potentially being described in a dif- 
ferent way, and with different details, in the different 
artifacts. For example, the word expression in the 
requirements and the class Expression in the design 
and code all describe the concept “expression” in their 
rather different ways and at different levels of detail. 

It is convenient to think of the descriptive material in 
each artifact as being made up of units. What con- 
stitutes a unit depends on the formalism, and perhaps 
on the context. For example, in object-oriented design 
formalisms or programming languages, classes are one 
kind of unit. If one looks below the class level, indi- 
vidual methods may also be considered units. This il- 
lustrates the important point that formalisms typically 
consist of at least some basic elements, which we call 
primitive units, and some grouping construct(s), which 
we call compound units or modules. 
* ,i’ 
We treat primitive units as indivisible; our model works 
with them, but never looks inside them. A single con- 
cept is typically modeled by a collection of many units 
(primitive or compound). Perhaps surprisingly, a sin- 
gle unit often participates in modeling more than one 
concept. For example, the evalO method within the 
Plus class participates in modeling both the “plus ex- 
pression” concept and the “evaluation” concept. 

The purpose of modules is to accomplish separation of 
concerns [19]. Even software systems of moderate size 
contain so many primitive units that they cannot all be 
held in one’s mind at once. When performing some de- 
velopment task, a developer must be able to focus on 
those units that are pertinent to that task and ignore 
all others. To accomplish this, software engineers iden- 
tify concerns of importance, and seek to localize units 
representing concepts that pertain to each concern into 
q.module. Ideally, one only need look inside a module 
if’one is interested in a given concern. For example, a 
class is a module containing units (describing methods 
and instance variables) that model a particular kind of 
object; all internal details of such objects, such as their 

representation, are described within the class. 

Many kinds of concerns are important during the soft- 
ware lifecycle. These dimensions of concern help to 
organize the space of concepts and units. Common 
dimensions of concern are data or object (leading to 
data abstraction) and function (leading to functional 
decomposition). Others include feature (both func- 
tional, such as “evaluation,” and cross-cutting, such as 
“persistence”), role, and configuration. As illustrated 
by these examples, some dimensions of concern derive 
from the domain, often aligning with important domain 
concepts, while others come from system requirements, 
from the development process, and from internal details 
of the system itself. In short, there are any number 
of dimensions of concern that might be of importance 
for different purposes (e.g., comprehension, traceability, 
reusability, evolvability, etc.), for different systems, and 
at different phases of the lifecycle. 

Modern artifact formalisms typically allow decompo- 
sition (i.e., grouping of units) into modules according 
to only a single dimension of concern, which we term 
the dominant dimension. The formalism often dictates 
specifically what the dominant dimension must be. For 
example, object-oriented formalisms support decompo- 
sition based on the object (or data) dimension, ..while 
procedural and functional programming languages per- 
mit decomposition based on function. Even formalisms 
that do not impose a specific dominant dimension typ 
ically do not support simultaneous decomposition ac- 
cording to multiple dimensions, so the developer ulti- 
mately chooses a dominant dimension. In either case, 
the modular structure of the artifact achieves separation 
of concerns only along this dominant dimension. 

Thus, in our model, a conventional software system is 
a set of artifacts that model domain concepts in ap- 
propriate formalisms. Artifacts contain modules, which 
contain units. The modular structure reflects decompo- 
sition based on one dominant dimension of concern. 

Multi-Dimensional Decomposition: Hyperslices 
As discussed in Section 2, decomposition according to 
concerns along a single, dominant dimension is valuable, 
but usually inadequate. Units pertaining to concerns in 
other dimensions end up “scattered” across many mod- 
ules and “tangled” with one another. Separation ac- 
cording to these concerns is, therefore, not achieved. 
To alleviate this problem, we introduce hyperslices as 
an additional, flexible means of decomposition. 

A hypedice is a set of conventional modules, written in 
any formalism. Hyperslices are intended to encapsulate 
concerns in dimensions other than the dominant one. 
The modules within it contain all, and only, those units 
that pertain to, or address, a given concern. Hyperslices 
can overlap, in that a given unit may occur, possibly in 
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different forms, in multiple hyperslices. This supports 
simultaneous decomposition according to multiple di- 
mensions of concern. A system is written as a collection 
of hyperslices, thereby separating all the concerns of im- 
portance in that system, along as many dimensions as 
are needed. The hyperslices are composed to form the 
complete system (discussed below). 

The choice of the term “hyperslice” is intended to re- 
flect relationships to both “program slicing” [25] and 
“hyperplane.” Hyperslices are similar to program slices 
in’ that both involve cuts through a system that do not 
align with the standard modules. They differ, however, 
in that program slices are at the code level only, gener- 
ally consist specifically of statements that affect partic- 
ular variables, and are extracted from existing programs 
by analysis, rather than being used to build systems by 
composition. ’ Hyperslices are hyperplanes in that they 
encapsulate concerns that cut across multiple dimen- 
sions in a space defined by the dimensions of concern. 

To demonstrate the utility of hyperslices, we consider 
the initial version of the expression SEE described in 
Section 2. We identified two separate dimensions of con- 
cern applicable to the initial design: object (different 
kinds of expressions) and feature (display, evaluation, 
and basic checking). Since we used object-oriented for- 
malisms for the design and code, the object dimension 
was the dominant one, and separation of concerns along 
that dimension was effective. Separation by feature 
could not be accomplished, however, leading to scatter- 
ing and tangling of feature-specific units. We therefore 
introduce five hyperslices, one to encapsulate each of 
these concerns (features), as shown in Figure 3. One 
hyperslice encapsulates the basic (“kernel”) expression 
AST capabilities (node creation, accessor, and modifier 
methods), modularized using UML classes in the de- 
sign and Java classes and interfaces in the code. The 
other hyperslices encapsulate, respectively, the display, 
evaluation, and syntax and semantic checking features. 
Note that these hyperslices also contain many of the 
same class modules as found in the kernel hyperslice 
(i.e., their concerns overlap), but the modules in these 
hyperslices contain only those units that pertain to the 
particular concern they encapsulate. Thus, e.g., the dis- 
play hyperslice defines display (1 methods and instance 
variables (units) in AST node classes (modules), while 
the evaluation hyperslice defines evalO methods and 
instance variables. 

Note that hyperslices have been introduced without re- 
quiring the definition of new artifact formalisms. We ;< 
deliberately do not modify the artifact formalisms them- 
selves, preferring instead to allow developers to use their 
familiar formalisms throughout the lifecycle. The mod- 
ules within Ca hyperslice are standard modules in the 
desired formalism, except that they contain only those 

units pertinent to the hyperslice’s concern. That means 
that these modules might not satisfy all of the complete- 
ness constraints that the formalism normally requires. 
For example, the implementation code in the display hy- 
perslice might refer to accessor methods that it does not 
define, on the expectation that the kernel hyperslice will 
provide them. This is not legal in Java, which requires 
modules to define any methods they use. It is fine in 
our model, however, because hyperslices are eventually 
composed together to form a “complete” hyperslice that 
must satisfy all of the formalism’s constraints. 

The definition of hyperslice above is sufficiently broad 
that it is possible, for any concern, to form a hyper- 
slice consisting of exactly those units pertaining to that 
concern. For example, hyperslices can correspond to 
features, to units of change, or to specific customize 
tions or components. If this approach is followed for all 
concerns of interest in a system, there is lik.ely to be a 
good deal of overlap: the same unit, or diffkrent units 
describing the same concept, might be involved in mul- 
tiple concerns. We saw this in the expression example- 
each of the hyperslices includes expression concepts in 
the form of class modules, but it defines those concepts 
in a way that is appropriate to its task. Overlap is ac- 
ceptable; indeed, it is responsible for much of the power 
of this approach. Composition must be able to resolve 
the overlap, as discussed later. 

This great flexibility raises the question of how develop- 
ers should choose hyperslices for decomposmg a given 
system, and whether the freedom is likely to lead to 
error and abuse. Simple uses, such as for :major fea, 
tures or units of change, provide great benefit with little 
difficulty. Formulation of guidelines for more complex 
use of hyperslices is an issue for future research. Even 
with outstanding guidelines, however, use of hyperslices, 
like any other modularization mechanism, requires good 
judgement. If key structural decisions turn out to be in- 
correct because of design error or dramatic changes to 
requirements, system restructuring may be ne’cessary, as 
with conventional technology. The support for simulta- 
neous separation of concerns along multiple dimensions, 
however, opens the possibility of introducing new di- 
mensions and ignoring obsolete ones, without disman- 
tling the system. This, too, needs further research. 

Composing Hyperslices Using Hypermodules 
Hyperslices provide a flexible means of decomposing ar- 
tifacts. To be useful, however, it must be possible to 
compose them to produce complete and consistent arti- 
facts in unchanged artifact formalisms of choice. 

A hypermodde is a set of hyperslices, together with a 
composition rule that specifies how the hyperslices must 
be composed to form a single, new hyperslice that syn- 
thesizes and integrates their units. Because of this com- 
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Figure 3: Defining the SEE with Hyperslices. 

position property, a hypermodule is appropriate wher- 
ever a hyperslice may be used. Hypermodules can thus 
be nested. An entire artifact can be modeled as a hy- 
permodule; the artifact consists of all the modules in 
the composed hyperslice and must satisfy whatever con- 
sistency and completeness constraints are required by 
the artifact formalism. The system as a whole-all of 
its artifacts-can also be modeled as a hypermodule, 
whose composition rule describes the relationships be- 
tween the artifacts. The simplification of these relation- 
ships, made possible by hyperslices, and their reification 
in the composition rule, is a key advantage of this model. 

Figure 4 shows a hypermodule consisting of the hyper- 
slices from Figure 3. The composition rule must indi- 
cate which units in the hyperslices describe the same 
concepts, and how those units must be integrated. In 
this case, it asserts that classes in different hyperslices 
with the same name model the same concept and should 
be “merged” into a new, composed class with the same 
name and combined details. When the composition rule 
is applied, the resulting hyperslice contains exactly the 
modules shown in Figure 1. Notice that the syntax and 
semantic checking hyperslices can be grouped optionally 
into a “check” hypermodule that is nested within the 
SEE hypermodule. The result of (optionally) compos- 
ing the syntax and semantic checking hyperslices within 
the “check” hypermodule is a check hyperslice, which 
can then be composed with the other SEE hyperslices. 
The ability to nest hypermodules in this manner pro- 
motes abstraction and encapsulation. 

Details ,of composition vary greatly depending on the 
formalism in which units are written, and on which of 
the formalism’s constructs are treated as units and mod- 
ules. These are details that are specified as part of an 
instantiation of this model (described in detail in Sec- 
tion 4), which represents a mapping between a partic- 
ular formalism and the concepts embodied within the 

model. They are also dependent on the details of the 
particular units involved, and can vary from straight- 
forward to highly complex. Nonetheless, some general 
properties are worth discussing. 

Composition is based on commonality of concepts across 
units: different units describing the same concept (usu- 
ally, though not necessarily, differently) are composed 
into a single unit describing that concept more fully. 
This process involves three steps: matching units in dif- 
ferent hyperslices that describe the same concept, ret- 
onciliation of differences in these descriptions, and inte- 
gration of the units to produce a unified whole. Clearly, 
composition cannot be a fully automatic process. It is 
the task of the composition rule in the hypermodule to 
specify the details of composition. 

One approach to composition rules, suggested by our 
work on subject-oriented programming [7, 171, is for 
the rule to be a combination of a concise, general rule, 
and detailed, specific rules that specify exceptions to the. 
general rule or handle cases that it cannot handle. The 
general rule essentially names an automatic approach to 
apply as a starting point or default, such as matching by 
unit name (i.e., the name denotes the concept). General 
rules can be applied to an entire composition, or selec- 
tively to portions of it; different automatic approaches 
can thus be applied to different areas of a composition. 
Only in cases where no automatic rule suffices are de- 
tailed rules needed, in which the developer says explic- 
itly exactly what to do. Detailed rules can handle such 
issues as matching units with different names that do 
describe the same concept, not matching units with the 
same names that do not describe the same concept, and 
reconciling different module structures, such as match- 
ing units nested at different depths in different hyper- 
slices that nonetheless describe the same concept. The 
degree of mismatch in module structure and abstrac- 
tion level that can be handled effectively is an issue for 
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future research, as is determining how much mismatch 
occurs in practice in composed hyperslices. 

An alternative is to split the composition rule across the 
hyperslices, allowing each hyperslice itself to specify how 
it is to be composed. If the rule in a hyperslice can refer 
to other hyperslices, this increases coupling and reduces 
reusability of hyperslices; if it cannot, this limits the 
flexibility with which overlap can be handled. Putting 
the composition rule a level higher, in the hypermodule, 
allows both flexible overlap and enhanced reuse. 

In this model, therefore, developers write each artifact 
as a hypermodule. For each concern of importance that 
cannot be encapsulated effectively using the artifact for- 
malism, they write a hyperslice that consists of modules 
in the artifact formalism. They also write a composi- 
tion rule that specifies how these hyperslices are to be 
composed into a set of legal modules that make up the 
artifact. They also write an enclosing hypermodule that 
contains all the artifacts and whose composition rule 
specifies the relationships between them. 

Using the Model 
We have already begun to see how this artifact model 
can help to address some of the software lifecycle prob- 
lems identified in Section 2. We now explore its impact 
on these problems in more detail, by revisiting the ex- 
pression SEE example. We apply the same software 
development and evolution process, but this time, we 
use the proposed artifact model. We then evaluate how 
well the resulting artifacts address the problems pre- 
sented earlier. 

Revised First Go-Round 
As described in Section 3, Figure 3 shows a somewhat 
different decomposition of the design and code artifacts 

than that produced during the initial design and coding 
process (depicted in Figure 1). The model has allowed 
us to separate the major non-object concerns identified 
during requirements-gathering: the “kernel,” which en- 
capsulates basic functionality pertaining to expressions, 
and display, evaluation, and checking features. Each of 
these concerns is encapsulated in a hyperslice. Since we 
chose to decompose the check feature further, we rep- 
resent it as a nested hypermodule, which includes two 
subhyperslices, one each for the syntax and semantic 
checkers. 

This decomposition has some significant benefits. 
First, hyperslices permit decomposition along multi- 
ple dimensions-in this case, object and feature-even 
within object-oriented formalisms that generally sup- 
port only the object dimension. Second, thse improved 
separation of concerns eliminates the scattering and tan- 
gling problems we saw earlier, by keeping units pertain- 
ing to separate requirements and features separate. A 
key benefit is that we have achieved encapsulation of 
coherent concerns UCTOSS the lifecycle. This improves 
traceability and can significantly simplify the interrela- 
tionships among different artifacts that are traditionally 
so difficult to maintain. This approach als’o improves 
reusability considerably. For example, the entire ex- 
pression AST concept, from requirements all the way to 
code, has been defined in a context-indepen.dent man- 
ner and can be reused readily, since the context-specific 
pieces are encapsulated in other hyperslices. 

The use of composition to assemble hyperslices into the 
final SEE provides some substantial benefits as well. 
Observe that because composition of hyperslices is al- 
ways optional, we have managed, just by separating the 
concerns, to ensure that we will later be ab1.e to “mix- 
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and-match” syntax and style checking. We can also cre- 
ate versions of the SEE that contain different combina- 
tions of checking, evaluation, and display features-an 
ability we did not have in the original SEE. Notice also 
that we have a choice over how we define our hypermod- 
ules. We could, for example, define three hypermodules: 
one each that includes all hyperslices pertaining to a 
particular a~G;fact. This allows us to compose the full 
requirements specification, design, and code artifacts. 
But we could also choose to define one hypermodule 
per concern-e.g., an “expression” hypermodule, which 
contains the requirements, design, and code hyperslices 
that encapsulate the “kernel,” a “display” hypermod- 
ule that encapsulates all artifact hyperslices pertaining 
to display, etc. Both kinds of composition are valid 
and are useful for different purposes; the former per- 
mits the creation of the final artifacts, while the latter 
facilitates reuse of concerns and permits certain forms 
of inter-artifact completeness and consistency checking. 
As noted earlier, developers may need to decompose OT 
compose differently for different reasons. This model 
permits them to do just that. 

SEE Evolution: Saving the Environment 
Clients eventually requested support for optional per- 
sistence of expressions and for multiple forms of style 
checking and the ability to “mix-and-match” types of 
checks. Persistence is a new concern; it represents both 
ir new feature and a unit of change. As such, its ad- 
dition is not supported well by object-oriented separa- 
tion of concerns, as we saw in Section 2. This time, 
we choose to model persistence as an independent con- 
cern (hyperslice), which both encapsulates it and pro- 
vides us the opportunity to use ASTs with or without 
persistence. Adding style checkers is trivial-the check- 
ing hyperslice already separates syntax and semantic 
checking, so we need only define the style checkers as 
hyperslices and compose any set of them together with 
the syntax and/or semantic check hyperslices. Notice 
that these new capabilities do not require any modifi- 
cations to existing hyperslices or artifacts-they can be 
encapsulated as separate concerns and composed with 
the existing artifacts. 

PostmoTdem Revisited 
We now revisit the set of software engineering problems 
discussed in Section 2. 

&pact of change: Much of the reason for high impact - 
of ‘change is the mismatch between the units of change 
and the units of abstraction and encapsulation within 
artifacts. With our model, however, units of change can 
be separated and encapsulated like any other concern. 
This can, in many common cases, significantly reduce 
or eliminate the impact of change. 

Reuse: As noted above, this model may significantly 

improve reuse of all artifacts, It permits the separa- 
tion of generally useful capabilities from special-purpose 
ones, and it provides composition as a very powerful, 
non-invasive customization and adaptation mechanism. 
Thus, it is simpler to create reusable components and 
to pick up and tailor a component to a particular need. 

Traceability: The ability to identify, encapsulate, 
and co-structure similar concerns across different arti- 
facts greatly facilitates traceability and propagation of 
change across the lifecycle. 

While the appropriate use of the model can directly re- 
sult in the benefits we have described (and many we 
have not), it is not a panacea for bad design, bad code, 
or poor modularization. Further, overseparation of con- 
cerns is as bad as underseparation-it leads to large 
numbers of hyperslices with complex interrelationships, 
and may actually reduce comprehension and increase 
complexity. Nonetheless, we believe the model is a valu- 
able tool with potentially high benefit, if used properly. 

4 INSTANTIATION 
To use this artifact model, one must instantiate it for 
particular artifact development formalisms. Instanti- 
ation entails determining which notational constructs 
map to units and modules, deciding how to represent 
hyperslices, and providing support for composition of 
hyperslices. The mapping to units is especially impor- 
tant, as it significantly affects how well the hypermod- 
ules will achieve various software engineering goals and 
properties. This section briefly describes some of the 
issues involved. A fuller discussion appears in [18]. 

Mapping to Units and Modules 
Units: Choosing “units” from the set of artifact for- 
malism constructs requires an instantiator to decide the 
level of granularity at which it is appropriate, in the 
given formalism, to separate and integrate concepts. 
We illustrate this by example, using the Java language. 
Java defines both declarator constructs (e.g., packages, 
interfaces, classes, methods) and statements. Some sub- 
set of these constructs must be treated as units. A deci- 
sion in favor of fine granularity might include all declare 
tors and statements as units. This potentially provides 
the flexibility to compose any pieces of Java source, but 
it has all of the concomitant problems of determining 
how to match and reconcile different statements and ‘of 
trying to analyze the properties of the result. Using a 
coarser level of granularity might result in treating only 
a subset of declarators (e.g., classes and their members) 
as units, which simplifies composition and understand- 
ing of the composed result, at the cost of generality. 

The selection of units has significant ramifications for 
some important software engineering properties of ar- 
tifacts [18], including effects on evolution and modular 
development. If the set of units includes entities that 
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are typically “hidden,” such as method implementation 
code, composition rules and their results become sen- 
sitive to “hidden” changes. Modular development re- 
lies on important properties of individual modules be- 
ing preserved by composition. If composition can occur 
at too fine-grained a level, such properties might not 
be preserved, and must be re-examined afresh in the 
context of each composition. 

Data and functionality are fundamental and ubiquitous 
concepts in software. They are frequently the concepts 
that are described by artifacts, and the concepts that 
span hyperslices and artifacts. Formalisms generally 
have constructs for declaring or defining them. For ex- 
ample, UML has boxes representing classes, and entries 
within class boxes representing instance variable and 
method declarations. Java has classes, interfaces, in- 
stance variable declarations and methods. We believe 
that constructs related to data and functionality are ex- 
cellent candidates for units, and hypothesize that they 
might, in general, be the best choices. 

Modules: The selection of formalism constructs to 
map to modules is somewhat simpler than the choice 
of units. Essentially, it requires examining the partic- 
ular modularization constructs the formalism provides 
in light of the set of units chosen. For example, sup 
pose we choose Java methods, instance variable decla- 
rations, classes, and interfaces as units. Instance vari- 
able declarations and methods are grouped together into 
classes and interfaces, which in turn are grouped to- 
gether into packages. We would therefore choose to map 
Java classes, interfaces, and packages to modules in our 
model. An obvious choice for UML is to map classes 
and package diagrams to modules. 

Representation of Hyperslices 
Hyperslices are sets of modules. They need not oc- 
cur explicitly in any given artifact formalisms, though 
some formalisms may provide a construct to which it 
is, convenient to map hyperslices. For example, C++‘s 
namespace construct, which represents arbitrary collec- 
tions of program units, Java’s package construct, which 
represents collections of classes and interfaces, and UM- 
L’s package diagram, which represents collections of 
packages and classes, may be used to model hyperslices. 
For formalisms that do not have such constructs, it is 
necessary either to enhance them or to provide a sepa- 
rate hyperslice-specification mechanism, such as named 
lists of modules. 

Support for Composition 
To provide support for composing hyperslices, it is nec- 
essary to define a means for specifying composition 
rules-a language, an interactive tool, or both-and to 
build a compositor that is able to apply the rules to hy- 
perslices. Composition by hand is conceptually possible, 
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but totally unrealistic for actual development. 

Providing this support is a large job. That is a pow- 
erful reason to make mapping decisions based on for- 
malism, not on content, to avoid the need for project- 
specific compositors. Compositors specialized to under- 
stand particular semantic dimensions may be useful in 
some circumstances, however, as demonstrated by re- 
cent work on aspect-oriented programming ]:lO]. 

5 RELATED WORK 
We discuss two categories of related work: approaches 
that can (loosely, perhaps) be considered instantiations 
of our model for particular types of artifacts, and dif- 
ferent approaches to similar problems. 

Subject-0Gented programming [7, 171 partially realizes 
our model for object-oriented code artifacts, The units 
are classes, methods and instance variables. Systems 
are built as compositions of subjects-hyperslices-each 
of which is a class hierarchy modeling its domain from 
a particular point of view. We have built composition 
support for C++ and CORBA IDL, prototype support 
for Smalltalk, and are currently building support for 
Java. Composition rules, specified textually for C++ 
and through an interactive user interface for the other 
systems, provide considerable matching and reconcilia- 
tion flexibility, and the support is a framework allowing 
addition of new matchers and reconcilers. We have sev- 
eral small, running examples that demonstrate the value 
of decomposition into subjects. We are also currently 
exploring the manifestation of subjects and composition 
rules in UML, to allow co-structuring of subject-oriented 
designs and code. 

Aspect-Oriented Programming (AOP) [lo] expands on 
the concepts of subject-oriented programming by identi- 
fying and illustrating several useful, non-hnctional con- 
cerns to be separated, such as concurrency properties, 
distribution properties, persistence and other “emergent 
entities” [ll]. Initial work used different aspect lan- 
guages (e.g., WI) t o re P resent different aspects. This is 
appealing, since a programming language is not neces- 
sarily the best formalism for expressing non-functional 
requirements, but it results in a need for special-purpose 
compositors (called zueavers). More recent work is 
aimed at providing a general-purpose weaver for hyper- 
slices written in Java [ll]. 

AOP distinguishes the notion of “core classes,” which 
encapsulate a system’s functional requirem.ents, from 
“aspects,” which encapsulate non-functional, cross- 
cutting requirements. Aspects are written with respect 
to core classes and are essentially orthogonal to one 
another. Relative to our model, each aspect is a hy- 
perslice, and a set of aspects together with the core 
classes approximate a hypermodule. The core classes 
are distinguished; all aspects refer to them, and there- 



fore share the same view of the overall class structure. 
The hypermodule does not have a central composition 
rule. Instead, each aspect contains its part of the rule, 
specifying how that aspect is to be woven into the base 
classes. This makes the approach subject to the disad- 
vantages discussed in Section 3, particularly that han- 
dling of overlapping concerns (i.e., interaction among 
aspects) is perforce done in a standard, default manner 
by the weaver. 

Holland discusses the building of systems using compo- 
sitions of codracts [8]. Each contract specifies a set of 
participant objects and their interactions, expressed as 
obhgations. Its primary intent is to encapsulate these 
particular interactions and obligations so that they are 
clearly separated from other interactions involving the 
same objects. A single object can participate in multiple 
contracts, in which case it must satisfy all their obliga- 
tions. Holland describes a variety of combination rules 
for contracts. A contract corresponds to a hyperslice in 
our model, cutting across classes that describe objects. 
The combination rules provide some alternative means 
of combining specifications in different contracts that 
apply to the same participant. 

Similarly, role models (e.g., in OORAM/OORAS [l]) 
are essentially hyperslices. Each model describes par- 
ticular roles played by objects, and how those roles in- 
teract. Role models must be composed, usually manu- 
ally, to produce object definitions that satisfy all needed 
roles. VanHilst and Notkin propose an approach to im- 
plementing roles with templates [24]. Each template de- 
fines a role, and instantiation expressions create classes 
that satisfy all required roles. Collections of related 
templates, such as those defining similar or interacting 
roles for objects, constitute hyperslices in our model, 
and instantiation expressions are composition rules. 

Adaptive programming is another approach to providing 
modules other than classes within object-oriented sys- 
tems. A class graph describes some classes and their 
relationships, from a particular point of view. Class 
graphs do not contain code; instead, code is written 
in separate propagation patterns. Propagation pat- 
terns can be used with any collection of concrete classes 
that conform to the class graph against which they were 
defined. Adaptive programs are transformed into stan- 
dard object-oriented programs by the Demeter tools [6]. 
With respect to this generated program, each propaga- 
tion pattern is a hyperslice, since it contains method 
code that cuts across classes. The composition is per- 
formed by the Demeter tool, with matching being based 
on specifications of class graph conformance. Propaga 
tion patterns do not overlap, however-each defines its 
own method-so reconciliation is not an issue. In a 
recent paper [13], collaboration-based decomposition is 
discussed, of which contracts are an example. Collabo- 

rations are hyperslices, cutting across classes. 

Catalysis [3] facilitates building reusable design frame- 
works in UML. It incorporates a simple notion of com- 
position based on the union of design models. It there- 
fore represents an instantiation of our model for UML. 
Catalysis’ matching and reconciliation rules are fairly 
simple, which limits the dimensions along which design 
models can be decomposed and composed, but makes 
reasoning about properties of the composed design in 
terms of its component design models more tractable. 

The Viewpoints project [15] is an approach to require- 
ments engineering. Modules, called viewpoints, en- 
capsulate developers’ views of both the requirements- 
building process and the pieces of the requirements arti- 
fact being developed. Different viewpoints may describe 
the same requirements artifacts in different notations, 
and they may create conflicting definitions for given re- 
quirements. The Viewpoints system defines mechanisms 
(based on theorem proving) for identifying and helping 
developers cope with inconsistency. 

The Viewpoints approach shares a number of points in 
common with ours but also has corresponding differ- 
ences. Both approaches are predicated on the belief that 
not all concerns can be modularized orthogonally, and 
that it must be possible to view systems as potentially 
overlapping pieces. Another similarity is a concern with 
resolving semantic differences between different aspects 
or elements of a system (views or hyperslices). View- 
points emphasizes the detection and characterization of 
inconsistencies while deferring their resolution (reconcil- 
iation) to the encompassing requirements process. We 
have focused on the activity of composing concerns after 
they have been separated, including identifying and, es- 
pecially, reconciling inconsistencies according to a com- 
position rule. Finally, we are primarily concerned with 
how artifacts are constructed, while the Viewpoints ap- 
proach is primarily concerned with how they are viewed. 

Some of the problems addressed by our approach can be 
tackled differently. Attempts have been made to address 
the problem of traceability with environment support 
for capturing and maintaining the relationships among 
artifacts (e.g., [9]). The disparate structures of the ar- 
tifacts make this a particularly tough problem. 

The problem of limiting the impact of change has been 
addressed by various architectures and mechanisms, like 
implicit invocation [14], mediators [22], event-based in- 
tegration [20], and design patterns [4]. These are all 
valuable, but they suffer from the drawback that the 
kinds of changes they permit-the open points”must 
be anticipated. Retrofitting any of these mechanisms 
where not originally planned requires invasive change. 

A great deal of work has been done to promote 
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reuse, and other researchers and developers have rec- 
ognized the importance of large-component reuse (e.g., 
[2]). Effective reuse requires powerful adaptation and 
customization mechanisms, but current customization 
technology is usually restricted to interface adaptation 
using some sort of adapter or transformation layer, or 
to substituting alternative mod,ules at predetermined 
points, such as in object-oriented frameworks. Inter- 
esting recent work builds on adaptive programming to 
support “adaptive plug-and-play components” [13]. 

6 CONCLUSIONS AND FUTURE WORK 
A number of important problems in software engineer- 
ing have resisted general solution, including problems 
related to software understanding, maintenance, evolu- 
tion, and reuse. We believe that these problems share 
a common cause: failure of modern artifact formalisms 
to satisfy the separation of concerns requirement ade- 
quately. Numerous reasons exist to separate and inte- 
grate software artifacts, and these reasons may result 
in different artifact structures. Moreover, many con- 
cerns may be relevant simultaneously, and the entire set 
of concerns may evolve over time. Despite this obser- 
vation, artifact formalisms include weak decomposition 
and composition mechanisms that permit only a small, 
“dominant” set of concerns to be separated. This leads 
directly to our inability to achieve many of the goals of 
software engineering as a discipline. 

Our model of multi-dimensional software decomposition 
helps to overcome these limitations. It permits encapsu- 
lation of particular concerns in a software system, both 
within and across artifacts, and it allows kinds of sepa- 
ration of concerns that may not be separable in artifact 
formalisms, such as units of change, features, and over- 
lapping concerns. This improves traceability across the 
lifecycle. The model also provides a powerful composi- 
tion mechanism that facilitates integration, adaptation, 
and “plug-and-play.” In so doing, it promotes reuse, im- 
proves comprehension, and eases maintenance and evo- 
lution. Thus, the approach addresses some fundamental 
limitations in software engineering. For these reasons, 
we believe that support for multi-dimensional decom- 
position and composition represents a key to advances 
along a broad front of software engineering challenges. 

This work is clearly at an early stage, largely unproven 
yet. Still, a considerable body of experience and related 
research now exists to support the claim that multi- 
dimensional separation of concerns is one of the key soft- 
ware engineering issues today. The model presented is 
just a starting point. It must be refined, stretched and 
modified, and it must be instantiated for a variety of for- 
malisms to explore issues that arise for different method- 
ologies and at different phases of the software lifecy- 
cle. These instantiations must be used for real devel- 
opment, to evaluate them and create new development 
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methods that exploit their strengths; to explore issues 
in intra- and inter-artifact matching and reconciliation; 
and to explore the impact of multi-dimensional separa- 
tion of concerns on areas like development m.ethodology, 
software process, analysis, testing, reverse engineering, 
reengineering, and software architecture. 
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