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Abstract 
Developers use formal or informal software architecture 
descriptions in order to communicate and reason about 
the high-level structural properties of a system.  However, 
these architectural descriptions are often inaccurate or 
out of date, resulting in lost productivity and defects as 
the system is evolved. 

This paper presents the first static technique for en-
forcing complete structural conformance between a rich 
architectural specification and general-purpose imple-
mentation code.  Our system, ArchJava, models architec-
ture as a hierarchy of component instances that commu-
nicate through explicit connections.  ArchJava’s type sys-
tem ensures that components only communicate through 
connections that are explicitly declared in the architec-
ture.  As a result, developers have accurate architectural 
documentation, allowing them to carry out evolution tasks 
with confidence. 

To validate our design, we show how ArchJava can be 
used to capture the Mission Data System architecture 
under development at JPL for embedded space system 
applications. 

1. Introduction 
Software architecture is the high-level organization of a 
software system, showing how the system decomposes 
into components, and how these components interact 
[GS93,PW92].  Various systems have been developed to 
allow architects to specify and reason about different ar-
chitectural properties, including the temporal order of 
architectural events [LV95,AG97], architectural styles 
[AAG93,MOR+96], and the evolution of dynamic sys-
tems [MK96].  One major, long-term goal of software 
architecture research is to aid engineers in development 
and evolution tasks by enforcing these architectural prop-
erties in the implementation of a system. 

All of the properties cited above rely on a basic notion 
of architectural structure: a description of how the major 
components in a software system interact.  For example, 
modeling the temporal order of architectural events in-
cludes specifying where these events occur in the architec-
ture; architectural styles constrain the topology of an ar-
chitecture and how components can communicate; and 
architectural dynamism involves structure that changes 
over time.  Thus, a necessary first step towards enforcing 
any of these properties in a real system is enforcing struc-

tural conformance between architecture and implementa-
tion code. 

A system conforms to its architecture if the architecture 
is a conservative abstraction of the run-time behavior of 
the system.  The communication integrity property defines 
how architectural structure abstracts run-time communica-
tion in the implementation [MQR95,LV95]: 

Definition [Communication Integrity]: Each 
component in the implementation may only com-
municate directly with the components to which it 
is connected in the architecture. 

Enforcing communication integrity is challenging due to 
programming language mechanisms which support im-
plicit communication, including references, objects, and 
first-class functions.  Previous systems have made serious 
compromises in order to enforce communication integrity, 
either eliminating implicit communication mechanisms 
entirely [ITU99], postponing conformance checks until 
run time [Mad96], or supporting only simple architectural 
models [MNS01,LR03]. 

We previously presented the initial design of ArchJava, 
which allows programmers to model rich architectural 
designs within Java code [ACN02a].  ArchJava allows 
developers to label distinguished objects as architectural 
components, and specify how those components interact 
through connections.  The previous version of ArchJava 
enforced communication integrity for function calls be-
tween components, but did not enforce integrity for com-
munication through shared data. 

This paper makes the following technical contribu-
tions: 

• We show how ArchJava can be extended to describe 
architectural constraints on data sharing by adapting 
our previous work on alias control systems 
[AKC02,AC04].  Our system can describe data that is 
confined within a component, passed linearly from 
one component to another, or shared temporarily or 
persistently between components. 

• The extended ArchJava design is the first system to 
statically enforce communication integrity for rich ar-
chitectural models in the presence of data sharing.  
We define communication integrity precisely for 
ArchJava and explain how the checking is done. 
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• We validate the extended ArchJava design in prac-
tice, showing how it can be used to capture the Mis-
sion Data System architecture under development at 
JPL for embedded space system applications. 

In the next section, we review the alias control constructs 
of AliasJava, the alias-control type system on which we 
build. Section 3 shows how these constructs can be inte-
grated into ArchJava to support a specification of data 
sharing in an architecture.  Section 4 defines communica-
tion integrity precisely for ArchJava, and explains how it 
is checked.  Section 5 shows how ArchJava can be used to 
capture the architecture of JPL’s MDS architecture.  Sec-
tion 6 discusses related work, and Section 7 concludes. 

2. AliasJava 
AliasJava is a type annotation system that extends Java to 
express how data is confined within, passed among, or 
shared between components and objects in a software 
system [AKC02,AC04].  The ArchJava language, dis-
cussed in Section 3, builds on this foundation by adding 
constructs for describing software architecture. 

2.1. Alias-Control Model 

The goal of AliasJava is to enforce a high-level specifica-
tions of aliasing relationships in object-oriented programs.  
We achieve this goal by dividing objects into conceptual 
groups called ownership domains, and allowing architects 
to specify high-level policies that govern references be-
tween ownership domains.  Ownership domains are hier-
archical, allowing engineers to specify very abstract alias-
ing constraints at the level of an entire program, then re-
fine these constraints to specify aliasing within subsys-
tems, modules, and individual objects. 

AliasJava supports abstract reasoning about data shar-
ing by assigning each object in the system to a single 
ownership domain.  There is a top-level ownership do-
main denoted by the keyword shared.  In addition, each 
object can declare one or more domains to hold its inter-
nal objects, supporting hierarchical aliasing specifications. 

For example, Figure 1 uses a Sequence abstract data 
type to illustrate the ownership model used in AliasJava.  
The Sequence object and its clients are both part of the 
top-level shared ownership domain.  Within the sequence, 
the iters ownership domain is used to hold iterator objects 
that clients use to traverse the sequence, and the list own-
ership domain is used to hold the cons cells in the linked 
list that is used to represent the sequence. 

Each object can declare a policy describing the permit-
ted aliasing among objects in its internal domains, and 
between its internal domains and external domains.  Alias-
Java supports two kinds of policy specifications: 

• A link from one domain to another, denoted with an 
dashed arrow in the diagram, allows objects in the 
first domain to access objects in the second domain. 

• A domain can be declared public, denoted by a thin-
ner dashed rectangle with no shading.  Permission to 
access an object automatically implies permission to 
access its public domains. 

For example, in Figure 1 the Sequence object declares a 
link from its iters domain to its owned domain, allowing 
the iterators to refer to objects in the linked list.  The iters 
domain is public, allowing clients to access the iterators, 
but the owned domain is private, and so clients must ac-
cess the elements of the sequence through the iterator in-
terface rather than traversing the linked list directly. 

In addition to the explicit policy specifications men-
tioned above, our system includes the following implicit 
policy specifications: 

• An object has permission to access other objects in 
the same domain. 

• An object has permission to access objects in the do-
mains that it declares. 

The first rule allows the clients to access the sequence 
(and vice versa), while the second rule allows the se-
quence to access its iterators and linked list.  Any refer-
ences not explicitly permitted by one of these rules is pro-
hibited, according to the principle of least privilege.  It is 
crucial to this example that there is no transitive access 
rule: for example, even though clients can refer to iterators 
and iterators can refer to the linked list, clients cannot 
access the linked list directly because the sequence has not 
given them permission to access the owned domain.  
Thus, the policy specifications allow developers to specify 
that some objects are an internal part of an abstract data 
type’s representation, and the compiler enforces the pol-
icy, ensuring that this representation is not exposed. 

Sequence 

iters owned 

client 
objects 

shared 

Figure 1.   A conceptual view of the aliasing model used 
in AliasJava and ArchJava. The rounded, dashed rectan-
gles represent ownership domains, with a gray fill for pri-
vate domains.  Solid rectangles represent objects. The 
top-level shared domain contains the highest-level ob-
jects in the program.  Each object may define one or 
more domains that in turn contain other objects. 
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2.2. Alias Annotations. 

Figure 2 shows how the Java code defining the sequence 
ADT can be annotated with aliasing information to model 
the constraints expressed in Figure 1.  The Sequence  
class is parameterized by the type T of its element objects, 
using Java version 1.5’s generics support.   

The first two lines of code within the class declare the 
owned domain and a reference to the head of the list.  For 
convenience, every object in our system declares its own 
owned domain, and so we will omit this declaration from 
future examples.  The head  field is of type owned 
Cons<T> , denoting a Cons linked list cell that holds an 
element of type T and resides in the owned domain.  The 
add  member function constructs a new cons cell for the 
object passed in, and adds it to the head of the list. 

Skipping ahead to the definition of the Cons cell class, 
we see that it is also parameterized by the element type T.  
The class contains a field obj  holding an element in the 
list, along with a next  field referring to the next cons cell 
(or null, if this is the end of the list).  The next  field 
has type owner Cons<T> , indicating that the next cell 
in the list has the same owner domain as the current cell 
(i.e., all the cells are part of the Sequece ’s owned do-
main). 

Back in the Sequence  class, a public iters domain is 
declared to hold the iterator objects.  Because the iterators 
need to refer to cons cells in the linked list, the sequence 
links the iter domain to the owned domain.  The 
getIter  method creates a SequenceIterator  ob-

ject (not shown), initializing the iterator to point to the 
first element of the linked list. 
 
Uniqueness and Lending.  While ownership is a useful 
for representing persistent aliasing relationships, it cannot 
capture the common scenario of an object that is passed 
between objects without creating persistent aliases.  Ob-
jects to which there is only one reference (including 
newly-created objects) are annotated unique in Alias-
Java.  Unique objects can be passed from one ownership 
domain to another, as long as the reference to the object in 
the old ownership domain is destroyed when the new ref-
erence is created. 

We also allow one ownership domain to temporarily 
lend an object to another ownership domain, with the con-
straint that the second ownership domain will only use the 
object in the course of a particular function call and will 
not create any persistent references to the object.  We an-
notate these temporary references with the keyword 
lent, and enforce the invariant that lent references 
cannot be stored in object fields. 

2.3. Properties. 

AliasJava enforces a policy soundness property, ensuring 
that the aliasing policy specifications in the program text 
are obeyed at run time: 

Definition [Policy Soundness]:  If in object that is 
part of ownership domain D1 refers to an object in 
domain D2, then there must be a policy specifica-
tion allowing references from D1 to D2. 

Policy soundness is crucial to enforcing communication 
integrity in the presence of data sharing, as described be-
low, because it ensures that the data sharing declarations 
in a software architecture are obeyed at run time. 

Policy soundness is enforced statically by AliasJava’s 
type system, by ensuring consistency among ownership 
annotations and by making sure references between ob-
jects are legal given the policy specifications in scope.  
Our previous paper proved a policy soundness property in 
a formal model of the AliasJava language [AC04]. 

 
Summary.  AliasJava uses type annotations to partition an 
object’s internal state into disjoint ownership domains.  
Policy specifications constrain inter-domain aliasing, so 
that objects in one domain can only refer to objects in 
another domain if the policy allows these references.  In 
the next section, we show how ArchJava leverages Alias-
Java’s ownership domains in architectural specifications 
to control communication through shared data. 

3. ArchJava 
ArchJava extends the Java language with component 
classes, which describe objects that are part of an architec-
ture, connections, which allow components to communi-
cate, and ports, which are the endpoints of connections.  
Components are organized into a hierarchy using owner-

class Sequence<T> { 
  domain owned; /* default */ 
  owned Cons<T> head; 
  void add(T o) { 
    head = new Cons<T>(o,head) 
  } 
 
  public domain iters; 
  link iters -> owned; 
  iters Iterator<T> getIter() { 
    return new SequenceIterator<T, owned>(head); 
  } 
} 
 
class Cons<T> { 
  T obj; 
  owner Cons<T> next; 
 
  Cons(T obj, owner Cons<T> next) { 
    this.obj=obj; this.next=next; } 
} 

 
Figure 2. A Sequence  abstract data type that uses a 
linked list for its internal representation.  The Sequence  
declares a publicly accessible iters domain representing 
its iterators, as well as a private owned domain to hold the 
linked list.  The link declarations specify that iterators in 
the iter domain have permission to access objects in the 
owned domain, and that both domains can access owner 
of the type parameter T. 
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ship domains, and ownership domains can be shared along 
connections, permitting the connected components to 
communicate through shared data. This section introduces 
these concepts through two example architectures. 

3.1. Example: Pipeline Architecture 

Figure 3 shows the architecture of a simple graphics pipe-
line.  The generate  component stores the current scene 
and generates shapes to be displayed.  These shapes are 
passed on to the transform  component, which stores 
the current transformation and applies it to each shape in 
turn.  It then passes the shapes on to the rasterize  
component to be displayed. 

We want to enforce two architectural invariants that are 
important to the pipeline architectural style [GS93].  First, 
the components are arranged in a linear sequence, with 
each component getting information from its predecessor 
and sending it on to its successor.  Second, no data is 
shared between components; instead, shapes are handed 

off from one component to another.  As the ArchJava lan-
guage is introduced through this example, we will discuss 
how these invariants are specified and enforced. 

3.2. Components and the Ownership Hierarchy 

A component in ArchJava is a special kind of object 
whose communication patterns are declared explicitly 
using architectural declarations.  Component code is de-
fined in ArchJava using component classes.  Figure 3 
shows the code that defines the GraphicsPipeline  
and Transform  component classes.  We assume that 
Generate  and Rasterize  are component classes de-
fined elsewhere, and Trans3D  and Shape  are ordinary 
classes that are not part of the architecture. 

The GraphicsPipeline  class contains three fields, 
one for each component in the pipeline.  The fields types 
are annotated with the implicit ownership domain owned, 
meaning that generate , transform , and raster-
ize  are subcomponents of the GraphicsPipeline  
component instance that owns them. 

3.3. Ports and Unique Data 

Components communicate through explicitly declared 
ports.  A port is a communication endpoint declared by a 
component.  For example, the Transform  component 
class declares an in  port that receives incoming shapes 
and an out  port that passes transformed shapes on to the 
next component. 

Each port declares a set of required and provided 
methods.  A provided method is implemented by the com-
ponent and is available to be called by other components 
connected to this port.  Conversely, each required method 
is provided by some other component connected to this 
port. Each provided method must be implemented inside 
the component.  For example, the draw  method’s imple-
mentation transforms its shape argument and then calls the 
required method draw  on the out  port.  As the example 
shows, a component can invoke one of its required meth-
ods by sending a message to the port that defines the re-
quired method. 

Annotating the Shape  objects as unique enforces 
the architectural invariant that shapes are handed off from 
one component to another.  ArchJava’s type system en-
sures that no component may retain a reference to a shape 
after it passes it on to the next component.  This invariant 
allows the developers of each component to assume they 
have exclusive access to the shape they are manipulating. 

3.4. Connections and Connect Patterns 

ArchJava requires developers to declare in the architec-
ture the connection patterns that are permitted at run time.  
The declaration connect pattern Gener-
ate.out, Transform.in  permits the graphics pipe-
line component to make connections between the out  
port of its Generate  subcomponents and the in  port of 
its Transform  subcomponents.  The connect patterns 
declared in GraphicsPipeline  constrain its subcom-

GraphicsPipeline 
out  in out  in 

transform  rasterize  generate  

 
 

public component class GraphicsPipeline { 
  protected owned Generate generate = ... ; 
  protected owned Transform transform = ... ; 
  protected owned Rasterize rasterize = ... ; 
 
  connect pattern Generate.out, Transform.in; 
  connect pattern Transform.out, Rasterize.in; 
 
  public GraphicsPipeline() { 
    connect(generate.out, transform.in); 
    connect(transform.out, rasterize.in); 
  } 
} 
 
public component class Transform { 
  protected owned Trans3D currentTransform; 
 
  public port in { 
    provides void draw( unique Shape s); 
  } 
  public port out { 
    requires void draw( unique Shape s); 
  } 
 
  void draw( unique Shape s) { 
    currentTransform.apply(s); 
    out.draw(s); 
  } 
} 
 

Figure 3.  The architectural specification of a graphics 
pipeline in ArchJava.  GraphicsPipeline  is made up of 
three subcomponents: the Generator  generates shapes, 
which are transformed by Transform  and then displayed 
by Rasterize .  The Transform  component accepts a 
unique  Shape  on its in  port, transforms it according to 
the current transformation, and passes it on through the 
out  port. 
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ponents to communicate in a linear sequence, fulfilling the 
constraint of the pipeline architectural style. 

Once connect patterns have been declared, concrete 
connections can be made between components.  All con-
nected components must be part of an ownership domain 
declared by the component making the connection.  For 
example, the constructor for GraphicsPipeline  con-
nects the out  port of the transform  component in-
stance to the in  port of the rasterize  component in-
stance.  This connection binds the required method draw  
in the out  port of transform  to a provided method 
with the same name and signature in the in  port of 
rasterize  (not shown).  Thus, when transform  
invokes draw  on its out  port, the corresponding imple-
mentation in rasterize  will be invoked. 

3.5. Example: Blackboard Architecture 

Figure 4 shows the architecture of a software engineering 
environment.  The architecture is structured as a black-
board, with various tools accessing a central database that 
stores the code base on which the tools operate [GS93].  
In the architectural diagram, the oval represents an owner-
ship domain holding the data that is shared between the 
database and all the components.  The architectural in-

variant of the system is that tools communicate only 
through the shared data and via events that are mediated 
by the central database [SN92]. 

The SEEnvironment  component class declares the 
code database as an owned component.  However, it 
doesn’t declare a fixed set of components at the architec-
tural level, because we would like the environment to be 
extensible, loading tools at run time that may have been 
developed by third parties.  Therefore, the architecture 
declares a connect pattern between the event  port of the 
database and the event  port of the abstract component 
class Tools . 

SEEnvironment  reads a configuration file to deter-
mine the set of installed components and then instantiates 
them one by one using the instantiateTool  func-
tion.  This function takes a component class argument, 
creates a new component instance, and casts the instance 
to type Tool .  The tool is then connected to the database 
using a connect expression that matches the connect pat-
tern in the architecture, and finally the tool is initialized.  
This design allows an arbitrary number of tools to be cre-
ated and linked into the software engineering environ-
ment. 

 
Shared ownership domains. Components can share ob-
jects with connected components by declaring ownership 
domains inside their ports. When the port is connected to 
a matching port, ownership domains with the same name 
that are declared in both ports are merged, allowing both 
components to access the objects in the shared domain. 

The event  port in component class Tool  shows how 
the tools communicate with the database.  The data  
ownership domain describes the objects that are shared 
between the database and all the tools, including the code 
stored in the database and callback objects that react to 
events. 

Every tool can signal an event by invoking the sig-
nal  function.  The event passed to signal  is unique; 
it will be enqueued in the database event queue before 
being delivered to tools that have expressed interest in 
events of that type. 

Tools can also register for events of a particular type 
by passing in a unique event descriptor object, together 
with a callback that will be invoked when an event occurs.  
The callback is expected to define a notify  method that 
will be invoked with the event argument. 

The event  port of Database  (not shown) is the mir-
ror of the event  port of Tool .  It also declares the 
data  domain and defines provided methods signal  
and register  that match the methods declared in the 
port of Tool . 

 
An Example Tool.  The RuleChk  component in Figure 
5 is intended to ensure that the code base obeys a set of 
user-defined coding rules.  It stores the set of rules in 
some internal format in the ruleSet  object.  When ini-
tialized, it registers a callback to be invoked whenever any 
change to the code occurs. 

SEEnvironment 

event 

data 

database  

ruleCheck  

editor  
event 

event 

 
 

public component class SEEnvironment { 
  protected owned Database database = ... ; 
 
  connect pattern Database.event, Tool.event; 
 
  public void instantiateTool(Class tCls) { 
    owned Tool tool = (Tool)tCls.newInstance(); 
    connect(database.event, tool.event); 
    tool.initialize(); 
  } 
 
  // reads config file, calls instantiateTool... 
} 
 
public abstract component class Tool { 
  public port event { 
    domain data; 
    requires void signal( unique Event e); 
    requires void register( unique EventType t, 
                           data Callback cb); 
  } 
} 
 

Figure 4.  The architectural specification of a software 
engineering environment.  The environment is made up of 
a central database that stores the code for the project, 
and a set of tools that communicate through events that 
are mediated by the database. 
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The callback object needs to access the set of rules, so 
the class is parameterized by the domain that holds the 
rules, which is instantiated with the owned domain of 
RuleChk .  It stores the ruleSet  internally in a field 
annotated with this domain. 

When a code change event is fired, the notify  
method of the RuleCB  callback will be invoked.  We 
assume that the database owns the events in the system, 
but callback objects need to have temporary access to the 
event object in order to get information about the event.  
Therefore, the database passes the event to the callback as 
a lent reference.  The callback checks to see if the the 
event leads to a rule violation, and notifies the user if a 
violation is detected. 

This example illustrates ArchJava’s support for event 
callback objects, and important object-oriented idiom that 
is challenging to reason about in conventional implemen-
tation languages. 

3.6. Implementation 

An open-source compiler for ArchJava is available for 
download at the ArchJava web site [Arc02].  Our com-
piler is implemented on top of the Barat infrastructure 
[BS98].  The compiler accepts a list of ArchJava files 
(.archj), translates each one down into Java source code, 
and invokes javac  on the resulting .java files.  Both 
typechecking and compilation are local, so that when a 
source file is updated, only that file and the files that de-
pend on its interface need to be typechecked and recom-
piled. 

The most interesting aspect of compiling ArchJava is 
that some information about ownership domains must be 
maintained at run time, using standard type-passing tech-
niques.  Although ArchJava’s type system is mostly static, 
ArchJava performs run-time checks at downcasts and ar-
ray writes to ensure that the domain parameters of an ob-
ject match the parameters declared in the type of the cast 
or array.  These checks are done at the same places where 
Java already does dynamic checks; in this sense, 
ArchJava’s type system is as static as that of Java.  Other 
papers provide additional details about the type system 
and the implementation techniques used in the compiler 
[ACN02b,AKC02,Ald03]. 

3.7. Summary 

ArchJava allows developers to specify the software archi-
tecture of a system as a hierarchy of component instances.  
Connections describe which components within the archi-
tecture communicate, and the methods and ownership 
domains declared in ports show the details of communica-
tion through method calls and shared data. 

4. Communication Integrity 
Communication integrity is the key property enforced by 
ArchJava, ensuring that components can only communi-
cate using connections and ownership domains that are 
explicitly declared in the architecture.  In this section, we 
define communication integrity more precisely, justify the 
definition, and explain how it is enforced. 

Before defining communication integrity, we must de-
fine inter-component communication.  To do so, we need 
the concept of an object’s architectural domain, which 
can be found by ascending the ownership tree until an 
ownership domain declared in a component is reached.  If 
an object is unique, it has no architectural domain. 
 
Definition [Inter-component communication]:  Two 
components communicate whenever: 

1. Direct call: Component instance A or an object in 
one of its ownership domains invokes a method di-
rectly on component instance B, or 

2. Connection call: Component instance A invokes a 
method of component instance B through a connec-
tion, or 

3. Shared data: An object with architectural domain A 
accesses (invokes a method or reads or writes a field 
of) a non-component object B, and A and B are in dif-
ferent architectural domains. 

We now state the communication integrity theorem for 
ArchJava: 
 
Theorem [Communication Integrity]:  All run-time 
inter-component communication falls into one of the fol-
lowing categories of communication, each of which is 
documented explicitly or implicitly in the architecture: 

public component class RuleChk extends Tool { 
  protected owned Set< owned> ruleSet; 
 
  public port event { 
    domain data; 
    requires void signal( unique Event e); 
    requires void register( unique EventType t, 
                           data Callback cb); 
  } 
 
  public void initialize() { 
    event.register( new EventType(“codeChange”), 
                   new RuleCB< owned>(ruleSet)); 
  } 
} 
 
class RuleCB<rules> implements Callback { 
  protected rules Set<rules> ruleSet; 
 
  RuleCB(rules Set<rules> rs) { ruleSet = rs; } 
 
  void notify( lent Event e) { 
    // generates an error on rule violations 
  } 
} 
 

Figure 5.  The RuleChk  component stores a set of se-
mantic rules, and registers a callback to receive code 
change events.  Whenever the callback is invoked with an 
event, it checks if any of the rules are violated, and if so it 
generates an error. 
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1. Unique communication: Object A invokes a method 
on a component B that is annotated unique, or 

2. Parent-child communication:  Object A invokes a 
method on a component B which is owned by A, or 

3. Connection communication:  Component A invokes 
a method on component B through a connection that 
matches a connect pattern in the component instance 
that directly owns (or is equal to) A and B, or 

4. Lent communication:  Component or object A in-
vokes a method on an object or component B that has 
been temporarily lent to A, or 

5. Shared domain communication:  Object A accesses 
some object B in a different domain, and the architec-
tural domain of A is linked to that of B. 

The author’s thesis includes a formal model of the 
ArchJava language, a formal statement of the communica-
tion integrity theorem described above, and a rigorous 
proof that ArchJava’s type system statically enforces 
communication integrity [Ald03].  Below, we outline the 
structure of the proof and provide an intuition for how the 
property is enforced. 
 
Enforcement.  Enforcing communication integrity is es-
sentially ensuring that all instances of inter-component 
communication fall into one of the architecturally docu-
mented categories.  Consider the cases of inter-component 
communication: 

1. Direct call case.  ArchJava’s type system ensures if 
the receiver of a method call is a component, then ei-
ther the receiver is this, or the receiver is unique 
or part of a locally declared ownership domain.  In 
the case of this, the communication is within a 
component.  In the cases of unique and local do-
mains, the communication is unique communication 
and parent-child communication, respectively. 

2. Connection call case.  The type system must ensure 
that the component which owns both the sender and 
the receiver declared a connection between them.  
When a connection is made, the compiler verifies that 
the components in the connection are owned by the 
current component, and that the current component 
declares a connect pattern that matches the compo-
nents being connected. 

3. Shared data case.  Consider the annotation on the 
object B being accessed.  If the annotation is 
unique, there is no inter-component communication 
occurring—instead, the calling component is modify-
ing one of its own unique data structures.  If the anno-
tation is owned, again, there is no inter-component 
communication, because the receiver of the access is 
part of the same component as the sender.  If the an-
notation is a lent domain parameter, the communica-
tion is lent communication. 

The remaining case is when the accessed object is 
annotated with a ownership domain that is either de-
clared in the current component.  We wish to show 
that this case is shared domain communication.  This 
will be true if and only if architectural domain of the 
accessing object can access the target object’s domain 
according to the aliasing policy.  But this is guaran-
teed by the policy soundness property, so we are 
done. 

 
Discussion.  The theoretical framework described above 
is quite general—for example, communication through 
static fields or native methods can be modeled as shared 
domain communication, where the fields and native meth-
ods are conceptually viewed as part of the shared domain 
that is shared between every component.  In practice, 
however, excessive communication through the global 
shared domain makes architectural reasoning more diffi-
cult, and so developers are encouraged to avoid it where 
possible, just as good engineers typically avoid using 
global variables in today’s programming languages.  We 
would prefer to omit the global shared domain entirely, 
but this would be impractical given that many existing 
Java libraries use global data structures. 

Communication integrity means that all communication 
between components must be declared at the architectural 
level—either through required and provided methods in 
connected ports, or through an ownership domain de-
clared in connected ports.  The ArchJava compiler en-
forces conformance via local rules governing how refer-
ences with different alias annotations can be used.  Be-
cause integrity is enforced through the type system, pro-
grammers can develop applications much as they do to-
day, but gain the assurance that architectural properties 
are maintained during implementation and evolution. 

5. Validation 
In order to validate our design, we are undertaking a case 
study applying ArchJava to Golden Gate, the real-time 
robot control system developed by the NASA Jet Propul-
sion Laboratory, Sun, and Carnegie Mellon University, 
and demonstrated at the JavaOne conference in 2003.  The 
goal of the study is to answer the following research ques-
tions: 

• Can ArchJava effectively capture the Mission Data 
System architecture used in the Golden Gate code? 

• What are the benefits of ArchJava, in terms of under-
standing the actual architecture of the code, and in 
finding possible violations of the intended architec-
ture? 

• What are the costs of using ArchJava in this system? 

While our case study is not yet complete, we report on our 
preliminary experience with this application. 
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Architecture.  The core of the Mission Data System 
(MDS) architecture [DRR+99] used by Golden Gate is 
shown graphically at the top of Figure 6.  The architecture 
shown is designed to capture the state estimation and con-
trol loop for a single element of hardware within the ro-
bot.  A Hardware Proxy, at the bottom, communicates 
directly with the hardware, reporting measurements to the 
rest of the system and accepting action commands to be 
performed by the hardware.  To the left is a State Deter-
mination (or estimator) component that takes measure-
ments from the hardware proxy and uses them to estimate 
the value of some higher-level state, such as the robot’s 
current position.  This state is then stored in the State 
Knowledge component at the top of the diagram.  Finally, 
the State Control component on the right accepts external 
commands from mission control through an external te-
lemetry module (at the top-right) and uses information 
about the current state to determine what actions to per-
form next.  An application’s complete architecture is made 
of a number of these diamond-shaped subarchitectures. 

We chose to represent this with the ControlDia-
mond component class shown at the bottom of Figure 6.1  
The four subcomponents in the diagram are represented 
by four owned components.  The ControlDiamond  
has two external ports, one for receiving commands from 
mission control and one for reporting information back to 
mission control.  The connection to hardware in the dia-
gram is not represented in ArchJava, as this is done 
through native methods that are beyond the scope of our 
language design. 

Connections in the architecture correspond to the ar-
rows in the diagram.  The last connection uses the key-
word glue, indicating that goals coming from the teleme-
try port should be forwarded directly to the goals  port of 
the control  subcomponent, as shown in the diagram. 

 
Discussion.  The original Golden Gate code was designed 
with the MDS architecture in mind, and so the source 
code refers explicitly to concepts like components and 
connectors, making our task easier.  On the other hand, it 
was still somewhat challenging to associate code with 
architectural features, because connections were made by 
calls to two connect functions deep within the (quite com-
plex) constructor code of the ControlDiamond .  Fur-
thermore, one of the two connect functions does not de-
scribe what interface is used for communication; this is 
inferred from the types of the two connected components.  
As Figure 6 shows, our ArchJava representation provides 
a clearer view of the architecture by declaring architec-
tural connections at the top level, and using ports to show 
the interfaces between components. 

One difference we found between the abstract architec-
ture and the code was that often the state in one “dia-
mond” in the architecture is used by the control or estima-
tion components in another diamond.  This is a natural 
requirement of the domain, where different state variables 
are somewhat interdependent, but this was not explicit in 
the original architectural diagram. 

It is too early in our case study to evaluate the costs of 
applying ArchJava; our previous experience was that 
ArchJava can be applied to 10K-line legacy Java systems 
in about 6-30 engineer hours [ACN02a,ACN02b]. 

6. Related Work 
ArchJava.  The initial ArchJava system enforced archi-
tectural conformance only for control flow between com-
ponents, not for communication though shared data 
[ACN02a, ACN02b].  This paper extends our previous 
work to the more challenging case of communication 
through shared data, enforcing communication integrity 
for all forms of communication. 

In addition, the system we describe here is more flexi-
ble and more consistent than our previous system.  For 
example, the component hierarchy is specified using own-

                                                           
1Note: because of export restrictions the code shown is not 
actual Golden Gate code, but rather is an abstracted view 
demonstrating how we are capturing the architecture. 

 
public component class ControlDiamond { 
  protected owned State state; 
  protected owned Estimator estimator; 
  protected owned Control control; 
  protected owned Hardware hardware; 
 
  public port telemetry { ... } 
  public port report { ... } 
 
  cnct pat Estimator.estimate, State.data; 
  cnct pat State.data, Control.state; 
  cnct pat Hardware.measure, Estimator.measure; 
  cnct pat Control.action, Hardware.action, 
    Estimator.action; 
 
  glue telecommand to control.goals; 
  // additional code not shown 
} 
 

Figure 6.  A graphical depiction of the Mission Data Sys-
tem architecture in use at the Jet Propulsion Laboratory, 
and simplified ArchJava code that captures the architec-
ture. 
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ership domains, rather than the ad-hoc and inflexible syn-
tactic criterion used before.  One benefit is that we can 
now support the factory pattern [GHJ+94] for compo-
nents: a factory component creates and initializes compo-
nents, which are then passed as a unique component to 
their final place in the architecture, where they become 
owned by their parent component.  Another benefit is that 
Java constructs like inner classes, interface inheritance, 
and native methods fit more cleanly into our current 
framework, as discussed elsewhere [Ald03]. 

We believe these improvements make ArchJava con-
siderably more practical, and that the support for full ar-
chitectural conformance will provide significant benefits 
to users of the language. 
 
Architecture Description Languages.  A number of ar-
chitecture description languages (ADLs) have been de-
fined to describe, model, check, and implement software 
architectures [MT00].  The SADL system formalizes ar-
chitectures in terms of theories, providing a framework for 
proving that communication integrity is maintained when 
refining an abstract architecture into a concrete one 
[MQR95].  However, the system did not provide auto-
mated support for enforcing communication integrity.  
The Rapide system includes a tool that dynamically moni-
tors the execution of a program, checking for communica-
tion integrity violations [Mad96].  The Rapide papers also 
suggest that integrity could be enforced statically if system 
implementers follow style guidelines, such as never shar-
ing mutable data between components [LV95].  However, 
the guideline forbidding shared data prohibits many useful 
programs, and the guidelines are not enforced automati-
cally. 
 
Module Systems.  Module systems such as ML’s functors 
[MTH90] and MzScheme’s Units [FF98] support system 
composition from separate modules.  While these module 
systems have rich facilities for information hiding, they do 
not provide mechanisms for controlling shared data ob-
jects or functions, and thus do not enforce architectural 
conformance. 
 
Enforcing Design.  Lam and Rinard have developed a 
type system for describing and enforcing design [LR03].  
Their designs describe communication between subsys-
tems (corresponding to ArchJava’s components) that is 
mediated through shared objects that are labeled with to-
kens (corresponding to ownership domains).  Their system 
does not model architectural hierarchy, and the set of sub-
systems and tokens is statically fixed rather than dynami-
cally determined, as in ArchJava.  Furthermore, their sys-
tem does not describe data sharing as precisely, omitting 
constructs like uniqueness and ownership-based encapsu-
lation.  However, they do describe a number of useful 
analyses which would complement ArchJava’s more de-
tailed architectural descriptions. 

Design structure can also be supported with analysis.  
For example, the Reflexion Model system uses a call 

graph construction analysis in order to find inconsisten-
cies between an architectural model and source code 
[MNS01].  This analysis-based approach is more light-
weight than ArchJava’s type system, but does not support 
hierarchical, dynamic architectures or precise data sharing 
constraints. 

 
CASE Tools.  Several CASE tools support the SDL lan-
guage, which allows developers to describe architectural 
structure within the implementation of an embedded sys-
tem [ITU99]. The language enforces architectural con-
formance, but only by prohibiting shared references be-
tween components.  Other CASE tools such as Rational 
Rose RealTime [RSC00] also allow developers to specify 
the design of a system, but in the presence of shared ob-
jects and references they do not enforce architectural con-
formance. 
 
Ownership and Uniqueness.  Ownership was introduced 
in the Flexible Alias Protection paper, which uses owner-
ship polymorphism to strike a balance between guarantee-
ing aliasing properties and allowing flexible programming 
idioms [NVP98].  More recent work formalized owner-
ship as a type system and showed how to increase its ex-
pressiveness [CNP01,BLS03].  Uniqueness was proposed 
as an aliasing construct by Minsky and later refined by 
Boyland and others [Min96,Boy01]. 

ArchJava’s support for ownership and uniqueness is 
most closely based on the author’s previous work on Ali-
asJava.  To date, AliasJava is the only ownership type 
system that has a publicly available implementation and 
substantial experience showing that the system is practical 
[AKC02].  AliasJava’s ownership model was extended in 
a later paper to support multiple ownership domains per 
object and the detailed policy specifications described in 
section 2 above, providing both more expressiveness and 
stronger aliasing guarantees compared to previous owner-
ship systems [AC04].  Policy specifications and multiple 
ownership domains are essential for modeling sharing 
constraints in software architecture. 

7. Conclusion 
The ArchJava language extends Java with constructs that 
model hierarchical, dynamically evolving software archi-
tectures.  Components communicate through explicit con-
nections as well as through shared objects that are part of 
architecturally declared ownership domains.  ArchJava’s 
type system uses ownership and uniqueness to enforce 
structural conformance between architecture and imple-
mentation.  Thus, engineers can have confidence that the 
code behaves according to the architectural documenta-
tion, and can use this knowledge to build and evolve sys-
tems more effectively. 
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