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Abstract. Modeling four aspect-oriented programming mechanisms shows the 
way in which each supports modular crosscutting. Comparing the models 
produces a clear three part characterization of what is required to support 
crosscutting structure: a common frame of reference that two (or more) 
programs can use to connect with each other and each provide their semantic 
contribution. 

1 Introduction 

A number of tools have been proposed for aspect-oriented (AO) software 
development. But to date there is no generally agreed upon definition of what makes a 
technique aspect-oriented. This paper takes a step in that direction by presenting a 
framework that can be used to explain how four proposed mechanisms support 
modular crosscutting: 
− Pointcuts and advice as in AspectJ [10, 11].  
− Traversal specifications as in Demeter[15], DemeterJ[16] and DJ[14, 21]. 
− Class composition as in Hyper/J[22, 23]. 
− Open classes as in AspectJ.1 
We capture the core semantics of these mechanisms by modeling the weaving process 
by which they are implemented. The models define a weaving process as taking two 
programs and coordinating their coming together into a single combined computation. 
In the case of mechanisms like Hyper/J, where the semantics is defined in terms of 
code-processing, the model describes combining input programs to produce a single 
combined program. 

A critical property of the models is that they describe the join points as existing in 
the result of the weaving process rather than being in either of the input programs. 
This yields a three-part description of crosscutting structure – in terms of how the two 
input programs crosscut each other with respect to the result computation or program. 
This three-part description is essential to model all four mechanisms, and to model an 
arbitrary number of crosscutting programs. 
                                                           
1 This functionality originated in Flavors [19, 28] where Flavor declarations did not lexically 

contain their methods and is found in several other languages; the term open class is due to 
[5, 18]. AspectJ used to call this feature introduction, and now calls it inter-type declarations. 



 

The paper is organized as follows: 
Section 2 presents a simple object-oriented (OO) language that is used as a basis 

for discussion throughout the paper. This includes an example program in the 
language, and key elements of a simple interpreter for the language. 

Section 3 presents the common structure of all the models. 
Section 4 has four parts, each of which shows how one of the four mechanisms is 

modeled. The discussion in each part first outlines the core semantics to be addressed, 
by showing how that semantics could be embedded in the language of Section 2. This 
starts with an example program and an implementation of the semantics, as a 
modification to the implementation of Section 2.2. We then show the model and use 
the implementation to intuitively validate the model. 

Section 5 shows that the simplifications of Section 4 do not invalidate the models 
of the real systems. This is done by showing that a number of features originally left 
out of the models in Section 4 can easily be added to the models. 

Section 6 presents the model of crosscutting structure and uses it to describe the 
crosscutting in the examples from Section 4. 

Section 7 discusses related work, Section 8 presents future work, and Section 9 is a 
summary. 

The paper assumes prior knowledge of all four AO mechanisms and a reading 
familiarity with simple Scheme interpreters of OO languages. But, at least on a first 
pass through, the paper can be read in subsets. Readers unfamiliar with all the 
mechanisms can skip the corresponding sub-sections of Section 4. Readers can avoid 
much of the Scheme code by skipping Sections 2.2 and 4.[1-4].1; the effect of this 
will be to read the models, without the validation of their appropriateness. 

The code in this paper is available online. 2  This includes all the model 
implementations, as well as the example programs written in both the full systems 
(AspectJ, Hyper/J, etc.) as well as our core models of those systems. 

2 BASE – An Object-Oriented Language 

This section describes a simple object-oriented language, called BASE, which is the 
basis for the rest of the paper. The description has three parts: a simple intuitive 
description of the language, a sample program in the language, and a simple Scheme 
interpreter for the language. The discussion of each of the four mechanisms in Section 
4 follows this same structure, and builds on both the example program and the model 
interpreter. 

                                                           
2 See http://www.cs.ubc.ca/labs/spl/projects/asb.html. 



 

BASE can be seen as a core subset of Java. It is a single-inheritance OO language, 
without interfaces, overloading or multi-methods. Programs in BASE are written in a 
Java-like syntax.3 

2.1 Sample Program 

A simple program written in the BASE language is: 

class Figure { 
  List elements = new LinkedList(); 
} 
 
class FigureElement { 
  Display display; 
} 
 
class Point extends FigureElement { 
  int x; 
  int y; 
 
  int getX() { return x; } 
  int getY() { return y; } 
 
  void setX(int x) { this.x = x; } 
  void setY(int y) { this.y = y; } 
} 
 
class Line extends FigureElement { 
  Point p1; 
  Point p2; 
 
  int getP1() { return p1; } 
  int getP2() { return p2; } 
 
  void setP1(Point p1) { this.p1 = p1; } 
  void setP2(Point p2) { this.p2 = p2; } 
} 

This code implements a simple figures package. A Figure is comprised of a 
collection of FigureElements. There are two kinds of FigureElements, Point 
and Line. Both points and lines have the usual structure, and getter and setter 
methods. See [11] for a more detailed discussion of this example. 

                                                           
3 In our actual implementation, BASE has a more Scheme-like syntax.  We use a Java-like 

syntax in the paper to help the reader distinguish between code written in BASE and the 
Scheme code that implements BASE. As part of using Java syntax, we show code with a 
return statement, even though the actual BASE language has only expressions, no statements. 



 

2.2 Model Implementation 

This section presents the model implementation of BASE. The implementation is an 
interpreter structured in a manner similar to Chapter 5 of [8]. We show the main 
structure of the interpreter, including key data structures and procedures. A number of 
minor helper procedures are not included in this presentation. 

For simplicity our model implementation does not include a static type checker, we 
simply assume the program checks. (We can do this because the language has no 
overloading, or other features that cause static typing to have semantic effect on 
correct code.) 

The interpreter is written in Scheme [9]. We use a style in which variable names 
represent the type of their value. (Not actual Hungarian notation.) To save space, 
some of these names are abbreviated. The following table shows the naming and 
abbreviation conventions used in the code. 

 
abbreviation type of value 
pgm  program 
cname, mname… class, method, field and super name 
decl  declaration 
cdecl, mdecl… class, method and field declaration 
param parameter 
id  identifier  
methods 
fields 
cdecls, mdecls…
… 

list of methods 
list of fields 
list of class, method… declarations 
… 

env environment 
exp expression 

 
The main data structures of the interpreter include AST structures that represent class, 
method and field declarations, and expressions that represent code.  

(define-struct class-decl  (cname sname decls)) 
(define-struct method-decl (rtype mname params body)) 
 
(define-struct exp ()) 
(define-struct (if-exp exp) (test then else)) 
<and many sub-types of exp> 

There are class and method structures that represent total effective class and method 
definitions. While a class declaration includes method declarations for only those 
methods defined lexically in the class, a class structure includes method structures for 
methods defined in the class as well as inherited methods. 

(define-struct class  (cname sname fields methods)) 
(define-struct method (cname mname params body)) 
(define-struct field  (type fname)) 

There are also environment data structures that hold variable values and class 
definitions. The code for those is not shown here. 



 

The entry point of the interpreter is the eval-program procedure. It first walks 
over the declarations to produce the class and method structures; the global variable 
*classes* is bound to a list of the class structures. Then eval-expression is 
called with an expression that calls the main entry point.4 

 (define eval-program 
  (lambda (pgm) 
    (set! *classes* (init-classes)) 
    (elaborate-class-decls! (program-decls pgm)) 
    (eval-exp (parse-exp "(new Main()).main()") 
              (make-empty-env)))) 

The eval-expression procedure is a standard recursive evaluator. Within the 
structure of eval-expression, we identify specific helper procedures, call-
method, get-field and set-field, for evaluating method calls and field accesses. 
Separating these helper procedures, rather than inlining them in eval-expression 
is done to simplify the presentation in later sections of the paper. 

(define eval-expression 
  (lambda (exp env) 
    (cond 
      ((literal-exp? exp) (literal-exp-datum exp)) 
      ((if-exp?      exp) ...) 
      ... 
      ((method-call-exp? exp) 
       (let ((mname   (method-call-exp-mname exp)) 
             (obj-exp (method-call-exp-obj-exp exp)) 
             (rands   (method-call-exp-rands exp)) 
         (call-method mname 
                      (eval-exp obj-exp env) 
                      (eval-rands rands env)))) 
      ((get-field-exp? exp) 
       (let ((obj (apply-env env 'this)) 
             (fname (get-field-exp-fname exp))) 
         (get-field obj fname))) 
      ((set-field-exp? exp) 
        ... 
         (set-field obj fname val)))))) 

(define call-method 
  (lambda (mname obj args) 
    (let ((method (lookup-method mname obj))) 
      (execute-method method obj args)))) 

(define get-field 
  (lambda (obj fname) 
    <get the field value from the object>)) 

                                                           
4 In the model implementation on the website, this entry point is the main method of the class 

called Main. To save space, the example code in Section 2.1 doesn’t include a Main class. 



 

(define set-field 
  (lambda (obj fname val) 
    <set the field value in the object>)) 

The lookup-method procedure simply finds the method in the methods of the class, 
if no matching method is found an error is signaled. 

(define lookup-method (mname obj) 
  (let* ((cname   (object-cname obj)) 
         (methods (cname->methods cname))) 
    <scan methods looking for one matching mname> 
    )) 

The execute-method procedure simply evaluates the body of the method in an 
environment with this bound to the object, and the method parameter identifiers 
bound to the arguments. 

(define execute-method (method obj args) 
  (eval-expression (method-body method) 
    (make-env (cons 'this (method-ids method)) 
              (cons obj args)))) 

Together with a modest number of helper procedures not shown here, this provides a 
complete implementation of the BASE language. 

3 The Modeling Framework 

This short section presents the modeling framework in general terms. (Readers who 
prefer bottom-up presentation of general concepts may want to skip directly to section 
4.) 

The framework models each AO mechanism as a weaver that combines two input 
programs to produce either a program or a computation. Each weaver is modeled as 
an 11-tuple:  

〈X, XJP, A, AID, AEFF, AMOD, B, BID, BEFF, BMOD, META〉 

A and B are the languages in which the input programs pA and pB are written.  X is the 
result domain of the weaving process, which is usually a computation, but can be a 
third language to model systems like Hyper/J, where the semantics is defined in terms 
of manipulating code. 

XJP is the join points in X. 
AID and BID are the means, in the languages A and B, of identifying elements of 

XJP (the join points in X). 
AEFF and BEFF are the means, in the languages A and B, of effecting semantics at 

identified join points. 
AMOD and BMOD are the units of modularity in the languages A and B. All 

discussion of the units of modularity is deferred to Section 6. 
META is an optional meta-language for parameterizing the weaving process. In 

cases where META is not used we simply leave it out of the model. 
A weaving process is defined as a procedure with signature: 



 

A  ×  B  ×  META  →  X 

That is, it accepts three programs, pA, pB and pMETA, written in the A, B and META 
languages, and produces either a computation or a new program. 

A critical property of this model is that it models A, B and X as distinct entities, 
and models weaving as combining the semantics of programs in A and B at join 
points in X.  This differs from models that have two elements (i.e. A and B), and 
characterize B as merging with A at join points in A.  The implications of this three-
part model are discussed further in Section 6, but two points are worth discussing 
here. 

In general, A and B can be different. This means that AID and BID can differ, as can 
AEFF and BEFF. For example, in the model of AspectJ presented in Section 4.1, method 
declarations are modeled as elements of the A language, and advice are modeled as 
elements of B. Both method declarations and advice can affect what happens at a 
method call. But their means of identifying the call is different (a method signature in 
a method declaration vs. a pointcut in an advice), and their means of effecting 
semantics of the call is different (execution of a method differs from execution of 
after advice). 

In cases where A and B are different, it is often the case that one of them can be 
seen as more similar in structure to X than the other. Again, in the AspectJ case, X 
will be the execution of the objects, which can be seen as more similar in structure to 
A (the classes and methods) than to B (the advice). In such cases, we will always use 
A as the name of the one that is more similar to X. But it will be critical to remember 
that A is not the same as X, it is just highly similar in structure to X. A key property 
of this framework is to distinguish A and X even when they are quite similar. 

Table 1. Summary of four models. In this table the single letters ‘c’, ‘m’ and ‘f’ 
are abbreviations for class, method and field respectively. 

 PA TRAV COMPOSITOR OC 
X program 

execution 
traversal 
execution 

composed 
program 

combined program 

XJP method calls arrival at each 
object 

declarations in X class declarations 

A c, m, f 
declarations 

c, f declarations c, m, f 
declarations 

c declarations w/o OC 
declarations 

AID m signatures, 
etc. 

c, f signatures c, m, f signatures method signatures 

AEFF execute 
method body 

provide 
reachability 

provide 
declarations 

provide declarations  

B advice 
declarations 

traversal spec. & 
visitor 

(= A) OC method declarations 

BID pointcuts traversal spec. (= AID) effective method signatures 
BEFF execute 

advice body 
call visitor & 
continue 

(= AEFF) copy method declarations 

META none none match & merge 
rules 

none 

 



 

4 Four Mechanisms in Terms of the Model 

This section presents models of four mechanisms found in current AO systems. Table 
1 shows a summary of the four models. For each mechanism, we first present a 
simplified, or core version of its semantics, by providing an intuitive description and a 
short example program. These are based on the corresponding material developed for 
the BASE semantics in Section 2.  We then present the model, which is derived from 
the framework by filling in the eleven parameters. Each sub-section ends with an 
intuitive validation of the model, which is done by showing how elements of the 
implementation correspond to elements of the model. 

4.1 PA – Pointcuts and Advice 

This section shows how the pointcut and advice mechanism in AspectJ can be 
modeled in terms of the modeling framework. 

We first present a simplified, or core, version of the pointcut and advice 
mechanism semantics; we call this core semantics PA. As compared to AspectJ, PA 
has only method call join points, after advice declarations, and call, target, && and || 
pointcuts. While this leaves out significant AspectJ functionality, it suffices to capture 
the important elements, and later in the paper Section 5.1 shows that the missing 
functionality can be added without requiring changes to the model. 

As an example of the PA functionality, consider the following after advice, which 
implements display updating functionality similar to that in [11]. 

after(FigureElement fe): 
     (call(void Point.setX(int)) 
      || call(void Point.setY(int)) 
      || call(void Line.setP1(Point)) 
      || call(void Line.setP2(Point))) 
     && target(fe) { 
  fe.display.update(fe);5 
} 

Implementation of PA. This section presents an interpreter for PA, based on a few 
small changes and additions to the interpreter for BASE.  

First, we define a structure used to represent dynamic join points: 

(define-struct call-jp (mname target args)) 

                                                           
5 In full AspectJ, this could be written as: 

after(FigureElement fe): 
    call(void FigureElement+.set*(..)) && target(fe) { 
  fe.display.update(fe);  
} 

But we write the longer form because we do not implement the required type pattern and 
wildcarding functionality in this paper. 



 

This structure says that the dynamic values at a join point – remember that for now 
PA only has method call join points – include the name of the method being called, 
the object that is the target of the call, and a list of the arguments to the call. 

The weave procedure is defined as: 

(define pa:weave 
  (lambda (pgm); -> computation 
    (fluid-let ((pgm 
                  (remove-advice-decls pgm))  
                (*advice-decls* 
                  (gather-advice-decls pgm)))  
      (eval-program pgm)))) 

The weaver first separates the advice declarations from the rest of the program, 
leaving it with an ordinary BASE program, as well as a list of advice declarations. 
The weaver then proceeds to evaluate the BASE program. 

The call-method procedure is modified to create method call join point 
structures, and check whether any advice declarations match the join point; these 
advice declarations are run after executing the method itself. 

(define call-method 
  (lambda (mname obj args) 
    (let* ((jp (make-call-jp mname obj args)) 
           (method      (lookup-method jp)) 
           (adv-matches (lookup-advice jp))) 
      (execute-advice adv-matches jp 
        (lambda () 
          (execute-method method jp)))))) 

In addition to redefining call-method, we also redefine lookup- and execute-
method to take a single jp structure as their argument, rather than taking mname, obj 
and args separately. This simple change is not shown here. 

The role of lookup-advice is to take a jp structure and look in *advice-
decls* to find which advice declarations have a pointcut that matches the join point. 
The result of lookup-advice is a list of adv-match structures. Each such structure 
represents the fact that a particular advice declaration matched, and includes bindings 
of parameters of the advice to values in the context of the join point (i.e. fe is bound 
to the figure element). 

(define-struct adv-match (adv-decl ptc-match)) 
(define-struct ptc-match (ids vals)) 

lookup-advice works simply by looping through all the advice declarations, calling 
pointcut-matches to see if each advice declaration’s pointcut matches the join 
point. 

 (define lookup-advice 
  (lambda (jp) 
    (remove*6 #f 
      (map (lambda (adecl) 
             (let* ((ptc (advice-decl-ptc adecl)) 

                                                           
6 Remove all occurrences of an item from a list. 



 

                    (ptc-match 
                     (pointcut-matches ptc jp))) 
               (if (not ptc-match) 
                   #f 
                   (make-adv-match adecl 
                                   ptc-match)))) 
           *advice-decls*)))) 

pointcut-matches is simply a case-based test to see whether a given pointcut 
matches the join point. If not, it returns false, otherwise it returns a ptc-match 
structure. Note that target is currently the only pointcut that binds parameters. 

(define pointcut-matches 
  (lambda (ptc jp) 
    (cond ((call-pointcut? ptc) 
           (and (eq? (call-pointcut-mname ptc) 
                     (call-jp-mname jp)) 
                (make-ptc-match '() '()))) 
          ((target-pointcut? ptc) 
           (make-ptc-match 
             (list (target-pointcut-id ptc)) 
             (list (call-jp-target jp)))) 
          ((and-pointcut? ptc) ...) 
          ((or-pointcut?  ptc) ...) 
          ))) 

The execute-advice procedure takes a list of advice match structures, a jp structure 
and a thunk as arguments. The thunk implements the computation at the join point 
independent of any advice. As shown in the call-method procedure above, at 
method call join points, the thunk implements the behavior of call-method in the 
original BASE system. Note that execute-advice must be able to handle a list of 
matching advice, because join points can have more than one matching advice. 

(define execute-advice 
  (lambda (adv-matches jp thunk) 
    (let ((result (thunk))) 
      (for-each (lambda (adv-match) 
                  (execute-one-advice adv-match 
                                      jp)) 
                adv-matches) 
      result))) 

Model of PA. The model of PA in terms of the framework is as follows. Note that we 
use italics to identify parts of PA semantics that are deferred to Section 5. 
 

X Execution of combined programs 
XJP method calls, and field gets and sets 
A Class, method and field declarations 
AID method and field signatures 
AEFF execute method body, get and set field value 
B advice declarations with pointcuts 



 

BID Pointcuts 
BEFF execute advice body before, after and around  method 

 
We use the implementation as intuitive evidence that the model is realizable and 
appropriate. We do this by matching the model parameters to corresponding elements 
in the implementation code. 

A and B are clearly modeled in the implementation of pa:weave.  A program pA 
in the language A is the class declarations from the complete program; a program pB 
in the language B is the advice declarations, with their associated pointcuts. X is the 
complete computation, which pa:weave produces by calling eval-program. In this 
case A plays a primary role over B, as the weaver proceeds by running A, calling 
advice from B when appropriate. 

The revised implementation of call-method models method call join points 
(XJP) as the points in the flow of control when a method is called. The jp structure 
models the kind of join point, as well as the values available in the context of the join 
point.7 

In A, the complete signatures of method declarations are the means of identifying 
join points (AID), and execution of the method body is the means of specifying 
semantics at the join points (AEFF). Taken together, these say, “when execution 
reaches a call to an object of this class with this method name, then execute this 
code.” 

In B, the means of identifying join points (BID) is pointcuts, and is modeled by 
pointcut-matches. The means of effecting semantics (BEFF) is execution of the 
advice body after continuing with the join point, and is modeled by execute-
advice. 

4.2 TRAV – Traversals 

The Demeter systems (Demeter, DemeterJ and DJ) provide a mechanism that enables 
programmers to implement traversals through object graphs in a succinct declarative 
fashion. The effect of this functionality is to allow the programmer to define, in a 
modular way, a traversal that would otherwise require code scattered among a number 
of classes. They work by defining the traversal as well as what actions to take at 
points along the traversal. 

In this section, we work with a simple traversal semantics, called TRAV. TRAV 
supports declarative description of the traversal, but not whether to call the visitor at 
each object in the traversal; the visitor is simply called at every object in the traversal. 
As with PA above, while this omits important functionality, that omission does not 
impact the suitability of the general framework. Section 5 shows how the omitted 
functionality can be added. 

An example of a program fragment written using TRAV is: 
                                                           
7 The semantics of values in the context of a join point and how the this, target and args 

pointcuts access those values is more complex than this in AspectJ, because proceed can 
change the values that args sees. Doing it properly makes the code more complex, but does 
not impact the modeling framework or the model of PA. 



 

Visitor counter = new CountElementsVisitor(); 
 
traverse("from Figure to FigureElement",  
 fig,  
 counter); 

This code fragment implements the behavior of visiting all the FigureElements 
reachable from a Figure. The first argument to traverse is called a traversal 
specification; it describes the path to follow to each object to be visited. The second 
argument is a root object, where the traversal starts. The third argument is a visitor, 
which defines behavior at each traversed object. In this case the traversal mechanism 
is taking care of iterating through the elements of the figure, and following down 
through line objects to reach point objects. The visitor is called on every object in the 
traversal, including the Figure as well as the List that holds the FigureElements. 
The actual visitor must decide which objects to count, i.e. not to count the List. 

We preserve the critical property of Demeter that the range of traversal is based on 
reachability information from the class graph, in addition to information about the 
dynamic class of the current object.  Therefore, when the traversal comes to a Line 
object, for example, it goes on to the Point objects referenced by the Line; but it 
does not go on to the Display object, because the traversal specification says it is 
looking for FigureElement and the class graph shows there are no ways to reach a 
FigureElement from a Display. 

Implementation of TRAV. The weaver implementation for TRAV is the procedure 
trav:weave. We modify eval-expression from the BASE interpreter to call 
trav:weave to implement the new traverse primitive. The definition of 
trav:weave is: 

(define trav:weave 
  (lambda (trav-spec root visitor) 
    (let arrive ((obj  root)  ;arrival at obj is a jp 
                 (path (make-path  
                         (object-cname root)))) 
      (call-visitor visitor obj) 
      (for-each 
         (lambda (fname) 
           (let* ((next-obj (get-field fname obj)) 
                  (next-cname (object-cname next-obj)) 
                  (next-path 
                    (extend-path path next-cname))) 
             (if (match? next-path trav-spec) 
                 (arrive next-obj next-path)))) 
         (object->fnames obj))))) 

The traversal process can be seen as a simple depth-first walk with a navigator that 
restricts the walk.  When the walk arrives at an object, it calls the visitor with the 
object, and then recursively walks the objects referenced by the object. At each step 
along the way, it first checks with the navigator about whether or not to proceed.  

The navigator checks whether to traverse to an object in two steps. It first locates 
possible positions of the object in the traversal specification. The traversal 



 

specifications following those positions are then tested against the class graph. The 
test succeeds when there exists a path on the class graph that matches a remaining 
specification. 

We implement this in a simple way.  We assume the root object is always a legal 
root of the traversal specification.  In order to locate positions in the specification, the 
code manages a path that keeps track of a sequence of classes walked from the root.  
The match? procedure checks whether the whole path matches the traversal 
specification by using two sub-procedures that correspond to the two steps above.  

(define match? 
  (lambda (path trav-spec) 
    (let ((residual-spec (match-path path trav-spec))) 
      (match-class-graph? 
        residual-spec (path-last-cname path))))) 

The match-path procedure matches the path to the traversal specification by 
repeatedly matching each class in the path from the root.8 The matching algorithm is 
implemented by simple conditional cases on the kind of the directive at the head of 
the specification. The code returns either a remaining specification for partially 
matched cases, an empty specification for completely matched cases, or false for 
unmatched cases. When a class matches more than one position in the specification, 
an or-specification is returned as a result. 

(define match-path 
  (lambda (path spec);->spec 
    (let loop ((cnames (path->cnames path)) 
               (spec spec)) 
      (if (null? cnames) spec 
          (loop (cdr cnames) 
                (match-cname (car cnames) spec)))))) 
(define match-cname 
  (lambda (cname spec);->spec or #f 
    (cond ((null? spec) #f) ; unmatched 
          ((to-spec? spec) 
           (if (subclass? cname (to-spec-cname spec)) 
               (make-or-spec '() 
                 (list spec (spec-next spec))) 
               spec)) 
          ...))) 

The match-class-graph? procedure matches the remaining specification against 
the class graph, and returns true or false. For a to-specification, the matching is 
simply subsumed by the reachability to the specified class. Note that the reachability 
is decided by checking the class graph. In the implementation, the procedure 
reachable?, not shown here, does this by using global variable *classes*. 

(define match-class-graph? 
  (lambda (spec root-cname);->boolean 
    (let loop ((spec spec) 

                                                           
8 A more sophisticated implementation would implement these steps with a state transition 

machine so that it could avoid complicated checks at each object. 



 

               (cname root-cname)) 
      (cond ((eq? spec #f) #f) ; already unmatched 
            ((to-spec? spec) 
             (reachable? cname (to-spec-cname spec))) 
            ...)))) 

Calling the visitor involves calling the visit method with the object as its argument. 

(define call-visitor 
  (lambda (visitor obj) 
    (call-method 'visit visitor (list obj)))) 

Model of TRAV. The TRAV model is: 
 

X execution of traversal through object graph (visit the 
objects specified by traversal spec) 

XJP arrival at each object along the traversal 
A class and field declarations 
AID class names and complete field signatures9 
AEFF provide reachability information 
B traversal specification and visitor  
BID traversal specification, overloaded visitor methods 
BEFF call visitor and continue traversal (or not) 

X is the actual traversal, and is implemented by trav:weave.  Within that process, a 
call to arrive corresponds to a join point. This is analogous to the way, in the PA 
model, that a dynamic call to call-method corresponds to a join point. 

pA and pB are clearly modeled in the implementation –  pA is the class and field 
declarations, which are converted into a class graph (bound to the *classes* global 
variable) by eval-program before executing trav:weave. pB is the three 
arguments to trav:weave. 

In A, the class names and field signatures are AID. The effect of A is to provide 
reachability information, which is modeled by the reachable? procedure. This 
combined with the traversal specification determines where the traversal goes. This 
combination happens in the match? procedure. 

In B, BID is the traversal specifications, and is modeled by the match-path 
procedure. Combined with AEFF, BEFF determines whether to continue traversal, which 
is realized by the simple conditional branch on the result of the match? procedure. 

4.3 COMPOSITOR – Class Composition 

Hyper/J provides mechanisms that compose programs.  This allows the programmer 
to implement concerns as independent (partial) programs, even when the composition 
of the concerns cuts across their module structure. 

                                                           
9 Similar to a complete method signature, a complete field signature includes the class name, 

and is of the form: <class> <enclosing-class>.<id> 



 

In this paper, we focus on the composition of classes. We omit class hierarchy 
composition, slicing based on concern maps and other powerful features of Hyper/J. 
For simplicity, we also limit ourselves to only a simple composition semantics that 
merges two programs based on class and member names. Using our simplified 
semantics, called COMPOSITOR, the display updating functionality from Section 4.1 
can be implemented in two steps as follows. First we write a program with just this 
class: 

class Observable { 
  Display display; 
  void moved() { 
    display.update(this); 
  } 
} 

calling the original figures program of Section 2.1 program A, and this one program 
B, the two programs are composed with a call to the compositor (weaver) as follows: 

(compositor:weave <program-a> <program-b> 
  "match Point.setX with Observable.moved 
   match Point.setY with Observable.moved 
   match Line.setP1 with Observable.moved 
   match Line.setP2 with Observable.moved")10 

In the resultant composed program, the specified methods of the Point and Line 
classes are combined with the body of the moved method above.  The effect is that 
they call display.update after they finish executing. 

Implementation of COMPOSITOR. The weaver for COMPOSITOR is a source-to-
source translator, which merges two BASE programs into one, under control of a 
composition description. The code for the weaver is 

(define compositor:weave 
  (lambda (pgm-a pgm-b relationships) 
    (let loop ((pgm   (make-program '())) 
               (seeds (compute-seeds pgm-a pgm-b))) 
      (if (not (null? seeds)) 
          (let ((signature 
                  (all-match (car seeds) 
                             relationships))) 
            (if signature 
              (let* ((jp   (car seeds)) 
                     (decl (merge-decls jp 

                                                           
10 The actual Hyper/J meta-program for this composition would look something like: 

mergeByName; 
bracket "{Point,Line}"."set*" 
  after Observable.moved($OperationName); 

But for simplicity, we do not implement pattern matching and bracketing mechanisms. 
Instead, we assume that two methods with the same name match regardless of the parameter 
types, and that when methods from programs A and B are merged, the bodies of those 
methods are placed in A, B order in the merged method. 



 

                             relationships))) 
                (loop (add-decl-to-pgm decl pgm 
                                       signature) 
                      (remove-subsets jp (cdr seeds)))) 
              (loop pgm (cdr seeds)))) 
          pgm)))) 

It receives two programs, pgm-a and pgm-b, as well as the description of the 
matching and merging to use, relationships.  

The first step is to compute all possible compositions of declarations in the merged 
program. We call these seeds, and they are produced by compute-seeds. We model 
this as computing the power set of the union of the declarations in pgm-a and pgm-b 
(of course our implementation does not actually compute the power set). The list of 
seeds is sorted in set-inclusion order, with subsets following supersets. 

After sorting, for each seed, there are up to three steps: 
1. The procedure all-match determines whether this set should actually be merged 

according to the composition description, and returns the signature for the 
composed declaration when it should. In the simplest case, a seed of two method 
declarations (coming from pgm-a and pgm-b) having the same signature m 
matches, and returns m as the signature for the composed declaration. I.e. the set: 

{<Point.setX(int)>, <Observable.moved()>} 

 is merged to <Point.setX(int)> in the composed program. 
2.The procedure merge-decls computes the body of the actual declaration. I.e. 
  { 
    this.x = x; 
    display.update(this); 
  } 

3. The procedure add-decl-to-pgm adds the declaration to the resultant program 
with the computed signature. 

For any seed that is merged, all subsets of that seed are removed from the remaining 
seeds before proceeding. 

The procedure all-match first picks a signature from the declarations in the 
given seed, and then checks that all the declarations can contribute to the signature.  
In order to allow renaming, it takes a relationships parameter as an additional 
argument: 

(define all-match 
  (lambda (decls relationships) 
    (let ((sig (pick-signature decls 
                               relationships))) 
      (and (every? (lambda (decl) 
                     (signature-match? sig decl  
                       relationships)) 
                   decls) 
   sig)))) 

The merge-decls procedure also receives relationships as an argument.  Richer 
merging mechanisms, such as overriding and bracketing (i.e., before/after/around-like 
merger), can be supported by extending the meta-language and this procedure. 



 

Model of COMPOSITOR. The description of the COMPOSITOR model is as 
follows. Note that unlike the other mechanisms, A and B are in the same language, 
and in this case we also use the META parameter. 
 

X the composed program 
XJP declarations in X 
A, B class, method and field declarations
AID, BID class, method and field signatures  
AEFF, BEFF provide declaration 
META rules for matching and merging 

 
In the code, pA and pB are modeled as separate parameters to compositor:weave. 

pMETA is the third parameter to this procedure.  A and B are treated equally in the 
code, and can easily be generalized to a list of programs for composing more than two 
programs. X is the resultant composed program, which initially is empty, and is 
populated with declarations during the weaving process. 

Join points are modeled as declarations in X.  Each one corresponds to the merging 
of a subset of declarations from pA and pB. So seeds are in fact seeds for join points. If 
they match the match/merge description (pMETA) they are merged to form an actual 
join point.  Note that a single declaration from A or B can contribute to more than one 
declaration in X and vice versa. 

AID, BID is the signatures of the declarations in A and B. The matching rules AID, 
BID work with are modeled by the META argument to the weaver. 

AEFF, BEFF is simply to contribute the declaration from A or B to the merge.  The 
actual merging is controlled by META. 

4.4 OC – Open Classes 

Open class mechanisms make it possible to locate method or field declarations for a 
class outside the textual body of the class declaration. Open classes are used in a 
variety of ways to modularize code; a common use is in visitor problems. 

In this section, we work with a simple version of open classes in which method 
declarations are contained within class declarations, but it is possible to mark certain 
method declarations as defining methods on another class. We call this simple 
semantics OC. 

Building on the running example, the following OC code defines draw methods for 
the different kinds of figure elements in a single DisplayMethods class – it 
modularizes the display aspect of the system. 

class DisplayMethods { 
  void Point.draw() { Graphics.drawOval(...); } 
  void Line.draw()  { Graphics.drawLine(...); } 
} 



 

Implementation of OC. We implement OC as a pre-processor that operates on a 
program consisting of normal BASE code intermixed with open class method 
declarations and produces a BASE program. This pre-processor pass is defined as 

(define oc:weave 
  (lambda (pgm) 
    (let ((pgm       (remove-oc-mdecls pgm)) 
          (oc-mdecls (gather-oc-mdecls pgm))) 
      (make-pgm 
        (map (lambda (cdecl) 
               (let* ((cname (class-decl-cname cdecl)) 
                      (sname (class-decl-sname cdecl)) 
                      (per-class-oc-mdecls    
                        (lookup-oc-mdecls cname 
                                          oc-mdecls))) 
                 (make-class-decl cname sname 
                   (append (class-decl-decls cdecl) 
                           (copy-oc-mdecls cname 
                             per-class-ocmdecls))))) 
             (pgm-class-decls pgm)))))) 

The first step is to remove all open class method declarations from the input program. 
This is done by remove-oc-mdecls and gather-oc-mdecls. The open class 
method declarations are then each copied into their appropriate class. The lookup-
oc-mdecls procedure finds, for a given class name, which open class method 
declarations should be copied into it. The copy-oc-mdecls procedure then copies 
those declarations, changing their signature from the open class form 
<cname>.<mname> to the normal BASE form <mname>. 

(define lookup-oc-mdecls 
  (lambda (cname all-oc-mdecls) 
    (collect-if 
      (lambda (oc-mdecl) 
        (eq? (oc-mdecl-cname oc-mdecl) cname)) 
      all-oc-mdecls))) 
 
(define copy-oc-mdecls 
  (lambda (cname per-class-oc-mdecls) 
    (map (lambda (oc-mdecl) 
           (make-method-decl cname 
             (oc-mdecl-rtype  oc-mdecl) 
             (oc-mdecl-mname  oc-mdecl) 
             (oc-mdecl-params oc-mdecl) 
             (oc-mdecl-body   oc-mdecl))) 
         per-class-oc-mdecls))) 

Model of OC. The description of OC in terms of the model is as follows: 
 

X combined program 
XJP class declarations 
A class declarations without OC method declarations 



 

AID effective method signatures (cname from enclosing class declaration) 
AEFF method declaration stays in place 
B OC method declarations 
BID effective method signatures (cname from OC method declaration) 
BEFF copy method declaration to target class 

 
X is modeled as the results of the oc:weave procedure. pA and pB are a BASE 
program stripped of open class method declarations and the sets of open class method 
declarations respectively. The join points are the class declarations in the result 
program. AID happens by inclusion – the normal methods in pA are copied into their 
same enclosing classes in X.  This is the same effect as saying that the complete 
signature of methods in A is AID.  BID is also the complete signature, which is explicit 
in B. The matching process for B is modeled by lookup-oc-mdecls. AEFF, BEFF are 
the same, the method declaration is copied into the class it belongs in X. 

5 Restoring Functionality 

To have confidence in the applicability of the modeling framework, we must be sure 
that in our simplified semantics – PA, TRAV etc. vs. AspectJ, Demeter etc. – we did 
not leave out issues that cannot be captured by the framework. This section addresses 
that concern by showing how several key missing functionalities could be added 
without falling outside the scope of the models. 

There are two ways to show this, the strongest is to show that the actual models of 
each semantics change only in their details. The second is to show that even though a 
new model is required, it still fits within the same framework. In all the cases below, 
we show the former. We show this by once again appealing to the implementation and 
using it to intuitively validate that the model changes are only minor.  Since all these 
changes are highly localized in the implementation, we claim they do not change the 
deep model structure. 

5.1 Adding features to PA 

The PA semantics is missing several key features of AspectJ, including additional 
kinds of join points, before and around advice, and context-sensitive pointcuts like 
cflow. 

To add more kinds of join point, we must enrich the space of jp structures, and 
have more places in the interpreter perform advice lookup and execute operations.  
For example, join points for reading a field could be added to PA by defining a 
structure as follows: 

(define-struct (get-jp jp) (fname))11 

and replacing the body of get-field just as Section 4.1 does for call-method. 

                                                           
11 Assume that we first define a structure type jp, and modify call-jp to be a sub-type of it. 



 

To add additional pointcuts (excluding cflow-like pointcuts), we simply extend 
pointcut-matches to identify join points matching those pointcuts. This could 
include pointcuts that identify only one kind of join point, such as call and get as 
well as pointcuts like target that identify multiple kinds of join points. In some 
cases implementing a new pointcut can require that additional information be added 
to some or all kinds of join point. For example, adding a within pointcut would 
require adding information about the lexically enclosing method to call join points. 

To add before or around advice, we modify execute-advice to run the pieces of 
advice and call the thunk in the appropriate order. Supporting proceed can be done 
in a manner similar to super calls. We modify execute-advice to make a lambda 
closure for the remaining processing at the join point and put the closure in the 
environment of around advice execution. We also extend eval-exp to extract the 
closure from the environment and execute it for proceed. 

Allowing proceed to change the arguments that inner advice and the method 
receive is more complicated. It requires changing the thunk passed to execute-
advice to take a single argument, args, which is a list of those arguments. When a 
proceed is evaluated, the values of its operands are passed to the closure for proceed, 
which eventually passes them to the thunk. 

To add control flow sensitive pointcuts like cflow, we thread a call stack through 
the join point structures. This is done by adding a stack-prev-jp field to all jp 
structures. This field holds the previous join point on the call stack. This requires the 
code that constructs the join points to keep the last top of stack and thread it properly. 
We can do this with the fluid-let mechanism in Scheme: 

(define call-method 
  (lambda (mname obj args) 
    (let* ((jp (make-call-jp .stack-previous-jp. 
                             mname obj args)) 
           ...) 
      (fluid-let ((.stack-previous-jp. jp)) 
        ...)))) 

Here .stack-previous-jp. is effectively a dynamically scoped variable. The new 
cflow clause of  pointcut-match follow the stack-prev-jp field until it either 
finds a matching jp or reaches the bottom of the stack. 

A frequently-proposed feature for PA like mechanisms is to add an attribute feature 
to method declarations [1], and allow pointcuts to identify join-points based on these 
attributes [26]. This feature can easily be added to PA. Doing it for method 
declarations and call join points requires extending the language syntax to support 
attributes, extending join point structures to include an attribute element, modifying 
call-method to include the attribute in the join point, and adding a new kind of 
pointcut to match based on attributes. 

These changes add detail to the previous model for PA, but they do not change its 
structure. Field gets are, like method calls, points in the flow of execution. Similarly 
the new kinds of pointcuts are no more than that – new kinds of pointcuts. Before and 
around advice require changes only to execute-advice. Adding proceed with 
arguments is only a little less localized. 



 

5.2 TRAV 

Demeter, DemeterJ and DJ differ slightly in terms of whether the traversal 
specification itself has control over whether the visitor is called. In DJ, for example, 
this is controlled by whether the visitor has an overloaded method for the type of 
visited object. This range of behaviors can be modeled in the implementation of 
call-visitor. To do so we adopt a naming convention that simulates overloading; 
then, before calling a visitor on an object, the traverser checks whether the visitor has 
a method for the class of the object, and then calls that method if it exists: 

(define call-visitor 
  (lambda (visitor obj) 
    (let ((mname (visitor-mname (object-cname obj)))) 
      (if (has-method? (object-cname visitor) mname) 
          (call-method mname visitor (list obj)))))) 

Again, these changes are local in the model implementation, and affect only details of 
the TRAV model. 

5.3 COMPOSITOR 

Hyper/J provides a rich meta-language that controls the composition, namely, 
bracketing (inserting method bodies before, after, or around of another method body), 
overriding, renaming, and wild-carding for matching. These can be supported by 
extending all-match and merge-decls. Since the enriched meta-languages can 
specify different merging strategies for different declarations contributing to a join 
point, all-match has to return both a matched signature and a list of merging 
directives for each matched declaration, so that merge-decls can know what to do. 

Once again, these changes do not affect the basic structure of the COMPOSITOR 
model, as evidenced by the way they are localized in the implementation. 

6 Modular Crosscutting 

Our models provide a basis for understanding and comparing how each of the 
mechanisms enables crosscutting modularity.  To do so we first need to address the 
AMOD and BMOD model parameters. These are the units of modularity in the A and B 
languages. We define these as follows: 
 

 AMOD BMOD 
PA class  advice 
TRAV class  traversal specification
COMPOSITOR class  class  
OC class  class  

 
These are not the only possibilities for units of modularity in each of these models. In 
PA for example, we could do as AspectJ does, and BMOD could be aspect declarations.  



 

In all the models we could use higher-level units of modularity like packages. The 
analysis of this section can be repeated for such alternative units of modularity to 
compare how crosscutting is supported for each. 

For a module mA (from pA) we say that the projection of mA onto X is the set of 
join points identified by the AID elements within mA.  The same is true for mB. For 
example, in PA, the projection of a given advice declaration is all the join points 
matched by the pointcut of that advice declaration.  

For a pair of modules mA and mB (from pA and pB) we say that mA crosscuts mB 
with respect to X if and only if their projections onto X intersect, and neither of the 
projections is a subset of the other.  Fig. 1 illustrates this situation, first in general 
terms and then for each of the example programs as explained below. 

In the PA example (Section 4.1) the Point class and the display updating advice 
crosscut each other with respect to X. We consider the projection of the Point class 
onto X to include all calls to methods of the Point class.12 The projection of the 

                                                           
12 In AspectJ, the call join points would be considered not as being within the projection of the 

class, but rather as being within the projection of the calling class. Execution join points 
would be considered as within the projection of the class that defines the method. 

 

The dots in X represent JPs, the dots in A/B represent elements that match those JPs, the 
dashed/dotted boxes in A/B represent modules, and the dashed/dotted boxes in X are the 
projections of those modules. In all these cases the modules in A and B crosscut with respect to 
X. 
Fig. 1. Modular Crosscutting in General Terms and in the Four Example Programs 
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advice onto X includes calls to the setter methods of the Point and Line classes. So 
the projections of the Point class and the advice intersect, and neither is subset of the 
other. 

In the TRAV example (Section 4.2) the Point class and the traversal description 
crosscut with respect to X. The projection of the Point class includes all arrivals at 
Point objects initiated by any traversals. The projection of the traversal description 
includes arrivals at Point objects as well as arrivals at objects of other classes such 
as Line and LinkedList. 

In the COMPOSITOR example (Section 4.3) the Point class and the 
Observable class crosscut with respect to X. The projection of the Point class on X 
includes all methods of the Point class in X.  The projection of the Observable in 
B includes all set methods of Point and Line classes in X. 

In the OC example (Section 4.4) the Point class in A and the DisplayMethods 
class in B crosscut with respect to X.  The projection of Point in A contains all but 
the draw method of Point in X, and the projection of DisplayMethods contains 
draw methods of Point and Line classes. 

Note that this analysis does not allow us to say that a given mechanism is 
crosscutting, only that it can support modular crosscutting. Or, in model terms, we 
cannot say a model is crosscutting, just that a particular pair of modules from 
particular pA and pB crosscut each other. This is not surprising, we know that an OO 
program does not have to have a hierarchical inheritance structure; it is simply that 
the language supports it. 

Stepping back from the examples and the details of the models, we can see a clear 
three part characterization of what is required to support crosscutting structure: a 
common frame of reference that two (or more) programs can use to connect with each 
other and each provide their semantic contribution. In model terms the common frame 
of reference is XJP, the programs are pA and pB, they connect at the join points using 
AID and BID, and provide their semantic contribution with AEFF and BEFF. 

In some mechanisms, including PA, it can be tempting to equate the frame of 
reference with one of the programs, i.e. to say that the classes are X and that member 
declarations in the classes are the join points. But this two part characterization is less 
general It is difficult to model COMPOSITOR semantics or to model more than two 
crosscutting modules that way. The three part model supports both of these cleanly.  

7 Related Work 

Some authors have compared two particular AO systems, for example, Lieberherr et 
al. have explained concepts in the Demeter systems in terms of AspectJ [14].  Our 
work defines a common framework in terms of which four systems are modeled. 

Some authors have proposed formal models for AO mechanisms [2, 6, 13, 20, 27].  
Those models are attractive in that they express deep characteristics of the systems, 
such as implementation issues [17] and static analysis [25], in concise ways.  But they 
only apply to specific mechanisms, all of which are in the PA family.  Again, our 
work differs in finding common structure for diverse AO mechanisms.  We believe 



 

that our framework could also be useful in developing other kinds of models for 
specific mechanisms.  In fact, Wand’s semantics[27] is based on our earlier work on 
the modeling framework.  Note that this is in contrast to characterizations of weaving 
that work only in terms of source code pre-processing.  

Filman and Friedman suggest that AOP systems can be defined as enabling 
quantified programmatic assertions over programs written by programmers oblivious 
to such assertions [7].  The model they propose is a two part-model – it compares 
programs and assertions. Our three-part structure is essential to accounting for how 
the mechanisms enable modular crosscutting, a key goal identified in [12]. Our 
framework can also model mechanisms that involve less “obliviousness”, in that it 
can describe mechanisms such as attribute-based pointcuts described in Section 5.1. 

8 Future Work 

Further development of these models is one area of future work. For example, it 
appears that a variant of the PA model should apply to systems like Composition 
Filters [3, 4], and aspect-oriented frameworks[24]. 

We would like to enhance the model, and the implementations, to have a single 
parameterized weaving process. In the models, the weaving process consists of three 
operations: generate a join point, use AID and/or BID to identify elements in pA and/or 
pB matching the join point, and use AEFF and/or BEFF to produce the proper effects 
from the matching elements. The following code shows these steps: 

  (lambda (pA pB)  
    ... 
    (let ((jp <generate a JP>)) 
       ... 
       (apply-A (lookup-A jp ...pA...)) 
       ... 
       (apply-B (lookup-B jp ...pB...)) 
       ...)) 

But differences among the models make it difficult to actually implement all four 
using a parameterizable procedure of this form. These differences include: 
− COMPOSITOR generates candidate join points rather than actual join points. 
− BEFF in PA takes as input a thunk that does lookup and apply for A. This makes it 

possible for BEFF to control execution of A. 
− The lookup and apply for A is implicit in OC. COMPOSITOR has a folded lookup 

and apply for A and B. In TRAV, AID and BID work together on each join point. 
While a single parameterized weaving process is attractive, not having it does not 
seem to be a cause for significant concerns. Similar modeling frameworks for OO 
tend to work in terms of common terms more than a single parameterized 
implementation. The interpreters from [8] on which our code is based are not, for 
example, parameterized or composable. 



 

9 Summary 

Developing a common set of concepts with which to discuss and compare AO 
mechanisms is a critical task. This paper takes a step in this direction by presenting a 
set of models that can be used to compare how different AOP mechanisms provide 
support for modular implementation of crosscutting concerns. The analysis yields a 
three-part characterization of what is required for two programs coordinate their 
semantic contributions in terms of a common frame of reference. Modules in the 
programs are said to crosscut each other with respect to the frame of reference. This 
simple model makes it possible to capture all four mechanisms, and expands naturally 
to cover more than two crosscutting modules. 
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