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ABSTRACT
Aspect-oriented programming (AOP) is a new programming
paradigm whose goal is to more cleanly modularize cross-
cutting concerns such as logging, synchronization, and event
notification which would otherwise be scattered through-
out the system and tangled with functional code. However,
while AOP languages provide promising ways to separate
crosscutting concerns, they can also break conventional en-
capsulation mechanisms, making it difficult to reason about
code without the aid of external tools.

We investigate modular reasoning in the presence of as-
pects through TinyAspect, a small functional language that
directly models aspect-oriented programming constructs.
We define Open Modules, a module system for TinyAspect
that enforces Reynolds’ abstraction theorem, a strong encap-
sulation property. Open Modules are “open” in that exter-
nal aspects can advise functions and pointcuts in their in-
terface, providing significant aspect-oriented expressiveness
that is missing in non-AOP systems. In order to guaran-
tee modular reasoning, however, our system places limits on
advice: external aspects may not advise function calls inter-
nal to a module, except for calls explicitly exposed through
pointcuts in the module’s interface. The abstraction property
of our system ensures that a module’s implementation can
be changed without affecting clients, and provides insight
into formal reasoning, modular analysis, and tool support

for aspect-oriented programming. 1

1. Introduction
In his seminal paper, Parnas laid out the classic theory

of information hiding: developers should break a system
into modules in order to hide information that is likely to
change [19]. Thus if change is anticipated with reasonable
accuracy, the system can be evolved with local rather than
global system modifications, easing many software mainte-
nance tasks. Furthermore, the correctness of each module
can be verified in isolation from other modules, allowing de-
velopers to work independently on different sub-problems.

Aspect-Oriented Programming (AOP) developed from
the insight that conventional modularity and encapsulation
mechanisms are not flexible enough to capture many con-

1Republication note: An earlier version of this paper ap-
peared in the FOAL workshop at AOSD, which does not
have formally published proceedings (only a technical report
with limited distribution).

cerns that are likely to change [13]. These concerns cannot
be effectively hidden behind information-hiding boundaries,
because they crosscut the underlying functional or datatype-
based decomposition of the program. As a result, code
implementing these concerns tends to be scattered in many
placed throughout the system and tangled together with un-
related code.

For example, consider the problem of enforcing a global
constraint in a simulation framework, ensuring that objects
in the simulation do not overlap. One way of enforcing this
constraint is to check it every time some object in the simula-
tion moves. In an conventional system, the code for moving
is likely to be spread out among many different functions in
the system. Each function involved in moving objects must
call constraint-checking code, meaning that these calls will
be scattered across these methods, and tangled together with
the code for moving objects. This scattering and tangling of
the constraint-checking concern makes evolving it more diffi-
cult and error-prone, because an engineer must find all of the
calls to the constraint checker and change them in a consis-
tent way. If any constraint-checking calls are missed, a defect
is likely to result.

Aspect-oriented programming systems provide mecha-
nisms for modularizing crosscutting concerns like constraint
checking. For example, Figure 1 shows how simulation in-
variants could be checked in a more modular way using the
constructs in AspectJ, the most widely-used aspect-oriented
programming language [12]2. This example assumes some
kind of graphical simulation, and shows two classes, one rep-
resenting points and another representing rectangles. Both
classes have a method moveBy, which moves the shapes on
the screen.

In a separate package, a constraint-checking aspect is de-
fined to check certain invariants of the simulation every time
a shape moves. A pointcut is defined to show the set of places
in the base simulation code where the constraint-checking
should be applied. In this case, the moves pointcut refers to
all calls to the moveBy method in all shape classes. When-
ever this pointcut is triggered, the advice at the bottom of the
aspect is invoked. This advice is after advice, meaning that
it is run after the call to moveBy completes. The body of the
advice simply invokes the checkInvariants method (not
shown) which checks that the invariants of the simulation

2The example in Figure 1 illustrates AspectJ syntax, which
is object-oriented. The remainder of this paper will focus on
aspects in the setting of functional languages.
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package shape;

public class Point extends Shape {
public void moveBy(int dx, int dy) {

x += dx; y += dy;
...

}

public class Rectangle extends Shape {
public void moveBy(int dx, int dy) {

p1x += dx; p1y += dy;
p2x += dx; p2y += dy;

...
}

package constraints;

aspect CheckSimulationConstraints {
pointcut moves():

call(void shape.*.moveBy(..));

after(): moves() {
simulation.checkInvariants();

}
}

Figure 1: This code shows the definition of shapes in a
graphical simulation framework, together with an aspect
that checks global simulation invariants when the scene
changes. The aspect defines a pointcut representing all
calls to the moveBy methods of shapes, and advice that
checks the simulation invariants after each shape moves.

still hold.
The use of aspect-oriented technology to capture the con-

straint checking concern makes the code for the concern eas-
ier to understand and evolve. All the code for the con-
cern is either in the constraint-checking aspect, or in the
checkInvariants function, so the programmer can easily
understand the code just by looking at these two places. In
contrast, if this concern had been implemented in a conven-
tional language, calls to checkInvariants would be scat-
tered among all the moveBy methods of the shape classes.
In the aspect-oriented implementation, the developer can
change the implementation of the advice or the pointcut
showing where it applies in one place, whereas without
aspect-oriented technology this change would be spread out,
making it more likely that the developer might miss some
relevant places in the code.

1.1 AOP Definition
Filman and Friedman defined aspect-oriented program-

ming as quantification and obliviousness [8]. Quantification
is “the idea that one can write...statements that have effect in
many, non-local places in a programming system [7].” For
example, the pointcut in Figure 1 quantifies over all imple-
mentations of the moveBy method in the system. Oblivious-
ness is the idea that “the places these quantifications applied
did not have to be specifically prepared to receive these en-
hancements [7].” For example, the moveBy methods did not
have to be specifically prepared (e.g., by calling the advice
directly or through a callback) in order to be affected by the
advice in Figure 1.

1.2 Aspects and Information Hiding
The example above illustrates how aspect-oriented tech-

nology can provide better information hiding for crosscut-
ting concerns, making it easier to understand and evolve
the code dealing with these concerns. Unfortunately, aspect
technology is a two-edged sword: it can also make software
evolution more difficult by coupling aspects tightly to the
code that they advise. AspectJ and many other systems al-
low aspects to reach across encapsulation boundaries, break-
ing information hiding principles.

For example, the constraint checking aspect in Figure 1 is
is tightly coupled to the implementation details of the shape
package, and will break if these implementation details are
changed. Consider what happens if the rectangle is modified
to store its coordinates as a pair of points, rather than two
pairs of integer values. The body of Rectangle.moveBy
would be changed to read:

p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

Now the moves pointcut will be invoked not only when
the Rectangle moves, but also when its constituent points
move. Thus, the scene invariants will be checked in the mid-
dle of the rectangle’s moveBy operation. Since the simulation
invariants need not be true in the intermediate state of mo-
tion, this additional checking could lead to spurious invari-
ant failures.

The aspect in Figure 1 violates the information hiding
boundary of the shape package by placing advice on
method calls within the package. This means that the imple-
mentor of shape cannot freely switch between semantically
equivalent implementations of Rectangle, because the ex-
ternal aspect may break if the implementation is changed.
Because the aspect violates information hiding, evolving the
shape package becomes more difficult and error prone.

Although the AspectJ language, considered in isolation,
violates information hiding principles, tool support such as
the AspectJ plugin for Eclipse (AJDT) can help to address

the problem described above1. In this paper, we investigate
a purely language-based solution to the information hiding
problem. Although our solution gives up some of the expres-
siveness of AOP, it provides insight into why tool support is
essential in pure AOP, how it can be improved, and what its
limitations are.

1.3 Contributions
This paper makes two contributions to reasoning about

aspect-oriented programming systems. First, we define
TinyAspect, a functional core language for aspect-oriented
programming. TinyAspect is the first formal model of as-
pects that is extremely small, models aspect-oriented con-
structs directly, and is defined using a standard small-step
operational semantics. In combination, these properties
make it easy to investigate aspect-oriented language exten-
sions and prove theorems about them.

The second contribution of this paper is an extension of
TinyAspect with Open Modules, a module system that is
open to some forms of aspect-oriented extension yet guaran-
tees Reynold’s abstraction theorem, a strong encapsulation
property [20]. Open Modules’s design is based on the prin-
ciple that a module may choose to expose internal semantic

1Thanks to Gregor Kiczales for pointing this out
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events as pointcuts to clients, but clients may not depend on
implementation details that are not part of the semantics of
the module interface.

In our design, the interface of an open module exposes a
set of values, functions and pointcuts. The pointcuts repre-
sent internal events that are semantically important; clients
can advise these pointcuts, and so if two modules implement
the same interface, they must use these pointcuts in the same
way. Clients can also advise functions that are in the inter-
face of a module; however, this advice affects only external
calls to these functions, not calls from within the module.
Thus, clients cannot observe or depend on the way that the
implementation of a module uses functions that are exposed
in its interface. For example, in Figure 1, our module system
would require that the pointcut apply only to calls that are
not within the shape module itself.

To make the abstraction property precise, we define a
bisimulation relation between programs. TinyAspect’s
module system ensures that if two modules implement the
same module interface, and if the implementations obey a
bisimulation relation with respect to that interface, then no
matter what client code is written against that interface, it
will behave the same way no matter which module imple-
mentation is used. Because of this property, developers can
reason separately about the correctness of the implementa-
tion and the clients of a module.

1.4 Outline
The outline of the rest of the paper is as follows. In the next

section, we introduce the TinyAspect language through a
series of examples and the formal static and dynamic se-
mantics. In the following section, we extend TinyAspect
with Open Modules. In Section 4, we define an equivalence
relation between programs and show that the module sys-
tem guarantees abstraction. Section 5 discusses the implica-
tions of the abstraction property for formal methods, mod-
ular analysis, and tool support for AOP. Section 6 discusses
related work, and Section 7 concludes.

2. Formally Modelling Aspects
We would like to use a formal model of aspect-oriented

programming in order to study language extensions like the
module system discussed in the next section. While other
researchers have used denotational semantics [23], big-step
operational semantics [14], and translation systems [16, 21] to
study the semantics of aspect-oriented programming, small-
step operational semantics have the advantage of providing
a simple and direct semantics that is amenable to syntactic
proof techniques.

Jagadeesan et al. have proposed an operational semantics
for the core of AspectJ, incorporating several different kinds
of pointcuts and advice in an object-oriented setting [11].
These features are ideal for modeling AspectJ, but the com-
plexity of the model makes it tedious to prove properties
about the system.

Walker et al. propose a much simpler formal model incor-
porating just the lambda calculus, advice, and labeled hooks
that describe where advice may apply [22]. Their founda-
tional calculus does not fulfill the obliviousness requirement
of AOP in that advice can only be applied to specifically
labeled locations, and indeed it is not intended to model
source-level AOP constructs directly. Instead, the calculus
provides a set of primitives into which source-level, oblivi-

Names n ::= x

Expressions e ::= n | fn x:τ => e | e1 e2 | ()

Declarations d ::= •
| val x = e d
| pointcut x = p d
| around p(x:τ ) = e d

Pointcuts p ::= n | call(n)

Types τ, σ ::= unit | τ1 → τ2 | pc(τ1 → τ2)

Figure 2: TinyAspect Source Syntax

ous AOP constructs can be translated, and is thus useful for
studying compilation strategies for AOP languages, and for
defining AOP languages by translation.

Because the calculus of Walker et al. is considerably lower
level than existing languages like AspectJ, properties that
might be true at the source level of a language may not hold
in the foundational calculus. Thus, a formal model that mod-
els source-level aspect constructs directly is a more effective
way to investigate many properties of AOP languages.

2.1 TinyAspect
We have developed a new functional core language for

aspect-oriented programming called TinyAspect that is in-
tended to make proofs of source-level properties as straight-
forward as possible. As the name suggests, TinyAspect is
tiny, containing only the lambda calculus with units, declara-
tions, pointcuts, and around advice. TinyAspect directly
models AOP constructs similar to those found in AspectJ,
making source-level properties easy to specify and prove us-
ing small-step operational semantics and standard syntactic
techniques. Although we are working in an aspect-oriented,
functional setting, our system’s design is inspired by that of
Featherweight Java [10], which has been successfully used to
study a number of object-oriented language features.

Figure 2 shows the syntax of TinyAspect. Our syntax is
modeled after ML [17], so that TinyAspect programs are
easy to read and understand. Names in TinyAspect are
simple identifiers; we will extend this to paths when we add
module constructs to the language. Expressions include the
monomorphic lambda calculus – names, functions, and func-
tion application. To this core, we add a primitive unit ex-
pression, so that we have a base case for types. We could
add primitive booleans and integers in a completely stan-
dard way. Since these constructs are orthogonal to aspects,
we omit them.

In most aspect-oriented programming languages, includ-
ing AspectJ, the pointcut and advice constructs are second-
class and declarative. So as to be an accurate source-level
model, a TinyAspect program is made up of a sequence of
declarations. Each declaration defines a scope that includes
the following declarations. A declaration is either the empty
declaration, or a value binding, a pointcut binding, or advice.
The val declaration gives a static name to a value so that it
may be used or advised in other declarations.

The pointcut declaration names a pointcut in the pro-
gram text. A pointcut of the form call(n) refers to any call
to the function value defined at declaration n, while a point-
cut of the form n is just an alias for a previous pointcut decla-
ration n. A real language would have more pointcut forms;
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val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

(* advice to cache calls to fib *)
val inCache = fn ...
val lookupCache = fn ...
val updateCache = fn ...

pointcut cacheFunction = call(fib)
around cacheFunction(x:int) =

if (inCache x)
then lookupCache x
else let v = proceed x

in updateCache x v; v

Figure 3: The Fibonacci function written in TinyAspect,
along with an aspect that caches calls to fib.

we include only the most basic possible form in order to keep
the language minimal.

The arounddeclaration names some pointcut p describing
calls to some function, binds the variable x to the argument of
the function, and specifies that the advice e should be run in
place of the original function. Inside the body of the advice e,
the special variable proceed is bound to the original value
of the function, so that e can choose to invoke the original
function if desired.
TinyAspect types τ include the unit type, function

types of the form τ1 → τ2, and pointcut types representing
calls to a function of type τ1 → τ2.

2.2 Fibonacci Caching Example
We illustrate the language by writing the Fibonacci func-

tion in it, and writing a simple aspect that caches calls to the
function to increase performance. While this is not a com-
pelling example of aspects, it is standard in the literature and
simple enough for an introduction to the language.

Figure 3 shows the TinyAspect code for the Fibonacci
function. We assume integers and booleans have been added
to illustrate the example.
TinyAspect does not have recursion as a primitive in the

language, so the fib function includes just the base case of
the Fibonacci function definition, returning 1.

We use around advice on calls to fib to handle the re-
cursive cases. The advice is invoked first whenever a client
calls fib. The advice is invoked first whenever a client calls
fib. The body of the advice checks to see if the argument
is greater than 2; if so, it returns the sum of fib(x-1) and
fib(x-2). These recursive calls are intercepted by the ad-
vice, rather than the original function, allowing recursion to
work properly. In the case when the argument is less than
3, the advice invokes proceed with the original number x.
Within the scope of an advice declaration, the special vari-
able proceed refers to the advised definition of the function.
Thus, the call to proceed is forwarded to the original defi-
nition of fib, which returns 1.

In the lower half of the figure is an aspect that caches calls
to fib, thereby allowing the normally exponential function
to run in linear time. We assume there is a cache data struc-

Expression values v ::= () | fn x:τ => e | `

Pointcut values pv ::= call(`)

Declaration values dv ::= •
| val x ≡ v dv

| pointcut x ≡ pv dv

Evaluation contexts C ::= � e2 | v1 � | val x = � d
| val x ≡ v �

| pointcut x ≡ pv �

Figure 4: TinyAspect Values and Contexts

ture and three functions for checking if a result is in the cache
for a given value, looking up an argument in the cache, and
storing a new argument-result pair in the cache.

So that we can make the caching code more reusable, we
declare a cacheFunction pointcut that names the func-
tion calls to be cached–in this case, all calls to fib. Then
we declare around advice on the cacheFunction pointcut
which checks to see if the argument x is in the cache. If it is,
the advice gets the result from the cache and returns it. If the
value is not in the cache, the advice calls proceed to calcu-
late the result of the call to fib, stores the result in the cache,
and then returns the result.

In the semantics of TinyAspect, the last advice to be de-
clared on a declaration is invoked first. Thus, if a client
calls fib, the caching advice will be invoked first. If the
caching advice calls proceed, then the first advice (which
recursively defines fib) will be invoked. If that advice in
turn calls proceed, the original function definition will be
invoked. However, if the advice makes a recursive call to
fib, the call will be intercepted by the caching advice. Thus,
the cache works exactly as we would expect–it is invoked
on all recursive calls to fib, and thus it is able to effectively
avoid the exponential cost of executing fib in the naı̈ve way.

2.3 Operational Semantics
We define the semantics of TinyAspect more precisely

as a set of small-step reduction rules. These rules translate
a series of source-level declarations into the values shown in
Figure 4.

Expression-level values include the unit value and func-
tions. In TinyAspect, advice applies to declarations, not to
functions. We therefore need to keep track of declaration us-
age in the program text, and so a reference to a declaration is
represented by a label `. In the operational semantics, below,
an auxiliary environment keeps track of the advice that has
been applied to each declaration.

A pointcut value can only take one form: calls to a partic-
ular declaration `. In our formal system we model execution
of declarations by replacing source-level declarations with
“declaration values,” which we distinguish by using the ≡
symbol for binding.

Figure 4 also shows the contexts in which reduction may
occur. Reduction proceeds first on the left-hand side of an
application, then on the right-hand side. Reduction occurs
within a value declaration before proceeding to the following
declarations. Pointcut declarations are atomic, and so they
only define an evaluation context for the declarations that
follow.

Figure 5 describes the operational semantics of
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(η, (fn x:τ => e) v) 7→ (η, {v/x}e)
r-app

η[`] = v1

(η, ` v2) 7→ (η, v1 v2)
r-lookup

` 6∈ domain(η) η′ = [` 7→v] η

(η, val x = v d) 7→ (η′, val x ≡ ` {`/x}d)
r-val

(η, pointcut x = call(`) d) 7→
(η, pointcut x ≡ call(`) {call(`)/x}d)

r-pointcut

v′ = (fn x:τ => {`′/proceed}e)
`′ 6∈ domain(η) η′ = [` 7→v′, `′ 7→η[`]] η

(η, around call(`)(x:τ ) = e d) 7→ (η′, d)
r-around

(η, e) 7→ (η′, e′)

(η, C[e]) 7→ η′, C[e′])
r-context

Figure 5: TinyAspect Operational Semantics

TinyAspect. A machine state is a pair (η, e) of an ad-
vice environment η (mapping labels to values) and an
expression e. Advice environments are similar to stores,
but are used to keep track of a mapping from declaration
labels to declaration values, and are modified by advice
declarations. We use the η[`] notation in order to look up the
value of a label in η, and we denote the functional update of
an environment as η′ = [` 7→v] η. The reduction judgment is
of the form (η, e) 7→ (η′, e′), read, “In advice environment
η, expression e reduces to expression e′ with a new advice
environment η′.”

The rule for function application is standard, replacing the
application with the body of the function and substituting
the argument value v for the formal x. We normally treat
labels ` as values, because we want to avoid “looking them
up” before they are advised. However, when we are in a
position to invoke the function represented by a label, we
use the rule r-lookup to look up the label’s value in the current
environment.

The next three rules reduce declarations to “declaration
values.” The val declaration binds the value to a fresh la-
bel and adds the binding to the current environment. It also
substitutes the label for the variable x in the subsequent dec-
laration(s) d. We leave the binding in the reduced expression
both to make type preservation easier to prove, and also to
make it easy to extend TinyAspect with a module system
which will need to retain the bindings. The pointcut decla-
ration simply substitutes the pointcut value for the variable
x in subsequent declaration(s).

The around declaration looks up the advised declaration
` in the current environment. It places the old value for the
binding in a fresh label `′, and then re-binds the original `
to the body of the advice. Inside the advice body, any refer-
ences to the special variable proceed are replaced with `′,
which refers to the original value of the advised declaration.
Thus, all references to the original declaration will now be
redirected to the advice, while the advice can still invoke the
original function by calling proceed.

x:τ ∈ Γ
Γ; Σ ` x : τ

t-var

Γ;Σ ` n : τ1 → τ2

Γ; Σ ` call(n) : pc(τ1 → τ2)
t-pctype

`:τ ∈ Σ
Γ;Σ ` ` : τ

t-label

Γ;Σ ` () : unit
t-unit

Γ, x:τ1; Σ ` e : τ2

Γ;Σ ` fn x:τ1 => e : τ1 → τ2

t-fn

Γ;Σ ` e1 : τ2 → τ1 Γ;Σ ` e2 : τ2

Γ;Σ ` e1 e2 : τ1

t-app

Γ;Σ ` • : •
t-empty

Γ;Σ ` e : τ Γ, x:τ ; Σ ` d : β

Γ;Σ ` val x = e d : (x:τ, β)
t-val

Γ; Σ ` p : pc(τ1 → τ2) Γ, x:pc(τ1 → τ2); Σ ` d : β

Γ;Σ ` pointcut x = p d : (x:pc(τ1 → τ2), β)
t-pc

Γ;Σ ` p : pc(τ1 → τ2) Γ; Σ ` d : β
Γ, x:τ1,proceed:τ1 → τ2; Σ ` e : τ2

Γ;Σ ` around p(x:τ1) = e d : β
t-around

∀`.(Σ[`] = τ ∧ η[`] = v =⇒ •; Σ ` v : τ )

Σ ` η
t-env

Figure 6: TinyAspect Typechecking

The last rule shows that reduction can proceed under any
context as defined in Figure 4.

2.4 Typechecking
Figure 6 describes the typechecking rules for

TinyAspect. Our typing judgment for expressions is
of the form Γ;Σ ` e : τ , read, “In variable context Γ and
declaration context Σ expression e has type τ .” Here Γ
maps variable names to types, while Σ maps labels to types
(similar to a store type).

The rules for expressions are standard. We look up the
types for variables and labels in Γ and Σ, respectively. Other
standard rules give types to the () expression, as well as to
functions and applications.

The interesting rules are those for declarations. We give
declaration signatures β to declarations, where β is a se-
quence of variable to type bindings. The base case of an
empty declaration has an empty signature. For val bind-
ings, we ensure that the expression is well-typed at some
type τ , and then typecheck subsequent declarations assum-
ing that the bound variable has that type. Pointcuts are sim-
ilar, but the rule ensures that the expression p is well-typed
as a pointcut denoting calls to a function of type τ1 → τ2.
The around advice rule checks that the declared type of x
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matches the argument type in the pointcut, and checks that
the body is well-typed assuming proper types for the vari-
ables x and proceed.

Finally, the judgment Σ ` η states that η is a well-formed
environment with typing Σ whenever all the values in η have
the types given in Σ. This judgment is analogous to store
typings in languages with references.

2.5 Type Soundness
We now state progress and preservation theorems for

TinyAspect. The theorems quantify over both expressions
and declarations using the metavariable E, and quantify
over types and declaration signatures using the metavariable
T . The progress property states that if an expression is well-
typed, then either it is already a value or it will take a step to
some new expression.

Theorem 1 (Progress)
If •; Σ ` E : T and Σ ` η, then either E is a value
or there exists η′ such that (η, E) 7→ (η′, E′).

Proof: By induction on the derivation of •; Σ ` E : T . �

The type preservation property states that if an expression
is well-typed and it reduces to another expression in a new
environment, then the new expression and environment are
also well-typed.

Theorem 2 (Type Preservation)
If •; Σ ` E : T , Σ ` η, and (η, E) 7→ (η′, E′), then there exists
some Σ′ ⊇ Σ such that •; Σ′ ` E′ : T and Σ′ ` η′.

Proof: By induction on the derivation of (η, E) 7→ (η′, E′).
The proof relies on a standard substitution and weakening
lemmas. �

Together, progress and type preservation imply type
soundness. Soundness means that there is no way that
a well-typed TinyAspect program can get stuck or “go
wrong” because it gets into some bad state.

Our type soundness theorem is slightly stronger than the
previous result of Walker et al., in that we guarantee both
type safety and a lack of run time errors. Walker et al. model
around advice using a lower-level exception construct, and
so their soundness theorem includes the possibility that the
program will terminate with an uncaught exception [22].

3. Open Modules
We now extend TinyAspectwith Open Modules, a mod-

ule system that allows programmers to enforce an abstrac-
tion boundary between clients and the implementation of a
module. Our module system is modeled closely after that
of ML, providing a familiar concrete syntax and benefitting
from the design of an already advanced module system.

Figure 7 shows the new syntax for modules. Names in-
clude both simple variables x and qualified names m.x,
where m is a module expression. Declarations can include
structure bindings, and types are extended with module sig-
natures of the form sig β end, where β is the list of variable
to type bindings in the module signature.

First-order module expressions include a name, a struct
with a list of declarations, and an expression m :> σ that
seals a module with a signature, hiding elements not listed

Names n ::= . . . | m.x

Declarations d ::= . . . | structure x = m d

Modules m ::= n
| struct d end
| m :> σ
| functor(x:σ) => m
| m1 m2

Types τ, σ ::= . . . | sig β end

Decl. values dv ::= . . . | structure x = � d

Module values mv ::= struct dv end
| functor(x:σ) => m

Contexts C ::= . . . | structure x = � d
| structure x ≡ mv �

| struct � end | � :> σ
| � m2 | mv �

Figure 7: Module System Syntax, Values, and Contexts

structure Cache =
functor(X : sig f : pc(int->int) end) =>
struct

around X.f(x:int) = ...
(* same definition as before *)

end

structure Math = struct
val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

structure cacheFib =
Cache (struct

pointcut f = call(fib)
end)

end :> sig
fib : int->int

end

Figure 8: Fibonacci with Open Modules

in the signature. The expression functor(x:σ) => m de-
scribes a functor that takes a module x with signature σ as
an argument, and returns the module m which may depend
on x. Functor application is written like function application,
using the form m1 m2.

Our module system does not include abstract types, and
so the abstraction property we enforce is one of implemen-
tation independence, not representation independence. The
underlying problem is the same in both cases: external as-
pects should not be able to observe the internal behavior of
module functions. Thus, we conjecture that our solution to
the implementation independence problem will also enforce
representation independence once abstract types are added
in standard ways [17].

3.1 Fibonacci Revisited
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structure shape = struct
val createShape = fn ...
val moveBy = fn ...
val animate = fn ...
...
pointcut moves = call(moveBy)

end :> sig
createShape : Description -> Shape
moveBy : (Shape,Location) -> unit
animate : (Shape,Path) -> unit
...
moves : pc((Shape,Location)->unit)

end

Figure 9: A shape library that exposes a position change
pointcut

Figure 8 shows how a more reusable caching aspect could
be defined using functors. The Cache functor accepts a mod-
ule that has a single element f that is a pointcut of calls to
some function with signature int->int. The around ad-
vice then advises the pointcut from the argument module X.

The fib function is now encapsulated inside the Math
module. The module implements caching by instantiating
the Cache module with a structure that binds the pointcut
f to calls to fib. Finally, the Math module is sealed with a
signature that exposes only the fib function to clients.

3.2 Sealing
Our module sealing operation has an effect both at the type

system level and at the operational level. At the type level, it
hides all members of a module that are not in the signature
σ–in this respect, it is similar to sealing in ML’s module sys-
tem. However, sealing also has an operational effect, hiding
internal calls within the module so that clients cannot advise
them unless the module explicitly exports the corresponding
pointcut.

For example, in Figure 8, clients of the Math module
would not be able to tell whether or not caching had been
applied, even if they placed advice on Math.fib. Because
Math has been sealed, external advice to Math.fib would
only be invoked on external calls to the function, not on in-
ternal, recursive calls. This ensures that clients cannot be af-
fected if the implementation of the module is changed, for
example, by adding or removing caching.

3.3 Exposing Semantic Events with Pointcuts
Figure 9 shows how the shape example described above

could be modeled in TinyAspect. Clients of the shape li-
brary cannot advise internal functions, because the module is
sealed. To allow clients to observe internal but semantically
important events like the motion of animated shapes, the
module exposes these events in its signature as the moves
pointcut. Clients can advise this pointcut without depend-
ing on the internals of the shape module. If the module’s im-
plementation is changed, the moves pointcut must also be
updated so that client aspects are triggered in the same way.

Thus, sealing enforces the abstraction boundary between
a module and its clients, allowing programmers to reason
about and change them independently. However, our system
still allows a module to export semantically important inter-

nal events, allowing clients to extend or observe the mod-
ule’s behavior in a principled way.

This solution, called pointcut interfaces, was originally pro-
posed by Gudmundson and Kiczales as an engineering tech-
nique that can ease software evolution by decoupling an as-
pect from the code that it advises [9]. It is also related to the
Demeter project’s use of traversal strategies to isolate an aspect
from the code that it advises [18].

We now provide a more technical definition for Open
Modules, which can be used to distinguish our contribution
from previous work:

Definition [Open Modules]: A module system that:

• allows external aspects to advise external calls to functions
in the interface of a module

• allows external aspects to advise pointcuts in the interface of
a module

• does not allow external aspects to advise calls from within
a module to other functions within the module (including
exported functions).

3.4 Operational Semantics
Figure 10 shows the operational semantics for Open Mod-

ules. In the rules, module values mv mean either a struct
with declaration values dv or a functor. The path lookup rule
finds the selected binding within the declarations of the mod-
ule. We assume that bound names are distinct in this rule; it
is easy to ensure this by renaming variables appropriately.
Because modules cannot be advised, there is no need to cre-
ate labels for structure declarations; we can just substitute the
structure value for the variable in subsequent declarations.
The rule for functor application also uses substitution.

The rule for sealing uses an auxiliary judgment, seal, to
generate a fresh set of labels for the bindings exposed in the
signature. This fresh set of labels insures that clients can af-
fect external calls to module functions by advising the new
labels, but cannot advise calls that are internal to the sealed
module.

At the bottom of the diagram are the rules defining the
sealing operation. The operation accepts an old environment
η, a list of declarations d, and the sealing declaration signa-
ture β. The operation computes a new environment η′ and
new list of declarations d′. The rules are structured accord-
ing to the first declaration in the list; each rule handles the
first declaration and appeals recursively to the definition of
sealing to handle the remaining declarations.

An empty list of declarations can be sealed with the empty
signature, resulting in another empty list of declarations and
an unchanged environment η. The second rule allows a
declaration bind x ≡ v (where bind represents one of val,
pointcut, or struct) to be omitted from the signature, so
that clients cannot see it at all. The rule for sealing a value
declaration generates a fresh label `, maps that to the old
value of the variable binding in η, and returns a declaration
mapping the variable to `. Client advice to the new label `
will affect only external calls, since internal references still
refer to the old label which clients cannot change. The rule
for pointcuts passes the pointcut value through to clients un-
changed, allowing clients to advise the label referred to in the
pointcut. Finally, the rules for structure declarations recur-
sively seal any internal struct declarations, but leave functors
unchanged.
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bind x ≡ v ∈ dv

(η, struct dv end.x) 7→ (η, v)
r-path

(η, structure x = mv d) 7→
(η, structure x ≡ mv {mv/x}d)

r-structure

(η, (functor(x:σ) => m1) m2) 7→ (η, {m2/x}m1)
r-fapp

seal(η, dv, β) = (η′, dseal)

(η, struct dv end :> sig β end)
7→ (η′, struct dseal end)

r-seal

seal(η, •, •) = (η, •)
s-empty

seal(η, d, β) = (η′, d′)

seal(η, bind x ≡ v d, β) = (η′, d′)
s-omit

seal(η, d, β) = (η′, d′) η′′ = [` 7→v] η′ ` 6∈ domain(η′)

seal(η,val x ≡ v d, (x:τ, β)) = (η′′,val x ≡ ` d′)
s-v

seal(η, d, β) = (η′, d′)

seal(η,pointcut x ≡ call(`) d, (x:pc(τ ), β))
= (η′,pointcut x ≡ call(`) d′)

s-p

seal(η, ds, βs) = (η′, d′

s) seal(η′, d, β) = (η′′, d′)

seal(η,structure x ≡ struct ds end d,
(x:sig βs end, β))

= (η′′,structure x ≡ struct d′

s end d′)

s-s

seal(η, d, β) = (η′, d′)

seal(η,structure x ≡ functor(y:σy) => m d, (x:σ, β))
= (η′,structure x ≡ functor(y:σy) => m d′)

s-f

Figure 10: Module System Operational Semantics

3.5 Typechecking
The typechecking rules, shown in Figure 11, are largely

standard. Qualified names are typed based on the binding in
the signature of the module m. Structure bindings are given a
declaration signature based on the signature σ of the bound
module. The rule for struct simply puts a sig wrapper
around the declaration signature. The rules for sealing and
functor application allow a module to be passed into a con-
text where a supertype of its signature is expected.

Figure 12 shows the definition of signature subtyping.
Subtyping is reflexive and transitive. Subtype signatures
may have additional bindings, and the signatures of con-
stituent bindings are covariant. Finally, the subtyping rule
for functor types is contravariant.

3.6 Type Soundness
When extended with Open Modules, TinyAspect enjoys

the same type soundness property that the base system has.
The theorems and proofs are similar, and so we omit them.

3.7 Expressiveness
Open Modules sacrifice some amount of obliviousness [8]

Γ;Σ ` m : sig β end x:τ ∈ β

Γ;Σ ` m.x : τ
t-name

Γ;Σ ` m : σ Γ, x:σ; Σ ` d : β

Γ; Σ ` structure x = m d : (x:σ, β)
t-structure

Γ;Σ ` d : β

Γ;Σ ` struct d end : sig β end
t-struct

Γ;Σ ` m : σm σm <: σ

Γ;Σ ` m :> σ : σ
t-seal

Γ, x:σ1; Σ ` m : σ2

Γ; Σ ` functor(x:σ1) => m : σ1 → σ2

t-functor

Γ;Σ ` m1 : σ1 → σ Γ; Σ ` m2 : σ2 σ2 <: σ1

Γ;Σ ` m1 m2 : σ
t-fapp

Figure 11: Open Modules Typechecking

σ <: σ sub-reflex

σ <: σ′ σ′ <: σ′′

σ <: σ′′
sub-trans

β <: β′

sig β end <: sig β′ end
sub-sig

β <: β′

x : τ, β <: β′
sub-omit

β <: β′ τ <: τ ′

x : τ, β <: x : τ ′, β′
sub-decl

σ′

1 <: σ1 σ2 <: σ′

2

σ1 → σ2 <: σ′

1 → σ′

2

sub-contra

Figure 12: Signature Subtyping

in order to support better information hiding. Base code is
not completely oblivious to aspects, because the author of
a module must expose relevant internal events in pointcuts
so that aspects can advise them. However, our design still
preserves important cases of obliviousness:

• A module is completely oblivious to aspects that only
advise external calls to its interface.

• While a module can expose interesting implementa-
tion events in pointcuts, it is oblivious to which aspects
might be interested in those events.

• Pointcuts in the interface of a module can be defined
obliviously with respect to the rest of the module’s
implementation, using the same pointcut operations
available in other AOP languages.

A possible concern is that the strategy of adding a point-
cut to the interface of a base module may be impossible
if the source code for that module cannot be changed. In

8



this case, the modularity benefits of Open Modules can be
achieved with environmental support for associating an ex-
ternal pointcut with the base module. If the base module is
updated, the maintainer of the pointcut is responsible for re-
checking the pointcut to ensure that its semantics have not
been invalidated by the changes to the base module.

Experiment. In a companion paper, we performed a micro-
experiment applying the ideas of Open Modules to Space-
War, a small demonstration application distributed with As-
pectJ. The experiment was far too small to provide defini-
tive results. However, we found that Open Modules support
nearly all of the aspects in this program with no changes or
only minor changes to the code [1].

The only concern our system could not handle was an ex-
tremely invasive debugging aspect. Debugging is an inher-
ently non-modular activity, so we view it as a positive sign
that our module system does not support it. In a practical
system, debugging can be supported either through external
tools, or through a compiler flag that makes an exception to
the encapsulation rules during debugging activity.

Comparison to non-AOP techniques. One way to evaluate
the expressiveness of Open Modules is to compare them to
non-AOP alternatives. One alternative is using wrappers in-
stead of aspects to intercept the incoming calls to a module,
and using callbacks instead of pointcuts in the module’s in-
terface. The aspect-oriented nature of Open Modules pro-
vides several advantages over the wrapper and callback so-
lution:

• While our formalism supports only simple pointcuts,
the design of Open Modules is compatible with the
quantification [8] constructs of languages like AspectJ,
allowing many functions within a module to be ad-
vised with a single declaration. Implementing simi-
lar functionality with conventional wrappers–without
quantification–is far more tedious because a wrapper
must be explicitly applied to each function.

• In Open Modules, a locally-defined aspect can imple-
ment a crosscutting concern by obliviously extending
the interface of a number of modules. Wrappers can-
not capture these concerns in a modular way, because
each target module must be individually wrapped.

• Callbacks are invasive with respect to the implemen-
tation of a module because the implementation must
explicitly invoke the callback at the appropriate points.
In contrast, pointcut interfaces are non-invasive in that
the pointcut is defined orthogonally to the rest of the
module’s implementation, thus providing better sup-
port for separation of concerns.

These advantages illustrate how the quantification and
oblivious extension provided by Open Modules distinguish
our proposal from solutions that do not use aspects [8].

4. Abstraction
The example programs in Section 3 are helpful for under-

standing the benefits of TinyAspect’s module system at an
intuitive level. However, we would like to be able to point
to a concrete property that enables separate reasoning about
the clients and implementation of a module.

Reynolds’ abstraction property [20] fits these requirements
in a natural way. Intuitively, the abstraction property states
that if two module implementations are semantically equiv-
alent, no client can tell the difference between the two. This
property has two important benefits for software engineer-
ing. First of all, it enables reasoning about the properties of
a module in isolation. For example, if one implementation
of a module is known to be correct, we can prove that a sec-
ond implementation is correct by showing that it is semanti-
cally equivalent to the first implementation. Second, the ab-
straction property ensures that the implementation of a mod-
ule can be changed to a semantically equivalent one without
affecting clients. Thus, the abstraction property helps pro-
grammers to more effectively hide information that is likely
to change, as suggested in Parnas’ classic paper [19].

In TinyAspect, we can state the abstraction property as
follows. If two modules m and m′ are logically equivalent
and have module signature σ, then for all client declarations
d that are well-typed assuming that some variable x has type
σ, the client behaves identically when executed with either
module.

Intuitively, two modules are logically equivalent if all of
the bound functions in the module are equivalent. Two
functions are equivalent if they always produce equivalent
results given equivalent arguments, even if a client advises
other functions and pointcuts exported by the module. This il-
lustrates the importance of using sealing to limit the scope
of client advice. If two modules are sealed, then they can
be proved equivalent assuming that clients can only advise
the exported pointcuts. In this sense, module sealing enables
separate reasoning that would be impossible otherwise.

4.1 Formalizing Abstraction
We can define abstraction formally using judgments for

logical equivalence of values, written
Λ ` (η, V ) ' (η′, V ′) : T and read, “In the context of a set of
private labels Λ, value V in environment η is logically equiv-
alent to value V ′ in environment η′ at type T . A similar judg-
ment of the form Λ ` (η, E) ∼= (η′, E′) : T is used for logi-
cally equivalent expressions. The judgments depend on the
set of labels Λ that are private to the two abstractions and are
thus protected from advice; since all other labels may be ad-
vised by a client, in order for two expressions to be logically
equivalent, they must use these labels in the same way.

The rules for logical equivalence of values are defined in
Figure 13. Most of the rules are straightforward–for example,
there is only one unit value, so all values of type unit are
equivalent. Logical equivalence is defined coinductively as
the greatest fixed point of the value rules in Figure 13 and
the expression rules in Figure 14.

The most interesting rule is the one for function values.
Two function values are equivalent if for any logically equiv-
alent argument values v1 and v2 that do not refer to any pri-
vate labels in Λ, they produce equivalent results. A similar
rule is used for logical equivalence of functors.

Two empty declarations are equivalent to each other, and a
label is equivalent to itself as long as it’s not in the set of pri-
vate labels Λ. Two val declarations are equivalent if they
bind the same variable to the same label (since labels are
generated fresh for each declaration we can always choose
them to be equal when we are proving equivalence). Since
the label exposed by the val declaration is visible, it must
not be in the private set of labels Λ. Pointcut and structure
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Λ ` (η1, v) ' (η2, v) : unit

Λ ` (η1,fn x:τ => e1) ' (η2,fn x:τ ′ => e2) : τ ′ → τ iff for all v′

1, v
′

2 such that (fl(v1) ∪ fl(v2)) ∩ Λ = ∅
and Λ ` (η1, v

′

1) ' (η2, v
′

2) : τ ′ we have
Λ ` (η1,fn x:τ ′ => e1 v′

1) ∼= (η2,fn x:τ ′ => e2 v′

2) : τ

Λ ` (η1, `) ' (η2, `) : τ iff ` 6∈ Λ

Λ ` (η, •) ' (η′, •) : (•)

Λ ` (η,val x ≡ ` dv) ' (η′,val x ≡ ` d′

v) : (x:τ, β) iff ` 6∈ Λ and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,pointcut x ≡ call(`) dv) ' iff ` 6∈ Λ and Λ ` (η, dv) ' (η′, d′

v) : β
(η′,pointcut x ≡ call(`) d′

v) : (x:pc(τ ), β)

Λ ` (η,structure x ≡ mv dv) ' iff Λ ` (η, mv) ' (η′, m′

v) : σ,
(η′,structure x ≡ m′

v d′

v) : (x:σ, β) and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,struct dv end) ' (η′,struct d′

v end) : sig β end iff Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η1, m
1
v) ' (η2, m

2
v) : σ′ → σ iff for all m3

v, m4
v such that Λ ` (η1, m

3
v) ' (η2, m

4
v) : σ′

and (fl(m3
v) ∪ fl(m4

v)) ∩ Λ = ∅
we have Λ ` (η1, m

1
v m3

v) ∼= (η2, m
2
v m4

v) : σ

Λ ` η1 ' η2 : Σ iff Λ ⊆ (domain(η1) ∪ domain(η1)),
domain(Σ) = (domain(η1) ∪ domain(η2)) − Λ
∀(`:T ) ∈ Σ . Λ ` (η1, η1[`]) ' (η2, η2[`]) : T

Figure 13: Coinductive Definition of Logical Equivalence for Values

Λ ` (η, V ) ' (η′, V ′) : T

Λ ` (η, V ) ∼= (η′, V ′) : T

(η1, E1)
Λ
7→

∗

(η′

1, E
′

1) (η2, E2)
Λ
7→

∗

(η′

2, E
′

2)
Λ ` (η′

1, E
′

1) ∼= (η′

2, E
′

2) : T

Λ ` (η1, E1) ∼= (η2, E2) : T

` 6∈ Λ Λ ` (η1, v1) ' (η2, v2) : τ
Λ ` (η1, C1) ∼= (η2, C2) : τ ′ → T

Λ ` (η1, C1[` v1]) ∼= (η2, C2[` v2]) : T

∀v1, v2 such that Λ ` (η1, v1) ' (η2, v2) : τ
and fl(v1) ∪ fl(v2) ∩ Λ = ∅

Λ ` (η1, C1[v1]) ∼= (η2, C2[v2]) : T

Λ ` (η1, C1) ∼= (η2, C2) : τ → T

Figure 14: Coinductive Definition of Logical Equivalence
for Expressions

declarations just check the equality of their components. All
three declaration forms ensure that subsequent declarations
are also equivalent. Two first-order modules are equivalent
if the declarations inside them are also equivalent.

We also define equivalence for two environments; the rule
is that they must be equivalent at all labels not in Λ.

Figure 14 shows the rules for logical equivalence of expres-
sions. Two expressions are equivalent if they are equivalent
values. Otherwise, the expressions must be bisimilar with re-
spect to the set of labels in Λ. That is, they must look up
the same sequence of labels (ignoring the hidden set of labels

Λ) while either diverging or reducing to logically equivalent
values (since clients can use advice to observe lookups to any
label not in Λ).

We formalize this with two rules. The first allows two ex-
pressions to take any number of steps that include lookup of
labels in Λ, but not other labels. We represent this with the

evaluation relation
Λ
7→

∗

, which is identical to 7→∗ except that
the rule r-lookup may only be applied to labels in Λ. The re-
sulting machine configurations must be logically equivalent
with respect to Λ. The second rule states that two expres-
sions can look up the same label ` not in Λ, as long as the
argument values (v1, v2) are equivalent, and as long as the
surrounding contexts C1 and C2 treat the returned values
in equivalent ways. This last property is defined in the fi-
nal rule, stating that two contexts are equivalent if whenever
they are given equivalent argument values, they execute in a
logically equivalent way.

Note that since logical equivalence is coinductively de-
fined, expressions that diverge according to the logical equiv-
alence rules are logically equivalent. This would not be true
in an inductive definition, because being in the least fixed
point of the rules requires the value base case, but the great-
est fixed point includes infinite sequences of logically equiv-
alent expressions. Using coinduction is also essential to mak-
ing the definition meaningful, since the definition of logically
equivalent values and expressions are mutually dependent.

Now that we have defined logical equivalence, we can
state the abstraction theorem:

Theorem 3 (Abstraction)
If Λ ` η ' η′ : Σ and Λ ` (η, mv) ' (η′, m′

v) : σ, then for all
d such that x:σ; • ` d : β we have
Λ ` (η,structure x = mv d) ∼=
(η′,structure x = m′

v d) : (x:σ, β)
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Λ ` (η, x) ≈1 (η′, x) : T
b-var

Λ ` (η, V ) ' (η′, V ′) : T

Λ ` (η, V ) ≈1 (η′, V ′) : T
b-val

Λ ` (η, E) ∼= (η′, E′) : T E, E′ are not values

Λ ` (η, E) ≈1 (η′, E′) : T
b-equiv

Λ ` (η, C) ∼= (η′, C′) : T ′ → T
Λ ` (η, E) ≈n (η′, E′) : T ′ E, E′ are not values

Λ ` (η, C[E]) ≈n (η′, C′[E′]) : T
b-ctx

Λ ` (η, e) ≈n (η′, e′) : τ ′ fv(e) = fv(e′) ⊃ {x}

Λ ` (η,fn x:τ => e) ≈n+1 (η′,fn x:τ => e′) : T
b-fn

Λ ` (η, E1) ≈n1
(η′, E′

1) : T2 → T1

Λ ` (η, E2) ≈n2
(η′, E′

2) : T2

Λ ` (η, E1 E2) ≈n1+n2
(η′, E′

1 E′

2) : T1

b-app

Λ ` (η, e) ≈n1
(η′, e′) : β′ Λ ` (η, d) ≈n2

(η′, d′) : β′

Λ ` (η, bind x = e d) ≈n1+n2
(η′, bind x = e′ d′) : β

b-bind

Λ ` (η, •) ≈1 (η′, •) : •
b-empty

Λ ` (η, m) ≈n (η′, m′) : σ′

Λ ` (η, m.x) ≈n+1 (η′, m′.x) : σ
b-path

Λ ` (η, d) ≈n (η′, d′) : σ′ d, d′ are not values

Λ ` (η,struct d end) ≈n+1 (η′,struct d′ end) : σ
b-struct

Λ ` (η, m) ≈n (η′, m′) : σ′

Λ ` (η, m :> σ) ≈n+1 (η′, m′ :> σ) : σ
b-seal

Λ ` (η, m) ≈n (η′, m′) : σ′ fv(m) = fv(m′) ⊃ {x}

Λ ` (η,functor(x:σ) => m)
≈n+1 (η′,functor(x:σ) => m′) : σ → σ′

b-ftor

Figure 15: Bisimulation Relation

4.2 Proving Abstraction
In this section we outline the proof of abstraction for

TinyAspect.
In order to prove the Abstraction theorem we will need

a definition of equivalence that includes logical equivalence
as a special case but explicitly relates structurally equivalent
expressions such as the set of client declarations d in the Ab-
straction theorem. We define the structural bisimilarity re-
lation, written ≈n, to be structural equality of expressions
except that closed expressions or values embedded at cor-
responding places in the expressions may only be logically
equivalent. A bisimilarity judgment is labeled with its com-
plexity n, roughly (but not exactly) denoting the number of
steps in the derivation.

The formal definition is largely straightforward and is
shown in Figure 15. A variable is bisimilar to itself at com-
plexity 1, while a value is bisimilar to a logically equivalent
value, also at complexity 1. Equivalent (non-value) expres-
sions are also equivalent at complexity 1. We allow bisimi-
lar expressions to be nested within logically equivalent con-

texts. It is important that the complexity of judgment be the
same as the complexity of the underlying expression bisimi-
larity judgment (rather than adding something for the equiv-
alent contexts) because as two bisimilar expressions execute
in parallel, we will need to add additional contexts without
increasing the overall complexity of the judgment.

The rest of the bisimilarity definitions are straightforward;
for example, two functions are bisimilar if their bodies are,
etc.

An important lemma in the proof shows that only the la-
bels in Λ matter in the definitions of bisimilarity and logical
equivalence. Intuitively, this property allows clients to ap-
ply advice to any label not in Λ, or to add new labels to the
environment, without affecting equivalence relations on the
underlying program.

Lemma 4 (Extension)
If Λ ` (η1, E1) ≈n (η2, E2) : T , then for all η′

1, η
′

2 such that
` ∈ domain(η1) ∩ Λ =⇒ η1[`] = η′

1[`] and
` ∈ domain(η2) ∩ Λ =⇒ η2[`] = η′

2[`],
we have Λ ` (η′

1, E1) ≈n (η′

2, E2) : T

Proof: [Extension] By induction on the structure of Λ `
(η1, E1) ≈n (η2, E2) : T . Cases b-var and b-empty are trivially
satisfied. All the other cases except b-equiv and b-ctx follow
directly from the induction hypothesis. The remaining two
cases depend on the corresponding property holding true for
logical equivalence of values and contexts, respectively.

We prove this by considering the set S of expression pairs
(E, E′) and context pairs (C, C′) such that Λ ` (η1, E) ∼=
(η2, E

′) : T (and similarly for C and C′). We wish to show
that Λ ` (η′

1, E) ∼= (η′

2, E
′) : T for all η′

1, η
′

2 satisfying the
conditions above. We do so by showing that the rules for
logical equivalence of expressions (and values and contexts)
are closed with respect to the cross product of these expres-
sion pairs and environment pairs. This means that the cross
product is a fixed point of the rules, and thus by the coin-
duction principle is within their greatest fixed point. The
proof is by a case analysis on the rule used to conclude that
Λ ` (η1, E) ∼= (η2, E

′) : T .
Most of the cases are easy because they do not depend on

η1 or η2. In fact, the only rule that does is the rule that al-

lows evaluation according to the
Λ
7→

∗

relation. But this rela-
tion only allows dependencies on the labels in Λ, which are
assumed to be identical in the new environments η′

1, η
′

2, so
the proof is complete.

�

We next show that the bisimulation is preserved by substi-
tution of logically equivalent values.

Lemma 5 (Substitution)
If Λ ` (η1) ' (η2) : Σ, Λ ` (η1, E1) ≈n (η2, E2) : T ,
x : T ′, Σ ` E1 : T , x : T ′, Σ ` E2 : T ,
and Λ ` (η1, V1) ' (η2, V2) : T ′,
then Λ ` (η1, {V1/x}E1) ≈m (η2, {V2/x}E2) : T ,
where m ≤ n.

Proof: [Substitution]
By induction on the complexity of the judgment Λ `

(η1, E1) ≈n (η2, E2) : T , as defined by the subscript n. The
induction is simultaneous with the corresponding inductions
for the pointcut substitution, preservation and equivalence
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lemmas, below. This simultaneous induction is necessary be-
cause the lemmas are interdependent; however, each lemma
only depends on the other lemmas at complexity n−1, except
for the equivalence lemma which depends on the preserva-
tion lemma at complexity n. Thus the overall induction is
well-founded.

Base case: complexity = 1. We do a nested induction on
the derivation of the judgment, with a case analysis on each
rule that could result in a complexity of 1:

Subcase b-var: If the substitution variable is equal to the
variable in the expression, the case holds because the values
being substituted are equivalent, and the judgment remains
at complexity 1. Otherwise, the expressions stay the same
and thus remain bisimilar at complexity 1.

Subcase b-val: Since the values are closed, the expressions
stay the same and remain bisimilar at complexity 1.

Subcase b-equiv: All ∼= judgments relate closed expres-
sions, since otherwise the expressions would not be values
or would not be able to take a step. This implies that expres-
sions E1 and E2 are closed and thus are unaffected by the
substitution, remaining bisimilar at complexity 1.

Subcase b-ctx: By the nested induction hypothesis, the
substitution for the underlying expression must preserve
equivalence at complexity 1. The contexts themselves must
be closed and therefore unaffected by the substitution, so we
can apply the b-ctx rule to show that after the substitution the
expressions are still bisimilar at complexity 1.

Inductive case: Assume the complexity of the judgment is
n > 1. We assume the truth of the substitution and preser-
vation lemmas for size n − 1, and prove the substitution
lemma for size n with a nested induction on the derivation
of Λ ` (η1, E1) ≈n (η2, E2) : T , with a case analysis on the
last rule used.

Subcase b-ctx: Same as in the b-ctx subcase of the base
case, above.

Subcase b-fn,b-ftor: The induction hypothesis implies that
the bodies of the functions or functors remain bisimilar after
substitution, with complexity n − 1 or less. If the functions
or functors are not closed values after the substitution, we
can apply the rules b-fn or b-ftor to show that the functors are
bisimilar with complexity n or less.

If the functions or functors become closed values as a re-
sult of the substitution, then we must show that the values
are logically equivalent. By the definition of logical equiva-
lence for function or functor values, we must show that they
execute in a logically equivalent way when invoked with any
pair of logically equivalent argument values of the appropri-
ate type.

We use the induction hypothesis again to show that sub-
stitution of the argument values preserves the bisimilarity of
the function bodies, at complexity n − 1 or less. We then
apply the Bisimilarity implies Equivalence lemma at com-
plexity n − 1 to show that the subsituted function bodies are
logically equivalent. Therefore, the functions themselves are
logically equivalent and thus bisimilar at complexity 1.

Other cases: All other cases hold trivially by applying the
induction hypothesis. �

There is also a version of the substitution lemma for point-
cuts:

Lemma 6 (Pointcut Substitution)
If Λ ` (η1) ' (η2) : Σ, Λ ` (η1, E1) ≈n (η2, E2) : T ,

x : pc(τ ), Σ ` E1 : T , ` 6∈ Λ, and x : pc(τ ),Σ ` E2 : T ,
then Λ ` (η1, {call(`)/x}E1) ≈n (η2, {call(`)/x}E2) : T .

Proof: [Pointcut Substitution] By induction on the complex-
ity of the judgment Λ ` (η1, E1) ≈n (η2, E2) : T , as defined
by the subscript n. The cases are the same as the proof
above. �

The most critical lemma in the proof of abstraction states
that structural bisimilarity is preserved by reduction:

Lemma 7 (Bisimilarity Preservation)
If Λ ` (η1) ' (η2) : Σ, Λ ` (η1, E1) ≈n (η2, E2) : T ,
•, Σ ` E1 : T , and •, Σ ` E2 : T
then either:

• E1 and E2 are both values such that
Λ ` (η1, E1) ' (η2, E2) : T , or

• there exist η′

1, E
′

1, η
′

2, and E′

2 such that

(η1, E1)
Λ
7→

∗

(η′

1, E
′

1), (η2, E2)
Λ
7→

∗

(η′

2, E
′

2),
Λ ` (η′

1, E
′

1) ≈m (η′

2, E
′

2) : T ,
and Λ ` η′

1 ' η′

2 : Σ′, for some Σ′ ⊇ Σ, m ≤ n.

• there exist E′

1 and E′

2 such that (η1, E1) 7→ (η1, E
′

1),
(η2, E2) 7→ (η2, E

′

2) and Λ ` (η1, E
′

1) ≈m (η2, E
′

2) : T
for some m ≤ n.

Proof: [Bisimilarity Preservation]
By induction on the complexity n of the judgment Λ `

(η1, E1) ≈n (η2, E2) : T . The induction is simultane-
ous with the corresponding induction for the substitution
lemma, above.

Base case: complexity = 1. We do a nested induction on
the derivation of the judgment, with a case analysis on each
rule that could result in a complexity of 1:

Subcase b-var: Does not apply, since E1 and E2 are well-
typed in an environment that has no variable bindings.

Subcase b-val: Then E1 and E2 are both values such that
Λ ` (η1, E1) ' (η2, E2) : T .

Subcase b-equiv: Perform another case analysis on the def-
inition of ∼=. The first subsubcase does not apply because by
assumption E and E′ are not values.

The second subsubcase corresponds exactly to the second
case of bisimilarity preservation, observing that the resulting
expressions are logically equivalent and therefore bisimilar
at complexity 1.

The third subsubcase states that the two expressions will
each take one step–corresponding to the third case of bisim-
ilarity preservation–and result in logically equivalent (and
therefore bisimilar) expressions at complexity 1.

Subcase b-ctx: By the nested induction hypothesis, bisim-
ilarity preservation must hold for the subexpressions E and
E′. We perform a case analysis on the cases of bisimilarity
preservation for the subexpressions. As with the case analy-
sis of b-equiv, the first subsubcase does not apply because E
and E′ are not values.

In the last two applicable subsubcases, we make possibly
repeated application of the rule r-context to show that the en-
tire expression takes the same reduction steps as the subex-
pressions, except with the contexts in place. If the resulting
nested expressions are values, then they must be equivalent
by the induction hypothesis, and thus we know from the def-
inition of logically equivalent contexts that when the values
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are substituted into the contexts we have a logical equiva-
lence. If the resulting nested expressions are not values, then
we know the b-ctx rule still applies, and so the whole result-
ing expressions are bisimilar.

Inductive case: Assume the complexity of the judgment
is n > 1. We assume the truth of the preservation and
substitution lemmas for any size m < n, and prove the
lemma for size n by nested induction on the derivation of
Λ ` (η1, E1) ≈n (η2, E2) : T , with a case analysis on the last
rule used.

Subcase b-ctx: Same as in the b-ctx subcase of the base
case, above.

Subcase b-fn,b-ftor: Does not apply, since by assumption
the expressions were closed and these rules apply only to
open expressions.

Subcase b-app: If both of the subexpressions E1 and E2

are values, then they are logically equivalent to the corre-
sponding values E′

1 and E′

2. If E1 is a label, then the labels re-
fer to logically equivalent values, so bisimilarity is preserved
at complexity n through this reduction step. If E1 is a func-
tion, the definition of logical equivalence implies that func-
tion application will result in logically equivalent expres-
sions, which are bisimilar at complexity 1. Similar analysis
applies if E1 is a functor.

If one of the subexpressions is not a value, then rule r-
context must apply. We apply the same logic as in the rule
b-ctx, using the induction hypothesis to show that the subex-
pressions remain bisimilar and concluding that the applica-
tions remain bisimilar as well at complexity n.

Subcase b-bind: If the subexpressions are not values, then
the analysis used in rule b-ctx applies. If they are values, then
one of the binding rules applies. We do a case analysis on
which one applies:

Subsubcase r-val: The values being bound must be log-
ically equivalent by the definition of bisimilarity. We apply
the Extension lemma together with the logical equivalence of
the values to show that extending the environments with the
bound values preserves bisimilarity and the logical equiva-
lence of the environments. We can then apply the Substitu-
tion lemma to show that substitution of the new label into
the following definitions preserves bisimilarity. The subcase
is completed by noting that the resulting val declarations are
bisimilar according to rule b-bind.

Subsubcase r-pointcut: Here we apply the Pointcut Sub-
stitution lemma to show that the substituted declarations re-
main bisimilar. The subcase is completed by noting that the
resulting pointcut declarations are bisimilar by rule r-bind.

Subsubcase r-structure: The substitution lemma shows
that the resulting expressions remain bisimilar.

Subsubcase r-around: ` 6∈ Λ since it is free in the around
expression, and so the values that ` maps to in η1 and η2

must be logically equivalent. Therefore, by the substitution
lemma, the expressions e in the around declaration remain
bisimilar after the substitution. By the Bisimilarity implies
Equivalence lemma (below) at complexity n1 < n, the con-
structed functions v′ are logically equivalent. We apply the
Extension lemma together with the logical equivalence of
the original and constructed functions to show that extend-
ing the environments preserves bisimilarity and the logical
equivalence of the environments.

Subcase b-path: If the module subexpression is not a
value, then the analysis used in rule b-ctx applies. If it is a
value, then by assumption the corresponding values in the

structure are logically equivalent, so we apply rule r-path
and the case holds.

Subcase b-struct: By assumption, the declarations are not
values. Thus, rule r-context applies, and we can use the anal-
ysis in rule b-app.

Subcase b-seal: If the module subexpression is not a value,
then the analysis used in rule b-app applies. If it is a value,
then rule r-seal applies. It is easy to see that these new la-
bels are logically equivalent, since they are only pointers to
the corresponding old labels which are known to be logi-
cally equivalent by assumption. By applying the extension
lemma we see that the extended environments remain log-
ically equivalent, and through simple applications of the b-
struct and b-bind rules we can see that the generated module
values are bisimilar at a complexity that is less than or equal
to n.

�

Next we show that structural bisimilarity implies logical
equivalence:

Lemma 8 (Bisimilarity implies Equivalence)
If Λ ` (η1) ' (η2) : Σ, Λ ` (η1, E1) ≈n (η2, E2) : T ,
•, Σ ` E1 : T , and •, Σ ` E2 : T
then Λ ` (η1, E1) ∼= (η2, E2) : T

Proof: [Bisimilarity implies Equivalence]
By induction on n, simultaneous with the above lem-

mas. We then apply the bisimulation preservation theorem
to show that bisimilar expressions at complexity n remain
bisimilar under application of one of the rules in Figure 14,
and the type preservation theorem to show that the result
is well-typed. Since Figures 13 and 14 coinductively define
logical equivalence (i.e., logical equivalence is the greatest
fixpoint of these rules), and since the set of bisimilar expres-
sions at complexity n is a fixpoint of these rules, it follows by
the coinduction principle that set of bisimilar expressions at
complexity n is within the set of logically equivalent expres-
sions (i.e., within the greatest fixpoint of the rules). Therefore
we have Λ ` (η1, E1) ∼= (η2, E2) : T .

�

A final lemma stating that identical expressions are bisim-
ilar is necessary for the final abstraction proof.

Lemma 9 (Reflexivity of Bisimulation)
If Λ ` η1 ' η2 : Σ and fl(E) ∩ Λ = ∅
then Λ ` (η1, E) ≈ (η2, E) : T .

Proof: [Reflexivity of Bisimulation]
By induction on the structure of E, with a case analysis on

the last syntactic construct used. Each case is trivial because
there is a bimsimulation rule for each syntactic construct.

�

We now prove the abstraction theorem:

Proof: [Abstraction]
Since Λ ` (η, mv) ' (η′, m′

v) : σ, we know by the defini-
tion of ≈ and the Reflexivity of Bisimulation that
• ` (•, structure x = m d) ≈ (•,structure x = m′ d) :
(x:σ, β).
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We complete the proof by applying the Bisimilarity im-
plies Equivalence lemma to show that the original expres-
sions must also have been logically equivalent.

�

4.3 Applying Abstraction
The abstraction theorem can be used together with the def-

inition of logical equivalence to ensure that changes to the
implementation of one module within an application pre-
serve the application’s semantics. For example, consider re-
placing the recursive implementation of the Fibonacci func-
tion in Figure 8 with an implementation based on a loop. In
AspectJ, or any module system that does not include the dy-
namic semantics of our sealing operation, this seemingly in-
nocuous change does not preserve the semantics of the appli-
cation, because some aspect could be broken by the fact that
fib no longer calls itself recursively.

Open Modules ensure that this change does not affect the
enclosing application, and the abstraction theorem can be
used to prove this. When the module in Figure 8 is sealed,
fib is bound to a fresh label that forwards external calls to
the internal implementation of fib. We can show that the
two implementations of the module are logically equivalent
by showing that no matter what argument value the fib
function is called with, the function returns the same results
and invokes the external label in the same way. But the exter-
nal label is fresh and is unused by either fib function, so this
reduces to proving ordinary function equivalence, which can
easily be done by induction on the argument value. We can
then apply the abstraction theorem to show that clients are
unaffected by the change.

5. Discussion
Formal Methods. The abstraction theorem and the definition
of logical equivalence for Open Modules have broader im-
plications for modular reasoning about aspect-oriented pro-
gramming. For example, we might ask how one might spec-
ify the required behavior of a module and how we might
prove the module meets that behavior in the presence of as-
pects. The definition of logical equivalence implies that a
complete behavioral specification must include not just pre-
and post-conditions for the functions in the module interface,
but also the ordered trace of pointcuts that are triggered by
calling each function in the interface. This trace must include
the argument that will be passed to advice on the pointcut,
as well as the specification of proceed for that pointcut. Ab-
straction states that if we can show that an implementation
is bisimilar to the trace specification, then that implemen-
tation will be indistinguishable from other implementations
that meet the specification.

Modular Analysis. Another interesting question is how one
might perform modular analysis in the presence of Open
Modules. Typically a modular analysis will run on a module,
producing a summary that can be used when analyzing other
modules. The definition of logical equivalence suggests that
the analysis summary should describe the properties of the
functions in the interface in terms of how they interact with
the exposed pointcuts. For example, a modular escape anal-
ysis might conclude that a function f in the interface of a
module does not capture its argument, provided that advice
to a pointcut p does not capture its argument.

Tool Support. The AspectJ plugin for Eclipse provides inte-
grated development environment support for programming
in AspectJ. Perhaps the most important feature is showing,
for each function, which aspects might apply to that function.
This means that a programmer can more effectively predict
the composed behavior of the function and its aspects, and
can ensure that changes to the code preserve that behavior.

Open Modules and the abstraction theorem provide in-
sight into why IDE support is so helpful for AspectJ. The de-
scription of which aspects apply to which functions is like
a pointcut in the interface of the module. Just as in Open
Modules a developer must make sure the semantics of the
pointcut are maintained as a module evolves, so an AspectJ
developer must ensure that changes to a package do not ad-
versely affect the aspects that apply to it.

Open Modules also suggest a way to improve this tool
support. In order to support more effective software evo-
lution, the tool should project an editable view of each point-
cut into the interface of the modules to which it applies. That
way, when a developer makes a change to a module, she can
also locally change affected pointcuts so that their semantics
are maintained. These local changes will then be propagated
to the original pointcut definition. Thus the module devel-
oper can reason about and evolve that module exactly as she
would in the Open Module system, while the aspect devel-
oper can take advantage of the full expressiveness of AspectJ.

This scenario assumes that the tool can see and edit all
aspects that might apply to a piece of base code. Thus, a
tool can only provide a full solution to the information hid-
ing problem in a setting where a monolithic application or
library is being developed by a tightly integrated team.

In the more general setting of component-based develop-
ment, no tool can predict all possible aspects that might be
used by the client of a component. Thus it is very diffi-
cult to be sure that changes to the component will not af-
fect is clients, or to ensure that safety properties of the com-
ponent will hold no matter what aspects a client might ap-
ply. Here, Open Modules can be used to describe the ways in
which a component may be extended by clients, while hiding
implementation-specific details and protecting the compo-
nent properties. Clients that obey the Open Modules specifi-
cation of the component get a guarantee that future changes
to the component will not break their programs, and also that
their aspects will not violate important invariants of the com-
ponent. Clients can turn off module checking and bypass the
Open Modules interface, but will lose these guarantees.

Thus, Open Modules complement tool support for aspect-
oriented programming, providing the benefits of informa-
tion hiding in the setting of component-based development,
while allowing developers in an integrated team to gain the
full benefits of aspects.

6. Related Work
Formal Models. The most closely related formal models are
the foundational calculus of Walker et al. [22], and the model
of AspectJ by Jagadeesan et al. [11], both of which were dis-
cussed in the beginning of Section 2.

In other work on formal systems for aspect-oriented pro-
gramming, Lämmel provides a big-step semantics for a
method-call interception extension to object-oriented lan-
guages [14]. Wand et al. give an untyped, denotational se-
mantics for advice advice and dynamic join points [23]. Ma-
suhara and Kiczales describe a general model of crosscutting
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structure, using implementations in Scheme to give seman-
tics to the model [16]. Tucker and Krishnamurthi show how
scoped continuation marks can be used in untyped higher-
order functional languages to provide static and dynamic as-
pects [21].

Aspects and Modules. Dantas and Walker are currently ex-
tending the calculus of Walker et al. to support a module sys-
tem [6]. Their type system includes a novel feature for con-
trolling whether advice can read or change the arguments
and results of advised functions. In their design, pointcuts
are first-class, providing more flexibility compared to the
second-class pointcuts in TinyAspect. This design choice
breaks our abstraction theorem, however, because it means
that a pointcut can escape from a module even if it is not ex-
plicitly exported in the module’s interface. In their system,
functions can only be advised if the function declaration ex-
plicitly permits this, and so their system is not oblivious is
this respect [8]. In contrast, TinyAspect allows advice on
all function declarations, and on all functions exported by a
module, providing significant “oblivious” extensibility with-
out compromising abstraction.

Lieberherr et al. describe Aspectual Collaborations, a con-
struct that allows programmers to write aspects and code
in separate modules and then compose them together into a
third module [15]. Since they propose a full aspect-oriented
language, their system is much richer and more flexible than
ours, but its semantics are not formally defined. Their mod-
ule system does not encapsulate internal calls to exported
functions, and thus does not enforce the abstraction property.

Other researchers have studied modular reasoning with-
out the use of explicit module systems. For example, Clifton
and Leavens propose engineering techniques that reduce de-
pendencies between concerns in aspect-oriented code [4].

Our module system is based on that of standard ML [17].
TinyAspect’s sealing construct is similar to the freeze op-
erator that is used to close a module to future extensions in
module calculi such as Jigsaw [3] and related systems [2].

The name Open Modules indicates that modules are open
to advice on functions and pointcuts exposed in their inter-
face. Open Classes is a related term indicating that classes
are open to the addition of new methods [5].

7. Conclusion
This paper described TinyAspect, a minimal core lan-

guage for reasoning about aspect-oriented programming
systems. TinyAspect is a source-level language that sup-
ports declarative aspects. We have given a small-step opera-
tional semantics to the language and proven that its type sys-
tem is sound. We have described a proposed module system
for aspects, formalized the module system as an extension to
TinyAspect, and proved that the module system enforces
abstraction. Abstraction ensures that clients cannot affect or
depend on the internal implementation details of a module.
As a result, programmers can both separate concerns in their
code and reason about those concerns separately.
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