

Modeling Crosscutting in Aspect-Oriented Mechanisms

Hidehiko Masuhara1 and Gregor Kiczales2

1University of Tokyo
masuhara@acm.org

2University of British Columbia
gregor@cs.ubc.ca

Abstract. Modeling four aspect-oriented programming mechanisms shows the
way in which each supports modular crosscutting. Comparing the models
produces a clear three part characterization of what is required to support
crosscutting structure: a common frame of reference that two (or more)
programs can use to connect with each other and each provide their semantic
contribution.

1 Introduction

A number of tools have been proposed for aspect-oriented (AO) software
development. But to date there is no generally agreed upon definition of what makes a
technique aspect-oriented. This paper takes a step in that direction by presenting a
framework that can be used to explain how four proposed mechanisms support
modular crosscutting:
− Pointcuts and advice as in AspectJ [10, 11].
− Traversal specifications as in Demeter[15], DemeterJ[16] and DJ[14, 21].
− Class composition as in Hyper/J[22, 23].
− Open classes as in AspectJ.1
We capture the core semantics of these mechanisms by modeling the weaving process
by which they are implemented. The models define a weaving process as taking two
programs and coordinating their coming together into a single combined computation.
In the case of mechanisms like Hyper/J, where the semantics is defined in terms of
code-processing, the model describes combining input programs to produce a single
combined program.

A critical property of the models is that they describe the join points as existing in
the result of the weaving process rather than being in either of the input programs.
This yields a three-part description of crosscutting structure – in terms of how the two
input programs crosscut each other with respect to the result computation or program.
This three-part description is essential to model all four mechanisms, and to model an
arbitrary number of crosscutting programs.

1 This functionality originated in Flavors [19, 28] where Flavor declarations did not lexically

contain their methods and is found in several other languages; the term open class is due to
[5, 18]. AspectJ used to call this feature introduction, and now calls it inter-type declarations.

The paper is organized as follows:
Section 2 presents a simple object-oriented (OO) language that is used as a basis

for discussion throughout the paper. This includes an example program in the
language, and key elements of a simple interpreter for the language.

Section 3 presents the common structure of all the models.
Section 4 has four parts, each of which shows how one of the four mechanisms is

modeled. The discussion in each part first outlines the core semantics to be addressed,
by showing how that semantics could be embedded in the language of Section 2. This
starts with an example program and an implementation of the semantics, as a
modification to the implementation of Section 2.2. We then show the model and use
the implementation to intuitively validate the model.

Section 5 shows that the simplifications of Section 4 do not invalidate the models
of the real systems. This is done by showing that a number of features originally left
out of the models in Section 4 can easily be added to the models.

Section 6 presents the model of crosscutting structure and uses it to describe the
crosscutting in the examples from Section 4.

Section 7 discusses related work, Section 8 presents future work, and Section 9 is a
summary.

The paper assumes prior knowledge of all four AO mechanisms and a reading
familiarity with simple Scheme interpreters of OO languages. But, at least on a first
pass through, the paper can be read in subsets. Readers unfamiliar with all the
mechanisms can skip the corresponding sub-sections of Section 4. Readers can avoid
much of the Scheme code by skipping Sections 2.2 and 4.[1-4].1; the effect of this
will be to read the models, without the validation of their appropriateness.

The code in this paper is available online. 2 This includes all the model
implementations, as well as the example programs written in both the full systems
(AspectJ, Hyper/J, etc.) as well as our core models of those systems.

2 BASE – An Object-Oriented Language

This section describes a simple object-oriented language, called BASE, which is the
basis for the rest of the paper. The description has three parts: a simple intuitive
description of the language, a sample program in the language, and a simple Scheme
interpreter for the language. The discussion of each of the four mechanisms in Section
4 follows this same structure, and builds on both the example program and the model
interpreter.

2 See http://www.cs.ubc.ca/labs/spl/projects/asb.html.

BASE can be seen as a core subset of Java. It is a single-inheritance OO language,
without interfaces, overloading or multi-methods. Programs in BASE are written in a
Java-like syntax.3

2.1 Sample Program

A simple program written in the BASE language is:

class Figure {
 List elements = new LinkedList();
}

class FigureElement {
 Display display;
}

class Point extends FigureElement {
 int x;
 int y;

 int getX() { return x; }
 int getY() { return y; }

 void setX(int x) { this.x = x; }
 void setY(int y) { this.y = y; }
}

class Line extends FigureElement {
 Point p1;
 Point p2;

 int getP1() { return p1; }
 int getP2() { return p2; }

 void setP1(Point p1) { this.p1 = p1; }
 void setP2(Point p2) { this.p2 = p2; }
}

This code implements a simple figures package. A Figure is comprised of a
collection of FigureElements. There are two kinds of FigureElements, Point
and Line. Both points and lines have the usual structure, and getter and setter
methods. See [11] for a more detailed discussion of this example.

3 In our actual implementation, BASE has a more Scheme-like syntax. We use a Java-like

syntax in the paper to help the reader distinguish between code written in BASE and the
Scheme code that implements BASE. As part of using Java syntax, we show code with a
return statement, even though the actual BASE language has only expressions, no statements.

2.2 Model Implementation

This section presents the model implementation of BASE. The implementation is an
interpreter structured in a manner similar to Chapter 5 of [8]. We show the main
structure of the interpreter, including key data structures and procedures. A number of
minor helper procedures are not included in this presentation.

For simplicity our model implementation does not include a static type checker, we
simply assume the program checks. (We can do this because the language has no
overloading, or other features that cause static typing to have semantic effect on
correct code.)

The interpreter is written in Scheme [9]. We use a style in which variable names
represent the type of their value. (Not actual Hungarian notation.) To save space,
some of these names are abbreviated. The following table shows the naming and
abbreviation conventions used in the code.

abbreviation type of value
pgm program
cname, mname… class, method, field and super name
decl declaration
cdecl, mdecl… class, method and field declaration
param parameter
id identifier
methods
fields
cdecls, mdecls…
…

list of methods
list of fields
list of class, method… declarations
…

env environment
exp expression

The main data structures of the interpreter include AST structures that represent class,
method and field declarations, and expressions that represent code.

(define-struct class-decl (cname sname decls))
(define-struct method-decl (rtype mname params body))

(define-struct exp ())
(define-struct (if-exp exp) (test then else))
<and many sub-types of exp>

There are class and method structures that represent total effective class and method
definitions. While a class declaration includes method declarations for only those
methods defined lexically in the class, a class structure includes method structures for
methods defined in the class as well as inherited methods.

(define-struct class (cname sname fields methods))
(define-struct method (cname mname params body))
(define-struct field (type fname))

There are also environment data structures that hold variable values and class
definitions. The code for those is not shown here.

The entry point of the interpreter is the eval-program procedure. It first walks
over the declarations to produce the class and method structures; the global variable
classes is bound to a list of the class structures. Then eval-expression is
called with an expression that calls the main entry point.4

 (define eval-program
 (lambda (pgm)
 (set! *classes* (init-classes))
 (elaborate-class-decls! (program-decls pgm))
 (eval-exp (parse-exp "(new Main()).main()")
 (make-empty-env))))

The eval-expression procedure is a standard recursive evaluator. Within the
structure of eval-expression, we identify specific helper procedures, call-
method, get-field and set-field, for evaluating method calls and field accesses.
Separating these helper procedures, rather than inlining them in eval-expression
is done to simplify the presentation in later sections of the paper.

(define eval-expression
 (lambda (exp env)
 (cond
 ((literal-exp? exp) (literal-exp-datum exp))
 ((if-exp? exp) ...)
 ...
 ((method-call-exp? exp)
 (let ((mname (method-call-exp-mname exp))
 (obj-exp (method-call-exp-obj-exp exp))
 (rands (method-call-exp-rands exp))
 (call-method mname
 (eval-exp obj-exp env)
 (eval-rands rands env))))
 ((get-field-exp? exp)
 (let ((obj (apply-env env 'this))
 (fname (get-field-exp-fname exp)))
 (get-field obj fname)))
 ((set-field-exp? exp)
 ...
 (set-field obj fname val))))))

(define call-method
 (lambda (mname obj args)
 (let ((method (lookup-method mname obj)))
 (execute-method method obj args))))

(define get-field
 (lambda (obj fname)
 <get the field value from the object>))

4 In the model implementation on the website, this entry point is the main method of the class

called Main. To save space, the example code in Section 2.1 doesn’t include a Main class.

(define set-field
 (lambda (obj fname val)
 <set the field value in the object>))

The lookup-method procedure simply finds the method in the methods of the class,
if no matching method is found an error is signaled.

(define lookup-method (mname obj)
 (let* ((cname (object-cname obj))
 (methods (cname->methods cname)))
 <scan methods looking for one matching mname>
))

The execute-method procedure simply evaluates the body of the method in an
environment with this bound to the object, and the method parameter identifiers
bound to the arguments.

(define execute-method (method obj args)
 (eval-expression (method-body method)
 (make-env (cons 'this (method-ids method))
 (cons obj args))))

Together with a modest number of helper procedures not shown here, this provides a
complete implementation of the BASE language.

3 The Modeling Framework

This short section presents the modeling framework in general terms. (Readers who
prefer bottom-up presentation of general concepts may want to skip directly to section
4.)

The framework models each AO mechanism as a weaver that combines two input
programs to produce either a program or a computation. Each weaver is modeled as
an 11-tuple:

〈X, XJP, A, AID, AEFF, AMOD, B, BID, BEFF, BMOD, META〉

A and B are the languages in which the input programs pA and pB are written. X is the
result domain of the weaving process, which is usually a computation, but can be a
third language to model systems like Hyper/J, where the semantics is defined in terms
of manipulating code.

XJP is the join points in X.
AID and BID are the means, in the languages A and B, of identifying elements of

XJP (the join points in X).
AEFF and BEFF are the means, in the languages A and B, of effecting semantics at

identified join points.
AMOD and BMOD are the units of modularity in the languages A and B. All

discussion of the units of modularity is deferred to Section 6.
META is an optional meta-language for parameterizing the weaving process. In

cases where META is not used we simply leave it out of the model.
A weaving process is defined as a procedure with signature:

A × B × META → X

That is, it accepts three programs, pA, pB and pMETA, written in the A, B and META
languages, and produces either a computation or a new program.

A critical property of this model is that it models A, B and X as distinct entities,
and models weaving as combining the semantics of programs in A and B at join
points in X. This differs from models that have two elements (i.e. A and B), and
characterize B as merging with A at join points in A. The implications of this three-
part model are discussed further in Section 6, but two points are worth discussing
here.

In general, A and B can be different. This means that AID and BID can differ, as can
AEFF and BEFF. For example, in the model of AspectJ presented in Section 4.1, method
declarations are modeled as elements of the A language, and advice are modeled as
elements of B. Both method declarations and advice can affect what happens at a
method call. But their means of identifying the call is different (a method signature in
a method declaration vs. a pointcut in an advice), and their means of effecting
semantics of the call is different (execution of a method differs from execution of
after advice).

In cases where A and B are different, it is often the case that one of them can be
seen as more similar in structure to X than the other. Again, in the AspectJ case, X
will be the execution of the objects, which can be seen as more similar in structure to
A (the classes and methods) than to B (the advice). In such cases, we will always use
A as the name of the one that is more similar to X. But it will be critical to remember
that A is not the same as X, it is just highly similar in structure to X. A key property
of this framework is to distinguish A and X even when they are quite similar.

Table 1. Summary of four models. In this table the single letters ‘c’, ‘m’ and ‘f’
are abbreviations for class, method and field respectively.

 PA TRAV COMPOSITOR OC
X program

execution
traversal
execution

composed
program

combined program

XJP method calls arrival at each
object

declarations in X class declarations

A c, m, f
declarations

c, f declarations c, m, f
declarations

c declarations w/o OC
declarations

AID m signatures,
etc.

c, f signatures c, m, f signatures method signatures

AEFF execute
method body

provide
reachability

provide
declarations

provide declarations

B advice
declarations

traversal spec. &
visitor

(= A) OC method declarations

BID pointcuts traversal spec. (= AID) effective method signatures
BEFF execute

advice body
call visitor &
continue

(= AEFF) copy method declarations

META none none match & merge
rules

none

4 Four Mechanisms in Terms of the Model

This section presents models of four mechanisms found in current AO systems. Table
1 shows a summary of the four models. For each mechanism, we first present a
simplified, or core version of its semantics, by providing an intuitive description and a
short example program. These are based on the corresponding material developed for
the BASE semantics in Section 2. We then present the model, which is derived from
the framework by filling in the eleven parameters. Each sub-section ends with an
intuitive validation of the model, which is done by showing how elements of the
implementation correspond to elements of the model.

4.1 PA – Pointcuts and Advice

This section shows how the pointcut and advice mechanism in AspectJ can be
modeled in terms of the modeling framework.

We first present a simplified, or core, version of the pointcut and advice
mechanism semantics; we call this core semantics PA. As compared to AspectJ, PA
has only method call join points, after advice declarations, and call, target, && and ||
pointcuts. While this leaves out significant AspectJ functionality, it suffices to capture
the important elements, and later in the paper Section 5.1 shows that the missing
functionality can be added without requiring changes to the model.

As an example of the PA functionality, consider the following after advice, which
implements display updating functionality similar to that in [11].

after(FigureElement fe):
 (call(void Point.setX(int))
 || call(void Point.setY(int))
 || call(void Line.setP1(Point))
 || call(void Line.setP2(Point)))
 && target(fe) {
 fe.display.update(fe);5
}

Implementation of PA. This section presents an interpreter for PA, based on a few
small changes and additions to the interpreter for BASE.

First, we define a structure used to represent dynamic join points:

(define-struct call-jp (mname target args))

5 In full AspectJ, this could be written as:

after(FigureElement fe):
 call(void FigureElement+.set*(..)) && target(fe) {
 fe.display.update(fe);
}

But we write the longer form because we do not implement the required type pattern and
wildcarding functionality in this paper.

This structure says that the dynamic values at a join point – remember that for now
PA only has method call join points – include the name of the method being called,
the object that is the target of the call, and a list of the arguments to the call.

The weave procedure is defined as:

(define pa:weave
 (lambda (pgm); -> computation
 (fluid-let ((pgm
 (remove-advice-decls pgm))
 (*advice-decls*
 (gather-advice-decls pgm)))
 (eval-program pgm))))

The weaver first separates the advice declarations from the rest of the program,
leaving it with an ordinary BASE program, as well as a list of advice declarations.
The weaver then proceeds to evaluate the BASE program.

The call-method procedure is modified to create method call join point
structures, and check whether any advice declarations match the join point; these
advice declarations are run after executing the method itself.

(define call-method
 (lambda (mname obj args)
 (let* ((jp (make-call-jp mname obj args))
 (method (lookup-method jp))
 (adv-matches (lookup-advice jp)))
 (execute-advice adv-matches jp
 (lambda ()
 (execute-method method jp))))))

In addition to redefining call-method, we also redefine lookup- and execute-
method to take a single jp structure as their argument, rather than taking mname, obj
and args separately. This simple change is not shown here.

The role of lookup-advice is to take a jp structure and look in *advice-
decls* to find which advice declarations have a pointcut that matches the join point.
The result of lookup-advice is a list of adv-match structures. Each such structure
represents the fact that a particular advice declaration matched, and includes bindings
of parameters of the advice to values in the context of the join point (i.e. fe is bound
to the figure element).

(define-struct adv-match (adv-decl ptc-match))
(define-struct ptc-match (ids vals))

lookup-advice works simply by looping through all the advice declarations, calling
pointcut-matches to see if each advice declaration’s pointcut matches the join
point.

 (define lookup-advice
 (lambda (jp)
 (remove*6 #f
 (map (lambda (adecl)
 (let* ((ptc (advice-decl-ptc adecl))

6 Remove all occurrences of an item from a list.

 (ptc-match
 (pointcut-matches ptc jp)))
 (if (not ptc-match)
 #f
 (make-adv-match adecl
 ptc-match))))
 advice-decls))))

pointcut-matches is simply a case-based test to see whether a given pointcut
matches the join point. If not, it returns false, otherwise it returns a ptc-match
structure. Note that target is currently the only pointcut that binds parameters.

(define pointcut-matches
 (lambda (ptc jp)
 (cond ((call-pointcut? ptc)
 (and (eq? (call-pointcut-mname ptc)
 (call-jp-mname jp))
 (make-ptc-match '() '())))
 ((target-pointcut? ptc)
 (make-ptc-match
 (list (target-pointcut-id ptc))
 (list (call-jp-target jp))))
 ((and-pointcut? ptc) ...)
 ((or-pointcut? ptc) ...)
)))

The execute-advice procedure takes a list of advice match structures, a jp structure
and a thunk as arguments. The thunk implements the computation at the join point
independent of any advice. As shown in the call-method procedure above, at
method call join points, the thunk implements the behavior of call-method in the
original BASE system. Note that execute-advice must be able to handle a list of
matching advice, because join points can have more than one matching advice.

(define execute-advice
 (lambda (adv-matches jp thunk)
 (let ((result (thunk)))
 (for-each (lambda (adv-match)
 (execute-one-advice adv-match
 jp))
 adv-matches)
 result)))

Model of PA. The model of PA in terms of the framework is as follows. Note that we
use italics to identify parts of PA semantics that are deferred to Section 5.

X Execution of combined programs
XJP method calls, and field gets and sets
A Class, method and field declarations
AID method and field signatures
AEFF execute method body, get and set field value
B advice declarations with pointcuts

BID Pointcuts
BEFF execute advice body before, after and around method

We use the implementation as intuitive evidence that the model is realizable and
appropriate. We do this by matching the model parameters to corresponding elements
in the implementation code.

A and B are clearly modeled in the implementation of pa:weave. A program pA
in the language A is the class declarations from the complete program; a program pB
in the language B is the advice declarations, with their associated pointcuts. X is the
complete computation, which pa:weave produces by calling eval-program. In this
case A plays a primary role over B, as the weaver proceeds by running A, calling
advice from B when appropriate.

The revised implementation of call-method models method call join points
(XJP) as the points in the flow of control when a method is called. The jp structure
models the kind of join point, as well as the values available in the context of the join
point.7

In A, the complete signatures of method declarations are the means of identifying
join points (AID), and execution of the method body is the means of specifying
semantics at the join points (AEFF). Taken together, these say, “when execution
reaches a call to an object of this class with this method name, then execute this
code.”

In B, the means of identifying join points (BID) is pointcuts, and is modeled by
pointcut-matches. The means of effecting semantics (BEFF) is execution of the
advice body after continuing with the join point, and is modeled by execute-
advice.

4.2 TRAV – Traversals

The Demeter systems (Demeter, DemeterJ and DJ) provide a mechanism that enables
programmers to implement traversals through object graphs in a succinct declarative
fashion. The effect of this functionality is to allow the programmer to define, in a
modular way, a traversal that would otherwise require code scattered among a number
of classes. They work by defining the traversal as well as what actions to take at
points along the traversal.

In this section, we work with a simple traversal semantics, called TRAV. TRAV
supports declarative description of the traversal, but not whether to call the visitor at
each object in the traversal; the visitor is simply called at every object in the traversal.
As with PA above, while this omits important functionality, that omission does not
impact the suitability of the general framework. Section 5 shows how the omitted
functionality can be added.

An example of a program fragment written using TRAV is:

7 The semantics of values in the context of a join point and how the this, target and args

pointcuts access those values is more complex than this in AspectJ, because proceed can
change the values that args sees. Doing it properly makes the code more complex, but does
not impact the modeling framework or the model of PA.

Visitor counter = new CountElementsVisitor();

traverse("from Figure to FigureElement",
 fig,
 counter);

This code fragment implements the behavior of visiting all the FigureElements
reachable from a Figure. The first argument to traverse is called a traversal
specification; it describes the path to follow to each object to be visited. The second
argument is a root object, where the traversal starts. The third argument is a visitor,
which defines behavior at each traversed object. In this case the traversal mechanism
is taking care of iterating through the elements of the figure, and following down
through line objects to reach point objects. The visitor is called on every object in the
traversal, including the Figure as well as the List that holds the FigureElements.
The actual visitor must decide which objects to count, i.e. not to count the List.

We preserve the critical property of Demeter that the range of traversal is based on
reachability information from the class graph, in addition to information about the
dynamic class of the current object. Therefore, when the traversal comes to a Line
object, for example, it goes on to the Point objects referenced by the Line; but it
does not go on to the Display object, because the traversal specification says it is
looking for FigureElement and the class graph shows there are no ways to reach a
FigureElement from a Display.

Implementation of TRAV. The weaver implementation for TRAV is the procedure
trav:weave. We modify eval-expression from the BASE interpreter to call
trav:weave to implement the new traverse primitive. The definition of
trav:weave is:

(define trav:weave
 (lambda (trav-spec root visitor)
 (let arrive ((obj root) ;arrival at obj is a jp
 (path (make-path
 (object-cname root))))
 (call-visitor visitor obj)
 (for-each
 (lambda (fname)
 (let* ((next-obj (get-field fname obj))
 (next-cname (object-cname next-obj))
 (next-path
 (extend-path path next-cname)))
 (if (match? next-path trav-spec)
 (arrive next-obj next-path))))
 (object->fnames obj)))))

The traversal process can be seen as a simple depth-first walk with a navigator that
restricts the walk. When the walk arrives at an object, it calls the visitor with the
object, and then recursively walks the objects referenced by the object. At each step
along the way, it first checks with the navigator about whether or not to proceed.

The navigator checks whether to traverse to an object in two steps. It first locates
possible positions of the object in the traversal specification. The traversal

specifications following those positions are then tested against the class graph. The
test succeeds when there exists a path on the class graph that matches a remaining
specification.

We implement this in a simple way. We assume the root object is always a legal
root of the traversal specification. In order to locate positions in the specification, the
code manages a path that keeps track of a sequence of classes walked from the root.
The match? procedure checks whether the whole path matches the traversal
specification by using two sub-procedures that correspond to the two steps above.

(define match?
 (lambda (path trav-spec)
 (let ((residual-spec (match-path path trav-spec)))
 (match-class-graph?
 residual-spec (path-last-cname path)))))

The match-path procedure matches the path to the traversal specification by
repeatedly matching each class in the path from the root.8 The matching algorithm is
implemented by simple conditional cases on the kind of the directive at the head of
the specification. The code returns either a remaining specification for partially
matched cases, an empty specification for completely matched cases, or false for
unmatched cases. When a class matches more than one position in the specification,
an or-specification is returned as a result.

(define match-path
 (lambda (path spec);->spec
 (let loop ((cnames (path->cnames path))
 (spec spec))
 (if (null? cnames) spec
 (loop (cdr cnames)
 (match-cname (car cnames) spec))))))
(define match-cname
 (lambda (cname spec);->spec or #f
 (cond ((null? spec) #f) ; unmatched
 ((to-spec? spec)
 (if (subclass? cname (to-spec-cname spec))
 (make-or-spec '()
 (list spec (spec-next spec)))
 spec))
 ...)))

The match-class-graph? procedure matches the remaining specification against
the class graph, and returns true or false. For a to-specification, the matching is
simply subsumed by the reachability to the specified class. Note that the reachability
is decided by checking the class graph. In the implementation, the procedure
reachable?, not shown here, does this by using global variable *classes*.

(define match-class-graph?
 (lambda (spec root-cname);->boolean
 (let loop ((spec spec)

8 A more sophisticated implementation would implement these steps with a state transition

machine so that it could avoid complicated checks at each object.

 (cname root-cname))
 (cond ((eq? spec #f) #f) ; already unmatched
 ((to-spec? spec)
 (reachable? cname (to-spec-cname spec)))
 ...))))

Calling the visitor involves calling the visit method with the object as its argument.

(define call-visitor
 (lambda (visitor obj)
 (call-method 'visit visitor (list obj))))

Model of TRAV. The TRAV model is:

X execution of traversal through object graph (visit the
objects specified by traversal spec)

XJP arrival at each object along the traversal
A class and field declarations
AID class names and complete field signatures9
AEFF provide reachability information
B traversal specification and visitor
BID traversal specification, overloaded visitor methods
BEFF call visitor and continue traversal (or not)

X is the actual traversal, and is implemented by trav:weave. Within that process, a
call to arrive corresponds to a join point. This is analogous to the way, in the PA
model, that a dynamic call to call-method corresponds to a join point.

pA and pB are clearly modeled in the implementation – pA is the class and field
declarations, which are converted into a class graph (bound to the *classes* global
variable) by eval-program before executing trav:weave. pB is the three
arguments to trav:weave.

In A, the class names and field signatures are AID. The effect of A is to provide
reachability information, which is modeled by the reachable? procedure. This
combined with the traversal specification determines where the traversal goes. This
combination happens in the match? procedure.

In B, BID is the traversal specifications, and is modeled by the match-path
procedure. Combined with AEFF, BEFF determines whether to continue traversal, which
is realized by the simple conditional branch on the result of the match? procedure.

4.3 COMPOSITOR – Class Composition

Hyper/J provides mechanisms that compose programs. This allows the programmer
to implement concerns as independent (partial) programs, even when the composition
of the concerns cuts across their module structure.

9 Similar to a complete method signature, a complete field signature includes the class name,

and is of the form: <class> <enclosing-class>.<id>

In this paper, we focus on the composition of classes. We omit class hierarchy
composition, slicing based on concern maps and other powerful features of Hyper/J.
For simplicity, we also limit ourselves to only a simple composition semantics that
merges two programs based on class and member names. Using our simplified
semantics, called COMPOSITOR, the display updating functionality from Section 4.1
can be implemented in two steps as follows. First we write a program with just this
class:

class Observable {
 Display display;
 void moved() {
 display.update(this);
 }
}

calling the original figures program of Section 2.1 program A, and this one program
B, the two programs are composed with a call to the compositor (weaver) as follows:

(compositor:weave <program-a> <program-b>
 "match Point.setX with Observable.moved
 match Point.setY with Observable.moved
 match Line.setP1 with Observable.moved
 match Line.setP2 with Observable.moved")10

In the resultant composed program, the specified methods of the Point and Line
classes are combined with the body of the moved method above. The effect is that
they call display.update after they finish executing.

Implementation of COMPOSITOR. The weaver for COMPOSITOR is a source-to-
source translator, which merges two BASE programs into one, under control of a
composition description. The code for the weaver is

(define compositor:weave
 (lambda (pgm-a pgm-b relationships)
 (let loop ((pgm (make-program '()))
 (seeds (compute-seeds pgm-a pgm-b)))
 (if (not (null? seeds))
 (let ((signature
 (all-match (car seeds)
 relationships)))
 (if signature
 (let* ((jp (car seeds))
 (decl (merge-decls jp

10 The actual Hyper/J meta-program for this composition would look something like:

mergeByName;
bracket "{Point,Line}"."set*"
 after Observable.moved($OperationName);

But for simplicity, we do not implement pattern matching and bracketing mechanisms.
Instead, we assume that two methods with the same name match regardless of the parameter
types, and that when methods from programs A and B are merged, the bodies of those
methods are placed in A, B order in the merged method.

 relationships)))
 (loop (add-decl-to-pgm decl pgm
 signature)
 (remove-subsets jp (cdr seeds))))
 (loop pgm (cdr seeds))))
 pgm))))

It receives two programs, pgm-a and pgm-b, as well as the description of the
matching and merging to use, relationships.

The first step is to compute all possible compositions of declarations in the merged
program. We call these seeds, and they are produced by compute-seeds. We model
this as computing the power set of the union of the declarations in pgm-a and pgm-b
(of course our implementation does not actually compute the power set). The list of
seeds is sorted in set-inclusion order, with subsets following supersets.

After sorting, for each seed, there are up to three steps:
1. The procedure all-match determines whether this set should actually be merged

according to the composition description, and returns the signature for the
composed declaration when it should. In the simplest case, a seed of two method
declarations (coming from pgm-a and pgm-b) having the same signature m
matches, and returns m as the signature for the composed declaration. I.e. the set:

{<Point.setX(int)>, <Observable.moved()>}

 is merged to <Point.setX(int)> in the composed program.
2.The procedure merge-decls computes the body of the actual declaration. I.e.
 {
 this.x = x;
 display.update(this);
 }

3. The procedure add-decl-to-pgm adds the declaration to the resultant program
with the computed signature.

For any seed that is merged, all subsets of that seed are removed from the remaining
seeds before proceeding.

The procedure all-match first picks a signature from the declarations in the
given seed, and then checks that all the declarations can contribute to the signature.
In order to allow renaming, it takes a relationships parameter as an additional
argument:

(define all-match
 (lambda (decls relationships)
 (let ((sig (pick-signature decls
 relationships)))
 (and (every? (lambda (decl)
 (signature-match? sig decl
 relationships))
 decls)
 sig))))

The merge-decls procedure also receives relationships as an argument. Richer
merging mechanisms, such as overriding and bracketing (i.e., before/after/around-like
merger), can be supported by extending the meta-language and this procedure.

Model of COMPOSITOR. The description of the COMPOSITOR model is as
follows. Note that unlike the other mechanisms, A and B are in the same language,
and in this case we also use the META parameter.

X the composed program
XJP declarations in X
A, B class, method and field declarations
AID, BID class, method and field signatures
AEFF, BEFF provide declaration
META rules for matching and merging

In the code, pA and pB are modeled as separate parameters to compositor:weave.

pMETA is the third parameter to this procedure. A and B are treated equally in the
code, and can easily be generalized to a list of programs for composing more than two
programs. X is the resultant composed program, which initially is empty, and is
populated with declarations during the weaving process.

Join points are modeled as declarations in X. Each one corresponds to the merging
of a subset of declarations from pA and pB. So seeds are in fact seeds for join points. If
they match the match/merge description (pMETA) they are merged to form an actual
join point. Note that a single declaration from A or B can contribute to more than one
declaration in X and vice versa.

AID, BID is the signatures of the declarations in A and B. The matching rules AID,
BID work with are modeled by the META argument to the weaver.

AEFF, BEFF is simply to contribute the declaration from A or B to the merge. The
actual merging is controlled by META.

4.4 OC – Open Classes

Open class mechanisms make it possible to locate method or field declarations for a
class outside the textual body of the class declaration. Open classes are used in a
variety of ways to modularize code; a common use is in visitor problems.

In this section, we work with a simple version of open classes in which method
declarations are contained within class declarations, but it is possible to mark certain
method declarations as defining methods on another class. We call this simple
semantics OC.

Building on the running example, the following OC code defines draw methods for
the different kinds of figure elements in a single DisplayMethods class – it
modularizes the display aspect of the system.

class DisplayMethods {
 void Point.draw() { Graphics.drawOval(...); }
 void Line.draw() { Graphics.drawLine(...); }
}

Implementation of OC. We implement OC as a pre-processor that operates on a
program consisting of normal BASE code intermixed with open class method
declarations and produces a BASE program. This pre-processor pass is defined as

(define oc:weave
 (lambda (pgm)
 (let ((pgm (remove-oc-mdecls pgm))
 (oc-mdecls (gather-oc-mdecls pgm)))
 (make-pgm
 (map (lambda (cdecl)
 (let* ((cname (class-decl-cname cdecl))
 (sname (class-decl-sname cdecl))
 (per-class-oc-mdecls
 (lookup-oc-mdecls cname
 oc-mdecls)))
 (make-class-decl cname sname
 (append (class-decl-decls cdecl)
 (copy-oc-mdecls cname
 per-class-ocmdecls)))))
 (pgm-class-decls pgm))))))

The first step is to remove all open class method declarations from the input program.
This is done by remove-oc-mdecls and gather-oc-mdecls. The open class
method declarations are then each copied into their appropriate class. The lookup-
oc-mdecls procedure finds, for a given class name, which open class method
declarations should be copied into it. The copy-oc-mdecls procedure then copies
those declarations, changing their signature from the open class form
<cname>.<mname> to the normal BASE form <mname>.

(define lookup-oc-mdecls
 (lambda (cname all-oc-mdecls)
 (collect-if
 (lambda (oc-mdecl)
 (eq? (oc-mdecl-cname oc-mdecl) cname))
 all-oc-mdecls)))

(define copy-oc-mdecls
 (lambda (cname per-class-oc-mdecls)
 (map (lambda (oc-mdecl)
 (make-method-decl cname
 (oc-mdecl-rtype oc-mdecl)
 (oc-mdecl-mname oc-mdecl)
 (oc-mdecl-params oc-mdecl)
 (oc-mdecl-body oc-mdecl)))
 per-class-oc-mdecls)))

Model of OC. The description of OC in terms of the model is as follows:

X combined program
XJP class declarations
A class declarations without OC method declarations

AID effective method signatures (cname from enclosing class declaration)
AEFF method declaration stays in place
B OC method declarations
BID effective method signatures (cname from OC method declaration)
BEFF copy method declaration to target class

X is modeled as the results of the oc:weave procedure. pA and pB are a BASE
program stripped of open class method declarations and the sets of open class method
declarations respectively. The join points are the class declarations in the result
program. AID happens by inclusion – the normal methods in pA are copied into their
same enclosing classes in X. This is the same effect as saying that the complete
signature of methods in A is AID. BID is also the complete signature, which is explicit
in B. The matching process for B is modeled by lookup-oc-mdecls. AEFF, BEFF are
the same, the method declaration is copied into the class it belongs in X.

5 Restoring Functionality

To have confidence in the applicability of the modeling framework, we must be sure
that in our simplified semantics – PA, TRAV etc. vs. AspectJ, Demeter etc. – we did
not leave out issues that cannot be captured by the framework. This section addresses
that concern by showing how several key missing functionalities could be added
without falling outside the scope of the models.

There are two ways to show this, the strongest is to show that the actual models of
each semantics change only in their details. The second is to show that even though a
new model is required, it still fits within the same framework. In all the cases below,
we show the former. We show this by once again appealing to the implementation and
using it to intuitively validate that the model changes are only minor. Since all these
changes are highly localized in the implementation, we claim they do not change the
deep model structure.

5.1 Adding features to PA

The PA semantics is missing several key features of AspectJ, including additional
kinds of join points, before and around advice, and context-sensitive pointcuts like
cflow.

To add more kinds of join point, we must enrich the space of jp structures, and
have more places in the interpreter perform advice lookup and execute operations.
For example, join points for reading a field could be added to PA by defining a
structure as follows:

(define-struct (get-jp jp) (fname))11

and replacing the body of get-field just as Section 4.1 does for call-method.

11 Assume that we first define a structure type jp, and modify call-jp to be a sub-type of it.

To add additional pointcuts (excluding cflow-like pointcuts), we simply extend
pointcut-matches to identify join points matching those pointcuts. This could
include pointcuts that identify only one kind of join point, such as call and get as
well as pointcuts like target that identify multiple kinds of join points. In some
cases implementing a new pointcut can require that additional information be added
to some or all kinds of join point. For example, adding a within pointcut would
require adding information about the lexically enclosing method to call join points.

To add before or around advice, we modify execute-advice to run the pieces of
advice and call the thunk in the appropriate order. Supporting proceed can be done
in a manner similar to super calls. We modify execute-advice to make a lambda
closure for the remaining processing at the join point and put the closure in the
environment of around advice execution. We also extend eval-exp to extract the
closure from the environment and execute it for proceed.

Allowing proceed to change the arguments that inner advice and the method
receive is more complicated. It requires changing the thunk passed to execute-
advice to take a single argument, args, which is a list of those arguments. When a
proceed is evaluated, the values of its operands are passed to the closure for proceed,
which eventually passes them to the thunk.

To add control flow sensitive pointcuts like cflow, we thread a call stack through
the join point structures. This is done by adding a stack-prev-jp field to all jp
structures. This field holds the previous join point on the call stack. This requires the
code that constructs the join points to keep the last top of stack and thread it properly.
We can do this with the fluid-let mechanism in Scheme:

(define call-method
 (lambda (mname obj args)
 (let* ((jp (make-call-jp .stack-previous-jp.
 mname obj args))
 ...)
 (fluid-let ((.stack-previous-jp. jp))
 ...))))

Here .stack-previous-jp. is effectively a dynamically scoped variable. The new
cflow clause of pointcut-match follow the stack-prev-jp field until it either
finds a matching jp or reaches the bottom of the stack.

A frequently-proposed feature for PA like mechanisms is to add an attribute feature
to method declarations [1], and allow pointcuts to identify join-points based on these
attributes [26]. This feature can easily be added to PA. Doing it for method
declarations and call join points requires extending the language syntax to support
attributes, extending join point structures to include an attribute element, modifying
call-method to include the attribute in the join point, and adding a new kind of
pointcut to match based on attributes.

These changes add detail to the previous model for PA, but they do not change its
structure. Field gets are, like method calls, points in the flow of execution. Similarly
the new kinds of pointcuts are no more than that – new kinds of pointcuts. Before and
around advice require changes only to execute-advice. Adding proceed with
arguments is only a little less localized.

5.2 TRAV

Demeter, DemeterJ and DJ differ slightly in terms of whether the traversal
specification itself has control over whether the visitor is called. In DJ, for example,
this is controlled by whether the visitor has an overloaded method for the type of
visited object. This range of behaviors can be modeled in the implementation of
call-visitor. To do so we adopt a naming convention that simulates overloading;
then, before calling a visitor on an object, the traverser checks whether the visitor has
a method for the class of the object, and then calls that method if it exists:

(define call-visitor
 (lambda (visitor obj)
 (let ((mname (visitor-mname (object-cname obj))))
 (if (has-method? (object-cname visitor) mname)
 (call-method mname visitor (list obj))))))

Again, these changes are local in the model implementation, and affect only details of
the TRAV model.

5.3 COMPOSITOR

Hyper/J provides a rich meta-language that controls the composition, namely,
bracketing (inserting method bodies before, after, or around of another method body),
overriding, renaming, and wild-carding for matching. These can be supported by
extending all-match and merge-decls. Since the enriched meta-languages can
specify different merging strategies for different declarations contributing to a join
point, all-match has to return both a matched signature and a list of merging
directives for each matched declaration, so that merge-decls can know what to do.

Once again, these changes do not affect the basic structure of the COMPOSITOR
model, as evidenced by the way they are localized in the implementation.

6 Modular Crosscutting

Our models provide a basis for understanding and comparing how each of the
mechanisms enables crosscutting modularity. To do so we first need to address the
AMOD and BMOD model parameters. These are the units of modularity in the A and B
languages. We define these as follows:

 AMOD BMOD
PA class advice
TRAV class traversal specification
COMPOSITOR class class
OC class class

These are not the only possibilities for units of modularity in each of these models. In
PA for example, we could do as AspectJ does, and BMOD could be aspect declarations.

In all the models we could use higher-level units of modularity like packages. The
analysis of this section can be repeated for such alternative units of modularity to
compare how crosscutting is supported for each.

For a module mA (from pA) we say that the projection of mA onto X is the set of
join points identified by the AID elements within mA. The same is true for mB. For
example, in PA, the projection of a given advice declaration is all the join points
matched by the pointcut of that advice declaration.

For a pair of modules mA and mB (from pA and pB) we say that mA crosscuts mB
with respect to X if and only if their projections onto X intersect, and neither of the
projections is a subset of the other. Fig. 1 illustrates this situation, first in general
terms and then for each of the example programs as explained below.

In the PA example (Section 4.1) the Point class and the display updating advice
crosscut each other with respect to X. We consider the projection of the Point class
onto X to include all calls to methods of the Point class.12 The projection of the

12 In AspectJ, the call join points would be considered not as being within the projection of the

class, but rather as being within the projection of the calling class. Execution join points
would be considered as within the projection of the class that defines the method.

The dots in X represent JPs, the dots in A/B represent elements that match those JPs, the
dashed/dotted boxes in A/B represent modules, and the dashed/dotted boxes in X are the
projections of those modules. In all these cases the modules in A and B crosscut with respect to
X.
Fig. 1. Modular Crosscutting in General Terms and in the Four Example Programs

A B

X

Line

arrive at l
arrive at p
arrive at p’

arrive at l
arrive at p

traverse(…)
traverse(…)

Point

DisplayMethods
Point.draw
Line.draw

Line

Line
setP1
draw

Point
setX
draw

Point

PA
TRAV

OC
COMPOS-
ITOR

Line
setP1
getP1

call to l.setP1
call to l.getP1

call to p.setX
call to p.getX

after(…):…
Point
setX
getX

Line
setP1
getP1

Line
setP1
getP1

Point
setX
getX

Observable
moved

Point
setX
getX

advice onto X includes calls to the setter methods of the Point and Line classes. So
the projections of the Point class and the advice intersect, and neither is subset of the
other.

In the TRAV example (Section 4.2) the Point class and the traversal description
crosscut with respect to X. The projection of the Point class includes all arrivals at
Point objects initiated by any traversals. The projection of the traversal description
includes arrivals at Point objects as well as arrivals at objects of other classes such
as Line and LinkedList.

In the COMPOSITOR example (Section 4.3) the Point class and the
Observable class crosscut with respect to X. The projection of the Point class on X
includes all methods of the Point class in X. The projection of the Observable in
B includes all set methods of Point and Line classes in X.

In the OC example (Section 4.4) the Point class in A and the DisplayMethods
class in B crosscut with respect to X. The projection of Point in A contains all but
the draw method of Point in X, and the projection of DisplayMethods contains
draw methods of Point and Line classes.

Note that this analysis does not allow us to say that a given mechanism is
crosscutting, only that it can support modular crosscutting. Or, in model terms, we
cannot say a model is crosscutting, just that a particular pair of modules from
particular pA and pB crosscut each other. This is not surprising, we know that an OO
program does not have to have a hierarchical inheritance structure; it is simply that
the language supports it.

Stepping back from the examples and the details of the models, we can see a clear
three part characterization of what is required to support crosscutting structure: a
common frame of reference that two (or more) programs can use to connect with each
other and each provide their semantic contribution. In model terms the common frame
of reference is XJP, the programs are pA and pB, they connect at the join points using
AID and BID, and provide their semantic contribution with AEFF and BEFF.

In some mechanisms, including PA, it can be tempting to equate the frame of
reference with one of the programs, i.e. to say that the classes are X and that member
declarations in the classes are the join points. But this two part characterization is less
general It is difficult to model COMPOSITOR semantics or to model more than two
crosscutting modules that way. The three part model supports both of these cleanly.

7 Related Work

Some authors have compared two particular AO systems, for example, Lieberherr et
al. have explained concepts in the Demeter systems in terms of AspectJ [14]. Our
work defines a common framework in terms of which four systems are modeled.

Some authors have proposed formal models for AO mechanisms [2, 6, 13, 20, 27].
Those models are attractive in that they express deep characteristics of the systems,
such as implementation issues [17] and static analysis [25], in concise ways. But they
only apply to specific mechanisms, all of which are in the PA family. Again, our
work differs in finding common structure for diverse AO mechanisms. We believe

that our framework could also be useful in developing other kinds of models for
specific mechanisms. In fact, Wand’s semantics[27] is based on our earlier work on
the modeling framework. Note that this is in contrast to characterizations of weaving
that work only in terms of source code pre-processing.

Filman and Friedman suggest that AOP systems can be defined as enabling
quantified programmatic assertions over programs written by programmers oblivious
to such assertions [7]. The model they propose is a two part-model – it compares
programs and assertions. Our three-part structure is essential to accounting for how
the mechanisms enable modular crosscutting, a key goal identified in [12]. Our
framework can also model mechanisms that involve less “obliviousness”, in that it
can describe mechanisms such as attribute-based pointcuts described in Section 5.1.

8 Future Work

Further development of these models is one area of future work. For example, it
appears that a variant of the PA model should apply to systems like Composition
Filters [3, 4], and aspect-oriented frameworks[24].

We would like to enhance the model, and the implementations, to have a single
parameterized weaving process. In the models, the weaving process consists of three
operations: generate a join point, use AID and/or BID to identify elements in pA and/or
pB matching the join point, and use AEFF and/or BEFF to produce the proper effects
from the matching elements. The following code shows these steps:

 (lambda (pA pB)
 ...
 (let ((jp <generate a JP>))
 ...
 (apply-A (lookup-A jp ...pA...))
 ...
 (apply-B (lookup-B jp ...pB...))
 ...))

But differences among the models make it difficult to actually implement all four
using a parameterizable procedure of this form. These differences include:
− COMPOSITOR generates candidate join points rather than actual join points.
− BEFF in PA takes as input a thunk that does lookup and apply for A. This makes it

possible for BEFF to control execution of A.
− The lookup and apply for A is implicit in OC. COMPOSITOR has a folded lookup

and apply for A and B. In TRAV, AID and BID work together on each join point.
While a single parameterized weaving process is attractive, not having it does not
seem to be a cause for significant concerns. Similar modeling frameworks for OO
tend to work in terms of common terms more than a single parameterized
implementation. The interpreters from [8] on which our code is based are not, for
example, parameterized or composable.

9 Summary

Developing a common set of concepts with which to discuss and compare AO
mechanisms is a critical task. This paper takes a step in this direction by presenting a
set of models that can be used to compare how different AOP mechanisms provide
support for modular implementation of crosscutting concerns. The analysis yields a
three-part characterization of what is required for two programs coordinate their
semantic contributions in terms of a common frame of reference. Modules in the
programs are said to crosscut each other with respect to the frame of reference. This
simple model makes it possible to capture all four mechanisms, and expands naturally
to cover more than two crosscutting modules.

Acknowledgements

The authors are grateful to Kris de Volder, Mitchell Wand, Chris Dutchyn, Gail
Murphy, Harold Ossher, Karl Lieberherr, Mira Mezini, and Mario Südholt for their
valuable comments and discussion on early drafts of the paper. Previous work with
Wand and Dutchyn developed earlier versions of the Aspect Sandbox.

References

1. C# Language Specification (2nd edition), ECMA Standard-334, 2002.
2. Andrews, J., Process-Algebraic Foundations of Aspect-Oriented Programming. In

International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns, LNCS 2192, Springer, pp.187-209, 2001.

3. Bergmans, L. and Aksit, M. Composing Crosscutting Concerns Using
Composition Filters. Communications of ACM, 44(10)51-57, 2001.

4. Bergmans, L., Aksit, M. and Tekinerdogan, B. Aspect Composition Using
Composition Filters. In Software Architectures and Component Technology: The
State of the Art in Research and Practice, Kluwer, pp.357-382, 2001.

5. Clifton, C., Leavens, G., Chambers, C. and Millstein, T., MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java. In Conference on Object
Oriented Programming Systems Languages and Applications, pp.130-145, 2000.

6. Douence, R., Motelet, O. and Südholt, M. A Formal Definition of Crosscuts. In
International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns, LNCS 2192, Springer, pp.170-186, 2001.

7. Filman, R. and Friedman, D. Aspect-Oriented Programming is Quantification and
Obliviousness. In OOPSLA 2000 Workshop on Advanced Separation of Concerns.

8. Friedman, D., Wand, M. and Haynes, C.T. Essentials of Programming Languages.
MIT Press, 2001.

9. Kelsey, R., Clinger, W. and Rees, J. Revised5 Report on the Algorithmic
Language Scheme. Higher-Order and Symbolic Computation, 11(1)7-105, 1998.

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.
Getting Started with AspectJ. Communications of ACM, 44(10)59-65, 2001.

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G.
An overview of AspectJ. In European Conference on Object-Oriented
Programming, LNCS 2072, Springer, pp.327-353, 2001.

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.
and Irwin, J. Aspect-Oriented Programming. In European Conference Object-
Oriented Programming, LNCS 1241, Springer, pp.220-242, 1997.

13. Laemmel, R. A Semantical Approach to Method-call Interception. In International
Conference on Aspect-Oriented Software Development, pp.41-55, 2002.

14. Lieberherr, K., Orleans, D. and Ovlinger, J. Aspect-Oriented Programming with
Adaptive Methods. Communications of ACM, 44(10)39-41, 2001.

15. Lieberherr, K. Adaptive Object-Oriented Software: the Demeter Method with
Propagation Patterns. PWS Publishing, 1996.

16. Lieberherr, K. and Orleans, D. Preventive Program Maintenance in Demeter/Java
(Research demonstration). In International Conference on Software Engineering,
pp.604-605, 1997.

17. Masuhara, H., Kiczales, G. and Dutchyn, C., A Compilation and Optimization
Model for Aspect-Oriented Programs. In International Conference on Compiler
Construction, LNCS 2622, Springer, pp.46-60, 2003.

18. Millstein, T. and Chambers, C., Modular Statically Typed Multimethods. In
European Conference on Object-Oriented Programming, LNCS 1628, Springer,
pp.279-303, 1999.

19. Moon, D., Object-oriented programming with Flavors. In Conference on Object
Oriented Programming Systems Languages and Applications, pp.1-8, 1986.

20. Orleans, D. Incremental Programming with Extensible Decisions. In International
Conference on Aspect-Oriented Software Development, pp.56-64, 2002.

21. Orleans, D. and Lieberherr, K. DJ: Dynamic Adaptive Programming in Java. In
International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns, LNCS 2192, Springer, pp.73-80, 2001.

22. Ossher, H. and Tarr, P. Hyper/J: Multi-dimensional separation of concerns for
Java. In International Conference on Software Engineering, pp.729-730, 2001.

23. Ossher, H. and Tarr, P. The Shape of Things To Come: Using Multi-Dimensional
Separation of Concerns with Hyper/J to (Re)Shape Evolving Software.
Communications of ACM, 44(10)43-50, 2001.

24. Pinto, M., Fuentes, L., Fayad, M. and Troya, J. Separation of Coordination in a
Dynamic Aspect Oriented Framework. In International Conference on Aspect-
Oriented Software Development, pp.134-140, 2002.

25. Sereni, D. and de Moor, O., Static Analysis of Aspects. In International
Conference on Aspect-Oriented Software Development, pp.30-39, 2003.

26. Shukla, D., Fell, S. and Sells, C. Aspect-Oriented Programming Enables Better
Code Encapsulation and Reuse. MSDN Magazine, March, 2002.

27. Wand, M., Kiczales, G. and Dutchyn, C. A Semantics for Advice and Dynamic
Join Points in Aspect-Oriented Programming. In Foundations of Aspect-Oriented
Languages (FOAL2002), pp.1-8, 2002.

28. Weinreb, D. and Moon, D.A. Flavors: Message passing in the LISP machine, A.I.
Memo 602, Massachusetts Institute of Technology A.I. Lab., 1980.

