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Abstract tural conformance between architecture and impléaaen
tion code.

A system conforms to its architecture if the amtiitire
is a conservative abstraction of the run-time befraef
the system. Theommunication integrityproperty defines
how architectural structure abstracts run-time comoa-
tion in the implementation [MQR95,LV95]:

Developers use formal or informal software architee
descriptions in order to communicate and reasonuabo
the high-level structural properties of a systelfowever,
these architectural descriptions are often inactarar
out of date, resulting in lost productivity and elets as
the system is evolved.

This paper presents the first static technique dor Definition [Communication Integrity]: Each
forcing complete structural conformance betweerich r component in the implementation may only com-
architectural specification and general-purpose iep municate directly with the components to which it
mentation code. Our system, ArchJava, models &whi is connected in the architecture.

ture as a hierarchy of component instances thatmaom
nicate through explicit connections. ArchJava'setysys-
tem ensures that components only communicate throug
connections that are explicitly declared in the hitec-
ture. As a result, developers have accurate aechitral
documentation, allowing them to carry out evolutiasks
with confidence.

To validate our design, we show how ArchJava can be
used to capture the Mission Data System architectur
under development at JPL for embedded space syste
applications.

Enforcing communication integrity is challengingedto
programming language mechanisms which support im-
plicit communication, including references, objecsd
first-class functions. Previous systems have nsadieous
compromises in order to enforce communication iriteg
either eliminating implicit communication mechangsm
entirely [ITU99], postponing conformance checksilunt
run time [Mad96], or supporting only simple architeal
rﬂ”lode|8 [MNSO01,LRO3].

We previously presented the initial design of Aalal
which allows programmers to model rich architedtura

: designs within Java code [ACNO2a]. ArchJava allows

1. Introduction developers to label distinguished objects as archital
Software architecture is the high-level organizataf a components, and specify how those components aitera
software system, showing how the system decomposeghrough connections. The previous version of Azsial
into components, and how these components interacenforced communication integrity for function cabie-
[GS93,PW92]. Various systems have been develaped t tween components, but did not enforce integritydom-
allow architects to specify and reason about difierar- munication through shared data.
chitectural properties, including the temporal ordé This paper makes the following technical contribu-
architectural events [LV95,AG97], architectural legy  tions:
[AAG93,MOR+96], and the evolution of dynamic sys-
tems [MK96]. One major, long-term goal of software
architecture research is to aid engineers in dewetmt
and evolution tasks by enforcing these architetiunap-
erties in the implementation of a system.

All of the properties cited above rely on a basition
of architectural structure: a description of how thajor
components in a software system interact. For pl@m

* We show how ArchJava can be extended to describe
architectural constraints on data sharing by adgpti
our previous work on alias control systems
[AKCO02,AC04]. Our system can describe data that is
confined within a component, passed linearly from
one component to another, or shared temporarily or
persistently between components.

modeling the temporal order of architectural events * The extended ArchJava design is the first system to
cludes specifying where these events occur inritigtac- statically enforce communication integrity for riah
ture; architectural styles constrain the topolof\aio ar- chitectural models in the presence of data sharing.
chitecture and how components can communicate; and We define communication integrity precisely for
architectural dynamism involves structure that desn ArchJava and explain how the checking is done.

over time. Thus, a necessary first step towardsreing
any of these properties in a real system is enfgrstruc-



» We validate the extended ArchJava design in prac-

tice, showing how it can be used to capture the Mis _ sharec .
sion Data System architecture under development at; client g
JPL for embedded space system applications. : object: Sequenc ;

el

In the next section, we review the alias controistaoucts
of AliasJava, the alias-control type system on Wwhige :
build. Section 3 shows how these constructs caimtee
grated into ArchJava to support a specificationdafa
sharing in an architecture. Section 4 defines camoa-
tion integrity precisely for ArchJava, and explahr®w it :
is checked. Section 5 shows how ArchJava can & tos :
capture the architecture of JPL's MDS architectugec-

tion 6 discusses related work, and Section 7 caeslu

- o oo

Figure 1. A conceptual view of the aliasing model used
in AliasJava and ArchJava. The rounded, dashed rectan-

AliasJava is a type annotation system that extdagta to ~ 9!es represent ownership domains, with a gray fill for pri-
express how data is confined within, passed among, vate domains. Solid rgctangle; represe.nt objects. The
shared between components and objects in a SOft\,\,‘f:m.top-le\./el shared domain contains the hlghegt-level ob-
system [AKC02,AC04]. The ArchJava language, dis- I€Cts in the program. Each object may define one or
cussed in Section 3, builds on this foundation dsfireg more domains that in turn contain other objects.
constructs for describing software architecture.

2. AliasJava

* A domain can be declargaliblic, denoted by a thin-
ner dashed rectangle with no shading. Permission t
access an object automatically implies permission t
access its public domains.

2.1. Alias-Control Model

The goal of AliasJava is to enforce a high-levedcifica-
tions of aliasing relationships in object-orienfgdgrams.

We achieve this goal by dividing objects into cqutoal £, oy ample, in Figure 1 the Sequence object deslar

groups called ownership domains, and allowing &ects
to specify high-level policies that govern referende-

tween ownership domains. Ownership domains ane hie

archical, allowing engineers to specify very alidtedias-
ing constraints at the level of an entire progrémn re-

link from its iters domain to itsowneddomain, allowing
the iterators to refer to objects in the linked. liheiters
domain is public, allowing clients to access tleators,

but theowneddomain is private, and so clients must ac-

cess the elements of the sequence through theoitena

fine these constraints to specify aliasing withibsys-
tems, modules, and individual objects.

AliasJava supports abstract reasoning about data sh
ing by assigning each object in the system to glein
ownership domain. There is a top-level ownership d
main denoted by the keywoshar ed. In addition, each
object can declare one or more domains to holahiés-
nal objects, supporting hierarchical aliasing sfietions.

For example, Figure 1 uses a Sequence abstract data
type to illustrate the ownership model used in slava.

The Sequence object and its clients are both dattteo  The first rule allows the clients to access theusege
top-levelsharedownership domain. Within the sequence, (and vice versa), while the second rule allows ske
the iters ownership domain is used to hold iterator objects quence to access its iterators and linked listy refer-
that clients use to traverse the sequence, aniisthavn- ences not explicitly permitted by one of these susepro-
ership domain is used to hold the cons cells inlitiled hibited, according to the principle of least prgk. It is
list that is used to represent the sequence. crucial to this example that there is no transitaceess

terface rather than traversing the linked list clise

In addition to the explicit policy specificationsem
tioned above, our system includes the following liaiip
policy specifications:

* An object has permission to access other objects in
the same domain.

* An object has permission to access objects in the d
mains that it declares.

Each object can declare a policy describing thenfter
ted aliasing among objects in its internal domaausd
between its internal domains and external domadigs-

rule: for example, even though clients can refeteiators
and iterators can refer to the linked list, clientnnot
access the linked list directly because the segubkas not

Java supports two kinds of policy specifications: given them permission to access the owned domain.
Thus, the policy specifications allow developerspecify
that some objects are an internal part of an atistiaa
type’s representation, and the compiler enforcespibi-

icy, ensuring that this representation is not eggos

* A link from one domain to another, denoted with an
dashed arrow in the diagram, allows objects in the
first domain to access objects in the second damain



cl ass Sequence<T> {
domai n owned; /* default */
owned Cons<T> head;
voi d add(T o) {
head = new Cons<T>(0,head)

}

publ i ¢ domai n iters;
I'i nk iters -> owned;
iters Iterator<T> getlter() {
ret urn new Sequencelterator<T, owned>(head);
}

}

cl ass Cons<T> {
T obj;
owner Cons<T> next;

Cons(T obj, owner Cons<T> next) {
t hi s.obj=obj; t hi s.next=next; }
}

Figure 2. A Sequence abstract data type that uses a
linked list for its internal representation. The Sequence
declares a publicly accessible iters domain representing
its iterators, as well as a private owned domain to hold the
linked list. The link declarations specify that iterators in
the iter domain have permission to access objects in the
owned domain, and that both domains can access owner
of the type parameter T.

2.2. Alias Annotations.

Figure 2 shows how the Java code defining the sexgue
ADT can be annotated with aliasing information todel
the constraints expressed in Figure 1. Heguence
class is parameterized by the typef its element objects,
using Java version 1.5’s generics support.

The first two lines of code within the class deel#ne
owneddomain and a reference to the head of the list. F
convenience, every object in our system declasesvin
owneddomain, and so we will omit this declaration from
future examples. Théead field is of type owned
Cons<T>, denoting aCons linked list cell that holds an
element of typd and resides in thewned domain. The

add member function constructs a new cons cell for the

object passed in, and adds it to the head of she li

Skipping ahead to the definition of t®ns cell class,
we see that it is also parameterized by the eletypsfT.
The class contains a fielnbj holding an element in the
list, along with anext field referring to the next cons cell
(or nul |, if this is the end of the list). Theext field
has typeowner Cons<T> , indicating that the next cell
in the list has the same owner domain as the cuceh
(i.e., all the cells are part of tf&equece 's owned do-
main).

Back in theSequence class, a publiéters domain is
declared to hold the iterator objects. Becausétéhators
need to refer to cons cells in the linked list, seguence
links the iter domain to theowned domain. The
getlter  method creates Sequencelterator ob-

ject (not shown), initializing the iterator to pbito the
first element of the linked list.

Uniqueness and Lending. While ownership is a useful
for representing persistent aliasing relationshitpsannot
capture the common scenario of an object that $sqzh
between objects without creating persistent aliaseb-
jects to which there is only one reference (inalgdi
newly-created objects) are annotatedi que in Alias-
Java. Unique objects can be passed from one olipers
domain to another, as long as the reference tolijeet in
the old ownership domain is destroyed when the refw
erence is created.

We also allow one ownership domain to temporarily
lend an object to another ownership domain, wighdbn-
straint that the second ownership domain will ardg the
object in the course of a particular function aid will
not create any persistent references to the objf.an-
notate these temporary references with the keyword
| ent, and enforce the invariant thaent references
cannot be stored in object fields.

2.3. Properties.

AliasJava enforces policy soundnesproperty, ensuring
that the aliasing policy specifications in the peog text
are obeyed at run time:

Definition [Policy Soundness]: If in object that is
part of ownership domaiB, refers to an object in
domainD,, then there must be a policy specifica-
tion allowing references from, to D,.

Policy soundness is crucial to enforcing commuitcat
integrity in the presence of data sharing, as desdrbe-

low, because it ensures that the data sharing rédicias

in a software architecture are obeyed at run time.

Policy soundness is enforced statically by AliagJav
type system, by ensuring consistency among owrngrshi
annotations and by making sure references betwben o
jects are legal given the policy specificationssitope.
Our previous paper proved a policy soundness ptpper
a formal model of the AliasJava language [AC04].

Summary. AliasJava uses type annotations to partition an
object’s internal state into disjoint ownership Gons.
Policy specifications constrain inter-domain al@si so
that objects in one domain can only refer to olsjent
another domain if the policy allows these referencén

the next section, we show how ArchJava leveragésAl
Java’s ownership domains in architectural speditica

to control communication through shared data.

3. ArchJava

ArchJava extends the Java language with component
classes, which describe objects that are part afamntec-
ture, connections, which allow components to corrimun
cate, and ports, which are the endpoints of coiorext
Components are organized into a hierarchy usingeown
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publ i ¢ conponent cl ass GraphicsPipeline {
prot ect ed owned Generate generate = ... ;
prot ect ed owned Transform transform = ... ;
prot ect ed owned Rasterize rasterize = ... ;

connect pattern Generate.out, Transform.in;
connect pattern Transform.out, Rasterize.in;

publ i ¢ GraphicsPipeline() {
connect (generate.out, transform.in);
connect (transform.out, rasterize.in);

}
}

publ i ¢ conponent cl ass Transform {
prot ect ed owned Trans3D currentTransform;

public port in{
provi des voi d draw( uni que Shape s);

public port out{
requi res voi d draw( uni que Shape s);

}

voi d draw( uni que Shape s) {
currentTransform.apply(s);
out.draw(s);

}

Figure 3. The architectural specification of a graphics
pipeline in ArchJava. GraphicsPipeline is made up of
three subcomponents: the Generator generates shapes,
which are transformed by Transform and then displayed
by Rasterize The Transform component accepts a
unique Shape on its in port, transforms it according to
the current transformation, and passes it on through the
out port.

ship domains, and ownership domains can be shéoed a

off from one component to another. As the ArchJawa
guage is introduced through this example, we wvifitdss
how these invariants are specified and enforced.

3.2. Components and the Ownership Hierarchy

A componentin ArchJava is a special kind of object
whose communication patterns are declared explicitl
using architectural declarations. Component cadder
fined in ArchJava usingomponent classes Figure 3
shows the code that defines tBaaphicsPipeline

and Transform component classes. We assume that
Generate andRasterize  are component classes de-
fined elsewhere, anfirans3D and Shape are ordinary
classes that are not part of the architecture.

The GraphicsPipeline class contains three fields,
one for each component in the pipeline. The fidyges
are annotated with the implicit ownership domaymed,
meaning thagenerate , transform , andraster-
ize are subcomponentsf the GraphicsPipeline
component instance that owns them.

3.3. Portsand Unique Data

Components communicate through explicitly declared
ports. Aport is a communication endpoint declared by a
component. For example, tAgansform component
class declares aim port that receives incoming shapes
and anout port that passes transformed shapes on to the
next component.

Each port declares a set of required and provided
methods. Aprovidedmethod is implemented by the com-
ponent and is available to be called by other corapts
connected to this port. Conversely, eastiuiredmethod
is provided by some other component connected it th
port. Each provided method must be implementediénsi
the component. For example, ttheaw method’s imple-
mentation transforms its shape argument and théntbe
required methodliraw on theout port. As the example
shows, a component can invoke one of its requirethm

connections, permitting the connected components to©ds by sending a message to the port that defireeset

communicate through shared data. This sectiondotres
these concepts through two example architectures.

3.1

Figure 3 shows the architecture of a simple graphipe-
line. Thegenerate component stores the current scene
and generates shapes to be displayed. These stuapes
passed on to thgansform  component, which stores
the current transformation and applies it to ed@ps in
turn. It then passes the shapes on torésterize
component to be displayed.

We want to enforce two architectural invariantd tre
important to the pipeline architectural style [GF9Birst,
the components are arranged in a linear sequente, w
each component getting information from its predsoe
and sending it on to its successor. Second, na dat

Example: Pipeline Architecture

shared between components; instead, shapes arechandits Transform

quired method.

Annotating theShape objects asuni que enforces
the architectural invariant that shapes are handfefiom
one component to another. ArchJava’s type system e
sures that no component may retain a referenceshape
after it passes it on to the next component. Tirhiariant
allows the developers of each component to asshee t
have exclusive access to the shape they are matiiqul

3.4. Connectionsand Connect Patterns

ArchJava requires developers to declare in theitazh
ture the connection patterns that are permittedratime.
The declaration connect pattern Gener-
ate.out, Transform.in permits the graphics pipe-
line component to make connections between dbe
port of itsGenerate subcomponents and the port of
subcomponents. The connect patterns
declared inGraphicsPipeline constrain its subcom-
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publ i ¢ conponent cl ass SEEnvironment {
protect ed owned Database database = ... ;

connect pattern Database.event, Tool.event;

public void instantiateTool(Class tCls) {
owned Tool tool = (Tool)tCls.newlinstance();
connect (database.event, tool.event);
tool.initialize();

/'l reads config file, calls instantiateTool...

}

public abstract conponent cl ass Tool{
public port event{
donwi n data;
requi res void signal(
requires void register(
data Callback cb);

uni que Evente);
uni que EventType t,

}
}

Figure 4. The architectural specification of a software
engineering environment. The environment is made up of
a central database that stores the code for the project,
and a set of tools that communicate through events that
are mediated by the database.

ponents to communicate in a linear sequence, lingfithe
constraint of the pipeline architectural style.

Once connect patterns have been declared, concret

connections can be made between components. Al co
nected components must be part of an ownership idoma
declared by the component making the connectioar F
example, the constructor f@raphicsPipeline con-
nects theout port of thetransform  component in-
stance to thén port of therasterize component in-
stance. This connection binds the required mettrad/

in the out port of transform  to a provided method
with the same name and signature in the port of
rasterize (not shown). Thus, whetransform
invokesdraw on itsout port, the corresponding imple-
mentation irrasterize will be invoked.

3.5.

Figure 4 shows the architecture of a software esgging
environment. The architecture is structured adaakb
board, with various tools accessing a central detabhat
stores the code base on which the tools operat®3[cS
In the architectural diagram, the oval representsvaner-
ship domain holding the data that is shared betwken
database and all the components. The architeciyal

Example: Blackboard Ar chitecture

variant of the system is that tools communicatey onl
through the shared data and via events that aréatadd
by the central database [SN92].

The SEEnvironment component class declares the
code database as awned component. However, it
doesn'’t declare a fixed set of components at thhitac-
tural level, because we would like the environntenbe
extensible, loading tools at run time that may hbeen
developed by third parties. Therefore, the archite
declares a connect pattern betweenetent port of the
database and thevent port of the abstract component
classTools .

SEEnvironment reads a configuration file to deter-
mine the set of installed components and thenntistas
them one by one using thestantiateTool func-
tion. This function takes a component class argume
creates a new component instance, and casts tiades
to typeTool . The tool is then connected to the database
using a connect expression that matches the compagct
tern in the architecture, and finally the tool métialized.
This design allows an arbitrary number of tooldéocre-
ated and linked into the software engineering @mwvir
ment.

Shared ownership domains. Components can share ob-
jects with connected components by declaring ovirigrs
domains inside their ports. When the port is coteteto
a matching port, ownership domains with the sanmena
that are declared in both ports are merged, allgwioth
components to access the objects in the sharediloma

Theevent port in component clasgool shows how
the tools communicate with the database. Th&a
ownership domain describes the objects that areedha
between the database and all the tools, includiagcbde
stored in the database and callback objects tlzat rte
gvents.

Every tool can signal an event by invoking gig-
nal function. The event passeddignal isuni que;
it will be enqueued in the database event queuerdef
being delivered to tools that have expressed istere
events of that type.

Tools can also register for events of a partictyae
by passing in aini que event descriptor object, together
with a callback that will be invoked when an eveoturs.
The callback is expected to definaa@tify method that
will be invoked with the event argument.

Theevent port ofDatabase (not shown) is the mir-
ror of theevent port of Tool . It also declares the
data domain and defines provided methosignal
and register that match the methods declared in the
port of Tool .

An Example Tool. The RuleChk component in Figure
5 is intended to ensure that the code base obegs af

user-defined coding rules. It stores the set ddsrun

some internal format in thelleSet  object. When ini-
tialized, it registers a callback to be invoked néner any
change to the code occurs.



publ i c conponent cl ass RuleChk extends Tool {
protected owned Set< owned> ruleSet;

public port event{
donwi n data;
requi res void signal(
requires void register(
data Callback cb);

uni que Evente);
uni que EventType t,

}

public void initialize() {
event.register( new EventType(“‘codeChange”),
new RuleCB< owned>(ruleSet));
}

}

cl ass RuleCB<rules> inpl ements Callback {
prot ect ed rules Set<rules> ruleSet;

RuleCB(rules Set<rules> rs) { ruleSet =rs; }

voi d notify( | ent Evente){
/! generates an error on rule violations

}
}
Figure 5. The RuleChk component stores a set of se-
mantic rules, and registers a callback to receive code
change events. Whenever the callback is invoked with an

event, it checks if any of the rules are violated, and if so it
generates an error.

The callback object needs to access the set of, rste
the class is parameterized by the domain that hibles
rules, which is instantiated with thewned domain of
RuleChk . It stores theuleSet internally in a field
annotated with this domain.

When a code change event is fired, thetify
method of theRuleCB callback will be invoked. We
assume that the database owns the events in ttamsys
but callback objects need to have temporary adcetise
event object in order to get information about évent.
Therefore, the database passes the event to thadahs

al ent reference. The callback checks to see if the the

event leads to a rule violation, and notifies tiseruif a
violation is detected.

This example illustrates ArchJava’s support forrgve
callback objects, and important object-orientedndithat
is challenging to reason about in conventional enpn-
tation languages.

3.6.

An open-source compiler for ArchJava is availalde f
download at the ArchJava web site [Arc02]. Our eom
piler is implemented on top of the Barat infrastaue
[BS98]. The compiler accepts a list of ArchJavesfi
(.archj), translates each one down into Java sotwde,
and invokesjavac on the resulting .java files. Both
typechecking and compilation are local, so that whe
source file is updated, only that file and thedfithat de-
pend on its interface need to be typechecked acmhre
piled.

I mplementation

The most interesting aspect of compiling ArchJas/a i
that some information about ownership domains rbest
maintained at run time, using standard type-pastiob-
nigues. Although ArchJava’s type system is mostfic,
ArchJava performs run-time checks at downcastsaand
ray writes to ensure that the domain parameteenasb-
ject match the parameters declared in the typbetast
or array. These checks are done at the same pldieze
Java already does dynamic checks; in this sense,
ArchJava’s type system is as static as that of.J&her
papers provide additional details about the typstesy
and the implementation techniques used in the dempi
[ACNO2b,AKC02,AId03].

3.7. Summary

ArchJava allows developers to specify the softveachi-
tecture of a system as a hierarchy of componetdrioss.
Connections describe which components within tloaiar
tecture communicate, and the methods and ownership
domains declared in ports show the details of conicau

tion through method calls and shared data.

4. Communication Integrity

Communication integrity is the key property enfardey
ArchJava, ensuring that components can only communi
cate using connections and ownership domains tleat a
explicitly declared in the architecture. In thexcgon, we
define communication integrity more precisely, ifiysthe
definition, and explain how it is enforced.

Before defining communication integrity, we must de
fine inter-component communication. To do so, wed
the concept of an object'architectural domain which
can be found by ascending the ownership tree antil
ownership domain declared in a component is reaclfed
an object iaini que, it has no architectural domain.
Definition [Inter-component communication]: Two
componentgommunicatevhenever:

1. Direct call: Component instancé or an object in
one of its ownership domains invokes a method di-
rectly on component instan& or

2. Connection call: Component instancé invokes a
method of component instan&through a connec-
tion, or

3. Shared data: An object with architectural domai
accesseginvokes a method or reads or writes a field
of) a non-component objeBt andA andB are in dif-
ferent architectural domains.

We now state the communication integrity theorem fo
ArchJava:

Theorem [Communication Integrity]: All run-time
inter-component communication falls into one of the
lowing categories of communication, each of whigh i
documented explicitly or implicitly in the architeice:



Unigue communication: ObjectA invokes a method
on a componerB that is annotatedni que, or

Parent-child communication: Object A invokes a
method on a componeBtwhich is owned bw, or

Connection communication: Componen# invokes
a method on componeBtthrough a connection that

matches a connect pattern in the component instance

that directly owns (or is equal t8)andB, or

Lent communication: Component or objecA in-
vokes a method on an object or comporietitat has
been temporarily lent t8, or

Shared domain communication: Object A accesses
some object B in a different domain, and the aechit
tural domain ofA is linked to that oB.

The author’s thesis includes a formal model of the
ArchJava language, a formal statement of the corizaun
tion integrity theorem described above, and a dger
proof that ArchJava’'s type system statically erdsrc
communication integrity [Ald03]. Below, we outlirtbe
structure of the proof and provide an intuition faw the
property is enforced.

Enforcement. Enforcing communication integrity is es-
sentially ensuring that all instances of inter-comgnt
communication fall into one of the architecturatipcu-
mented categories. Consider the cases of inteponant
communication:

1. Direct call case. ArchJava’s type system ensures if
the receiver of a method call is a component, #ien
ther the receiver ishi s, or the receiver isini que
or part of a locally declared ownership domain.
the case oft hi s, the communication is within a
component. In the cases ohi que and local do-
mains, the communication is unique communication
and parent-child communication, respectively.

. Connection call case. The type system must ensure

In

The remaining case is when the accessed object is
annotated with a ownership domain that is either de
clared in the current component. We wish to show
that this case is shared domain communications Thi
will be true if and only if architectural domain tife
accessing object can access the target object'aidom
according to the aliasing policy. But this is quar
teed by the policy soundness property, so we are
done.

Discussion. The theoretical framework described above
is quite general—for example, communication through
static fields or native methods can be modeledhases
domain communication, where the fields and natiethm
ods are conceptually viewed as part of shareddomain
that is shared between every component. In pmctic
however, excessive communication through the global
shareddomain makes architectural reasoning more diffi-
cult, and so developers are encouraged to avaidhétre
possible, just as good engineers typically avoithgis
global variables in today's programming languag®€e
would prefer to omit the globalhareddomain entirely,
but this would be impractical given that many eript
Java libraries use global data structures.

Communication integrity means that all communiaatio
between components must be declared at the archiéc
level—either through required and provided methods i
connected ports, or through an ownership domain de-
clared in connected ports. The ArchJava compiter e
forces conformance via local rules governing hoferre
ences with different alias annotations can be usBe-
cause integrity is enforced through the type systaro-
grammers can develop applications much as theyodo t
day, but gain the assurance that architectural gotigs
are maintained during implementation and evolution.

5. Validation

In order to validate our design, we are undertakirgase
study applying ArchJava to Golden Gate, the readti

that the component which owns both the sender androbot control system developed by the NASA Jet Brop

the receiver declared a connection between them
When a connection is made, the compiler verifies$ th

.sion Laboratory, Sun, and Carnegie Mellon Univgrsit

and demonstrated at the JavaOne conference in 206S8.

the components in the connection are owned by thegoal of the study is to answer the following resbajues-
current component, and that the current componenttions:

declares a connect pattern that matches the compo-

nents being connected.

Shared data case. Consider the annotation on the
object B being accessed. If the annotation is
uni que, there is no inter-component communication
occurring—instead, the calling component is modify-
ing one of its own unique data structures. Ifahao-
tation isowned, again, there is no inter-component
communication, because the receiver of the aceess i
part of the same component as the sender. Ifrthe a

notation is a lent domain parameter, the communica-

tion is lent communication.

» Can ArchJava effectively capture the Mission Data
System architecture used in the Golden Gate code?

* What are the benefits of ArchJava, in terms of unde
standing the actual architecture of the code, and i
finding possible violations of the intended arcbite
ture?

» What are the costs of using ArchJava in this sy8tem

While our case study is not yet complete, we reporbur
preliminary experience with this application.
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publ i ¢ conponent cl ass ControlDiamond {
prot ect ed owned State state;
prot ect ed owned Estimator estimator;
prot ect ed owned Control control;
prot ect ed owned Hardware hardware;

public port telemetry{...}
public port report{...}

cnct pat Estimator.estimate, State.data;

cnct pat State.data, Control.state;

cnct pat Hardware.measure, Estimator.measure;
cnct pat Control.action, Hardware.action,
Estimator.action;

gl ue telecommand t o control.goals;
/1 additional code not shown

}

Figure 6. A graphical depiction of the Mission Data Sys-
tem architecture in use at the Jet Propulsion Laboratory,
and simplified ArchJava code that captures the architec-
ture.

Architecture. The core of the Mission Data System
(MDS) architecture [DRR+99] used by Golden Gate is
shown graphically at the top of Figure 6. The dedture
shown is designed to capture the state estimatidrcan-
trol loop for a single element of hardware withive tro-
bot. A Hardware Proxy, at the bottom, communicates
directly with the hardware, reporting measureménthe
rest of the system and accepting action command to
performed by the hardware. To the left is a Skxéer-
mination (or estimator) component that takes mesasur
ments from the hardware proxy and uses them tmati
the value of some higher-level state, such as dbetis
current position. This state is then stored in 8tate
Knowledge component at the top of the diagram.aliin
the State Control component on the right acceptisrex!
commands from mission control through an extereal t
lemetry module (at the top-right) and uses inforamat
about the current state to determine what actionget-
form next. An application’s complete architectigenade

of a number of these diamond-shaped subarchitecture

We chose to represent this with tB@ntrolDia-
mond component class shown at the bottom of Figute 6.
The four subcomponents in the diagram are repregent
by four owned components. The&€ontrolDiamond
has two external ports, one for receiving comménais
mission control and one for reporting informaticack to
mission control. The connection to hardware in diee
gram is not represented in ArchJava, as this isedon
through native methods that are beyond the scopmiof
language design.

Connections in the architecture correspond to the a
rows in the diagram. The last connection useskéye
word gl ue, indicating that goals coming from the teleme-
try port should be forwarded directly to theals port of
thecontrol ~ subcomponent, as shown in the diagram.

Discussion. The original Golden Gate code was designed
with the MDS architecture in mind, and so the seurc
code refers explicitly to concepts like componeatsl
connectors, making our task easier. On the othed hit
was still somewhat challenging to associate coddn wi
architectural features, because connections weds rbg
calls to twoconnectfunctions deep within the (quite com-
plex) constructor code of théontrolDiamond Fur-
thermore, one of the twoonnectfunctions does not de-
scribe what interface is used for communicatiots b
inferred from the types of the two connected congmis
As Figure 6 shows, our ArchJava representationigesv
a clearer view of the architecture by declaringhiec-
tural connections at the top level, and using piartshow
the interfaces between components.

One difference we found between the abstract aechit
ture and the code was that often the state in o “
mond” in the architecture is used by the controéstima-
tion components in another diamond. This is a maatu
requirement of the domain, where different statéabédes
are somewhat interdependent, but this was not @ipli
the original architectural diagram.

It is too early in our case study to evaluate thets of
applying ArchJava; our previous experience was that
ArchJava can be applied to 10K-line legacy Javéerys
in about 6-30 engineer hours [ACNO02a,ACNO2b].

6. Reated Work

ArchJava. The initial ArchJava system enforced archi-
tectural conformance only for control flow betwesm-
ponents, not for communication though shared data
[ACNO2a, ACNO2b]. This paper extends our previous
work to the more challenging case of communication
through shared data, enforcing communication iftegr
for all forms of communication.

In addition, the system we describe here is mane-fl
ble and more consistent than our previous systéfor
example, the component hierarchy is specified usimg-

!Note: because of export restrictions the code stiswint
actual Golden Gate code, but rather is an absttacssv
demonstrating how we are capturing the architecture



ership domains, rather than the ad-hoc and inflexgin- graph construction analysis in order to find indstes-
tactic criterion used before. One benefit is thvat can cies between an architectural model and source code
now support the factory pattern [GHJ+94] for compo- [MNSO1]. This analysis-based approach is moretdigh
nents: a factory component creates and initialczeapo- weight than ArchJava’s type system, but does nppati
nents, which are then passed asnaque component to  hierarchical, dynamic architectures or precise dhtaing
their final place in the architecture, where thecdme constraints.

owned by their parent component. Another benefit ig tha

Java constructs like inner classes, interface itdmae, CASE Tools. Several CASE tools support the SDL lan-
and native methods fit more cleanly into our curren guage, which allows developers to describe ardhitat
framework, as discussed elsewhere [AldO3]. structure within the implementation of an embeddest
We believe these improvements make ArchJava con-tem [ITU99]. The language enforces architecturah-co
siderably more practical, and that the supportfddrar- formance, but only by prohibiting shared referenbes
chitectural conformance will provide significantnadits tween components. Other CASE tools such as Rationa
to users of the language. Rose RealTime [RSCO00] also allow developers toi§pec
the design of a system, but in the presence ofsghab-
Architecture Description Languages. A number of ar-  jects and references they do not enforce architagoton-

chitecture description languages (ADLs) have been d formance.
fined to describe, model, check, and implementwsa
architectures [MT00]. The SADL system formalizes a Ownership and Uniqueness. Ownership was introduced
chitectures in terms of theories, providing a framek for in the Flexible Alias Protection paper, which useser-
proving that communication integrity is maintainetien ship polymorphism to strike a balance between gueaea
refining an abstract architecture into a concrete o ing aliasing properties and allowing flexible pragming
[MQR95]. However, the system did not provide auto- idioms [NVP98]. More recent work formalized owner-
mated support for enforcing communication integrity ship as a type system and showed how to increasx-t
The Rapide system includes a tool that dynamicabyi- pressiveness [CNP0O1,BLS03]. Uniqueness was prdpose
tors the execution of a program, checking for comicar as an aliasing construct by Minsky and later refirgy
tion integrity violations [Mad96]. The Rapide papalso Boyland and others [Min96,Boy01].
suggest that integrity could be enforced staticlbystem ArchJava’s support for ownership and uniqueness is
implementers follow style guidelines, such as nesrear- most closely based on the author’s previous worlAlbn
ing mutable data between components [LV95]. Howeve asJava. To date, AliasJava is the only ownergpe t
the guideline forbidding shared data prohibits masgful system that has a publicly available implementatiod
programs, and the guidelines are not enforced attom substantial experience showing that the systemaistipal
cally. [AKCO02]. AliasJava’'s ownership model was extended

a later paper to support multiple ownership domgies
Module Systems. Module systems such as ML'’s functors object and the detailed policy specifications diésdt in
[MTH90] and MzScheme’s Units [FF98] support system section 2 above, providing both more expressiveaesds
composition from separate modules. While theseutleod stronger aliasing guarantees compared to previango
systems have rich facilities for information hidjrigey do ship systems [AC04]. Policy specifications and tiplé
not provide mechanisms for controlling shared dzta ownership domains are essential for modeling sbarin
jects or functions, and thus do not enforce archital constraints in software architecture.
conformance.

7. Conclusion

The ArchJava language extends Java with constthats
model hierarchical, dynamically evolving softwaneta-
tectures. Components communicate through expmait
nections as well as through shared objects thapareof
architecturally declared ownership domains. ArghJa
type system uses ownership and uniqueness to enforc
structural conformance between architecture andeimp
mentation. Thus, engineers can have confidendettiba
code behaves according to the architectural doctanen

Enforcing Design. Lam and Rinard have developed a
type system for describing and enforcing designJ8R
Their designs describe communication between subsys
tems (corresponding to ArchJava’s components) ihat
mediated through shared objects that are labeléd tod
kens (corresponding to ownership domains). Thgitesn
does not model architectural hierarchy, and thetstib-
systems and tokens is statically fixed rather tthamami-
cally determined, as in ArchJava. Furthermoreiy thys-
tem does not describe data sharing as preciseligtirgn . X ;
constructs like uniqueness and ownership-basedpenea  tioN: and can use this knowledge to build and evsys-
lation. However, they do describe a number of uisef (€MS more effectively.

analyses which would complement ArchJava’s more de-
tailed architectural descriptions. Acknowledgements
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