
 1

Using Types to Enforce Architectural Structure

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
jonathan.aldrich@cs.cmu.edu

Abstract
Developers use formal or informal software architecture
descriptions in order to communicate and reason about
the high-level structural properties of a system. However,
these architectural descriptions are often inaccurate or
out of date, resulting in lost productivity and defects as
the system is evolved.

This paper presents the first static technique for en-
forcing complete structural conformance between a rich
architectural specification and general-purpose imple-
mentation code. Our system, ArchJava, models architec-
ture as a hierarchy of component instances that commu-
nicate through explicit connections. ArchJava’s type sys-
tem ensures that components only communicate through
connections that are explicitly declared in the architec-
ture. As a result, developers have accurate architectural
documentation, allowing them to carry out evolution tasks
with confidence.

To validate our design, we show how ArchJava can be
used to capture the Mission Data System architecture
under development at JPL for embedded space system
applications.

1. Introduction
Software architecture is the high-level organization of a
software system, showing how the system decomposes
into components, and how these components interact
[GS93,PW92]. Various systems have been developed to
allow architects to specify and reason about different ar-
chitectural properties, including the temporal order of
architectural events [LV95,AG97], architectural styles
[AAG93,MOR+96], and the evolution of dynamic sys-
tems [MK96]. One major, long-term goal of software
architecture research is to aid engineers in development
and evolution tasks by enforcing these architectural prop-
erties in the implementation of a system.

All of the properties cited above rely on a basic notion
of architectural structure: a description of how the major
components in a software system interact. For example,
modeling the temporal order of architectural events in-
cludes specifying where these events occur in the architec-
ture; architectural styles constrain the topology of an ar-
chitecture and how components can communicate; and
architectural dynamism involves structure that changes
over time. Thus, a necessary first step towards enforcing
any of these properties in a real system is enforcing struc-

tural conformance between architecture and implementa-
tion code.

A system conforms to its architecture if the architecture
is a conservative abstraction of the run-time behavior of
the system. The communication integrity property defines
how architectural structure abstracts run-time communica-
tion in the implementation [MQR95,LV95]:

Definition [Communication Integrity]: Each
component in the implementation may only com-
municate directly with the components to which it
is connected in the architecture.

Enforcing communication integrity is challenging due to
programming language mechanisms which support im-
plicit communication, including references, objects, and
first-class functions. Previous systems have made serious
compromises in order to enforce communication integrity,
either eliminating implicit communication mechanisms
entirely [ITU99], postponing conformance checks until
run time [Mad96], or supporting only simple architectural
models [MNS01,LR03].

We previously presented the initial design of ArchJava,
which allows programmers to model rich architectural
designs within Java code [ACN02a]. ArchJava allows
developers to label distinguished objects as architectural
components, and specify how those components interact
through connections. The previous version of ArchJava
enforced communication integrity for function calls be-
tween components, but did not enforce integrity for com-
munication through shared data.

This paper makes the following technical contribu-
tions:

• We show how ArchJava can be extended to describe
architectural constraints on data sharing by adapting
our previous work on alias control systems
[AKC02,AC04]. Our system can describe data that is
confined within a component, passed linearly from
one component to another, or shared temporarily or
persistently between components.

• The extended ArchJava design is the first system to
statically enforce communication integrity for rich ar-
chitectural models in the presence of data sharing.
We define communication integrity precisely for
ArchJava and explain how the checking is done.

 2

• We validate the extended ArchJava design in prac-
tice, showing how it can be used to capture the Mis-
sion Data System architecture under development at
JPL for embedded space system applications.

In the next section, we review the alias control constructs
of AliasJava, the alias-control type system on which we
build. Section 3 shows how these constructs can be inte-
grated into ArchJava to support a specification of data
sharing in an architecture. Section 4 defines communica-
tion integrity precisely for ArchJava, and explains how it
is checked. Section 5 shows how ArchJava can be used to
capture the architecture of JPL’s MDS architecture. Sec-
tion 6 discusses related work, and Section 7 concludes.

2. AliasJava
AliasJava is a type annotation system that extends Java to
express how data is confined within, passed among, or
shared between components and objects in a software
system [AKC02,AC04]. The ArchJava language, dis-
cussed in Section 3, builds on this foundation by adding
constructs for describing software architecture.

2.1. Alias-Control Model

The goal of AliasJava is to enforce a high-level specifica-
tions of aliasing relationships in object-oriented programs.
We achieve this goal by dividing objects into conceptual
groups called ownership domains, and allowing architects
to specify high-level policies that govern references be-
tween ownership domains. Ownership domains are hier-
archical, allowing engineers to specify very abstract alias-
ing constraints at the level of an entire program, then re-
fine these constraints to specify aliasing within subsys-
tems, modules, and individual objects.

AliasJava supports abstract reasoning about data shar-
ing by assigning each object in the system to a single
ownership domain. There is a top-level ownership do-
main denoted by the keyword shared. In addition, each
object can declare one or more domains to hold its inter-
nal objects, supporting hierarchical aliasing specifications.

For example, Figure 1 uses a Sequence abstract data
type to illustrate the ownership model used in AliasJava.
The Sequence object and its clients are both part of the
top-level shared ownership domain. Within the sequence,
the iters ownership domain is used to hold iterator objects
that clients use to traverse the sequence, and the list own-
ership domain is used to hold the cons cells in the linked
list that is used to represent the sequence.

Each object can declare a policy describing the permit-
ted aliasing among objects in its internal domains, and
between its internal domains and external domains. Alias-
Java supports two kinds of policy specifications:

• A link from one domain to another, denoted with an
dashed arrow in the diagram, allows objects in the
first domain to access objects in the second domain.

• A domain can be declared public, denoted by a thin-
ner dashed rectangle with no shading. Permission to
access an object automatically implies permission to
access its public domains.

For example, in Figure 1 the Sequence object declares a
link from its iters domain to its owned domain, allowing
the iterators to refer to objects in the linked list. The iters
domain is public, allowing clients to access the iterators,
but the owned domain is private, and so clients must ac-
cess the elements of the sequence through the iterator in-
terface rather than traversing the linked list directly.

In addition to the explicit policy specifications men-
tioned above, our system includes the following implicit
policy specifications:

• An object has permission to access other objects in
the same domain.

• An object has permission to access objects in the do-
mains that it declares.

The first rule allows the clients to access the sequence
(and vice versa), while the second rule allows the se-
quence to access its iterators and linked list. Any refer-
ences not explicitly permitted by one of these rules is pro-
hibited, according to the principle of least privilege. It is
crucial to this example that there is no transitive access
rule: for example, even though clients can refer to iterators
and iterators can refer to the linked list, clients cannot
access the linked list directly because the sequence has not
given them permission to access the owned domain.
Thus, the policy specifications allow developers to specify
that some objects are an internal part of an abstract data
type’s representation, and the compiler enforces the pol-
icy, ensuring that this representation is not exposed.

Sequence

iters owned

client
objects

shared

Figure 1. A conceptual view of the aliasing model used
in AliasJava and ArchJava. The rounded, dashed rectan-
gles represent ownership domains, with a gray fill for pri-
vate domains. Solid rectangles represent objects. The
top-level shared domain contains the highest-level ob-
jects in the program. Each object may define one or
more domains that in turn contain other objects.

 3

2.2. Alias Annotations.

Figure 2 shows how the Java code defining the sequence
ADT can be annotated with aliasing information to model
the constraints expressed in Figure 1. The Sequence
class is parameterized by the type T of its element objects,
using Java version 1.5’s generics support.

The first two lines of code within the class declare the
owned domain and a reference to the head of the list. For
convenience, every object in our system declares its own
owned domain, and so we will omit this declaration from
future examples. The head field is of type owned
Cons<T> , denoting a Cons linked list cell that holds an
element of type T and resides in the owned domain. The
add member function constructs a new cons cell for the
object passed in, and adds it to the head of the list.

Skipping ahead to the definition of the Cons cell class,
we see that it is also parameterized by the element type T.
The class contains a field obj holding an element in the
list, along with a next field referring to the next cons cell
(or null, if this is the end of the list). The next field
has type owner Cons<T> , indicating that the next cell
in the list has the same owner domain as the current cell
(i.e., all the cells are part of the Sequece ’s owned do-
main).

Back in the Sequence class, a public iters domain is
declared to hold the iterator objects. Because the iterators
need to refer to cons cells in the linked list, the sequence
links the iter domain to the owned domain. The
getIter method creates a SequenceIterator ob-

ject (not shown), initializing the iterator to point to the
first element of the linked list.

Uniqueness and Lending. While ownership is a useful
for representing persistent aliasing relationships, it cannot
capture the common scenario of an object that is passed
between objects without creating persistent aliases. Ob-
jects to which there is only one reference (including
newly-created objects) are annotated unique in Alias-
Java. Unique objects can be passed from one ownership
domain to another, as long as the reference to the object in
the old ownership domain is destroyed when the new ref-
erence is created.

We also allow one ownership domain to temporarily
lend an object to another ownership domain, with the con-
straint that the second ownership domain will only use the
object in the course of a particular function call and will
not create any persistent references to the object. We an-
notate these temporary references with the keyword
lent, and enforce the invariant that lent references
cannot be stored in object fields.

2.3. Properties.

AliasJava enforces a policy soundness property, ensuring
that the aliasing policy specifications in the program text
are obeyed at run time:

Definition [Policy Soundness]: If in object that is
part of ownership domain D1 refers to an object in
domain D2, then there must be a policy specifica-
tion allowing references from D1 to D2.

Policy soundness is crucial to enforcing communication
integrity in the presence of data sharing, as described be-
low, because it ensures that the data sharing declarations
in a software architecture are obeyed at run time.

Policy soundness is enforced statically by AliasJava’s
type system, by ensuring consistency among ownership
annotations and by making sure references between ob-
jects are legal given the policy specifications in scope.
Our previous paper proved a policy soundness property in
a formal model of the AliasJava language [AC04].

Summary. AliasJava uses type annotations to partition an
object’s internal state into disjoint ownership domains.
Policy specifications constrain inter-domain aliasing, so
that objects in one domain can only refer to objects in
another domain if the policy allows these references. In
the next section, we show how ArchJava leverages Alias-
Java’s ownership domains in architectural specifications
to control communication through shared data.

3. ArchJava
ArchJava extends the Java language with component
classes, which describe objects that are part of an architec-
ture, connections, which allow components to communi-
cate, and ports, which are the endpoints of connections.
Components are organized into a hierarchy using owner-

class Sequence<T> {
 domain owned; /* default */
 owned Cons<T> head;
 void add(T o) {
 head = new Cons<T>(o,head)
 }

 public domain iters;
 link iters -> owned;
 iters Iterator<T> getIter() {
 return new SequenceIterator<T, owned>(head);
 }
}

class Cons<T> {
 T obj;
 owner Cons<T> next;

 Cons(T obj, owner Cons<T> next) {
 this.obj=obj; this.next=next; }
}

Figure 2. A Sequence abstract data type that uses a
linked list for its internal representation. The Sequence
declares a publicly accessible iters domain representing
its iterators, as well as a private owned domain to hold the
linked list. The link declarations specify that iterators in
the iter domain have permission to access objects in the
owned domain, and that both domains can access owner
of the type parameter T.

 4

ship domains, and ownership domains can be shared along
connections, permitting the connected components to
communicate through shared data. This section introduces
these concepts through two example architectures.

3.1. Example: Pipeline Architecture

Figure 3 shows the architecture of a simple graphics pipe-
line. The generate component stores the current scene
and generates shapes to be displayed. These shapes are
passed on to the transform component, which stores
the current transformation and applies it to each shape in
turn. It then passes the shapes on to the rasterize
component to be displayed.

We want to enforce two architectural invariants that are
important to the pipeline architectural style [GS93]. First,
the components are arranged in a linear sequence, with
each component getting information from its predecessor
and sending it on to its successor. Second, no data is
shared between components; instead, shapes are handed

off from one component to another. As the ArchJava lan-
guage is introduced through this example, we will discuss
how these invariants are specified and enforced.

3.2. Components and the Ownership Hierarchy

A component in ArchJava is a special kind of object
whose communication patterns are declared explicitly
using architectural declarations. Component code is de-
fined in ArchJava using component classes. Figure 3
shows the code that defines the GraphicsPipeline
and Transform component classes. We assume that
Generate and Rasterize are component classes de-
fined elsewhere, and Trans3D and Shape are ordinary
classes that are not part of the architecture.

The GraphicsPipeline class contains three fields,
one for each component in the pipeline. The fields types
are annotated with the implicit ownership domain owned,
meaning that generate , transform , and raster-
ize are subcomponents of the GraphicsPipeline
component instance that owns them.

3.3. Ports and Unique Data

Components communicate through explicitly declared
ports. A port is a communication endpoint declared by a
component. For example, the Transform component
class declares an in port that receives incoming shapes
and an out port that passes transformed shapes on to the
next component.

Each port declares a set of required and provided
methods. A provided method is implemented by the com-
ponent and is available to be called by other components
connected to this port. Conversely, each required method
is provided by some other component connected to this
port. Each provided method must be implemented inside
the component. For example, the draw method’s imple-
mentation transforms its shape argument and then calls the
required method draw on the out port. As the example
shows, a component can invoke one of its required meth-
ods by sending a message to the port that defines the re-
quired method.

Annotating the Shape objects as unique enforces
the architectural invariant that shapes are handed off from
one component to another. ArchJava’s type system en-
sures that no component may retain a reference to a shape
after it passes it on to the next component. This invariant
allows the developers of each component to assume they
have exclusive access to the shape they are manipulating.

3.4. Connections and Connect Patterns

ArchJava requires developers to declare in the architec-
ture the connection patterns that are permitted at run time.
The declaration connect pattern Gener-
ate.out, Transform.in permits the graphics pipe-
line component to make connections between the out
port of its Generate subcomponents and the in port of
its Transform subcomponents. The connect patterns
declared in GraphicsPipeline constrain its subcom-

GraphicsPipeline
out in out in

transform rasterize generate

public component class GraphicsPipeline {
 protected owned Generate generate = ... ;
 protected owned Transform transform = ... ;
 protected owned Rasterize rasterize = ... ;

 connect pattern Generate.out, Transform.in;
 connect pattern Transform.out, Rasterize.in;

 public GraphicsPipeline() {
 connect(generate.out, transform.in);
 connect(transform.out, rasterize.in);
 }
}

public component class Transform {
 protected owned Trans3D currentTransform;

 public port in {
 provides void draw(unique Shape s);
 }
 public port out {
 requires void draw(unique Shape s);
 }

 void draw(unique Shape s) {
 currentTransform.apply(s);
 out.draw(s);
 }
}

Figure 3. The architectural specification of a graphics
pipeline in ArchJava. GraphicsPipeline is made up of
three subcomponents: the Generator generates shapes,
which are transformed by Transform and then displayed
by Rasterize . The Transform component accepts a
unique Shape on its in port, transforms it according to
the current transformation, and passes it on through the
out port.

 5

ponents to communicate in a linear sequence, fulfilling the
constraint of the pipeline architectural style.

Once connect patterns have been declared, concrete
connections can be made between components. All con-
nected components must be part of an ownership domain
declared by the component making the connection. For
example, the constructor for GraphicsPipeline con-
nects the out port of the transform component in-
stance to the in port of the rasterize component in-
stance. This connection binds the required method draw
in the out port of transform to a provided method
with the same name and signature in the in port of
rasterize (not shown). Thus, when transform
invokes draw on its out port, the corresponding imple-
mentation in rasterize will be invoked.

3.5. Example: Blackboard Architecture

Figure 4 shows the architecture of a software engineering
environment. The architecture is structured as a black-
board, with various tools accessing a central database that
stores the code base on which the tools operate [GS93].
In the architectural diagram, the oval represents an owner-
ship domain holding the data that is shared between the
database and all the components. The architectural in-

variant of the system is that tools communicate only
through the shared data and via events that are mediated
by the central database [SN92].

The SEEnvironment component class declares the
code database as an owned component. However, it
doesn’t declare a fixed set of components at the architec-
tural level, because we would like the environment to be
extensible, loading tools at run time that may have been
developed by third parties. Therefore, the architecture
declares a connect pattern between the event port of the
database and the event port of the abstract component
class Tools .

SEEnvironment reads a configuration file to deter-
mine the set of installed components and then instantiates
them one by one using the instantiateTool func-
tion. This function takes a component class argument,
creates a new component instance, and casts the instance
to type Tool . The tool is then connected to the database
using a connect expression that matches the connect pat-
tern in the architecture, and finally the tool is initialized.
This design allows an arbitrary number of tools to be cre-
ated and linked into the software engineering environ-
ment.

Shared ownership domains. Components can share ob-
jects with connected components by declaring ownership
domains inside their ports. When the port is connected to
a matching port, ownership domains with the same name
that are declared in both ports are merged, allowing both
components to access the objects in the shared domain.

The event port in component class Tool shows how
the tools communicate with the database. The data
ownership domain describes the objects that are shared
between the database and all the tools, including the code
stored in the database and callback objects that react to
events.

Every tool can signal an event by invoking the sig-
nal function. The event passed to signal is unique;
it will be enqueued in the database event queue before
being delivered to tools that have expressed interest in
events of that type.

Tools can also register for events of a particular type
by passing in a unique event descriptor object, together
with a callback that will be invoked when an event occurs.
The callback is expected to define a notify method that
will be invoked with the event argument.

The event port of Database (not shown) is the mir-
ror of the event port of Tool . It also declares the
data domain and defines provided methods signal
and register that match the methods declared in the
port of Tool .

An Example Tool. The RuleChk component in Figure
5 is intended to ensure that the code base obeys a set of
user-defined coding rules. It stores the set of rules in
some internal format in the ruleSet object. When ini-
tialized, it registers a callback to be invoked whenever any
change to the code occurs.

SEEnvironment

event

data

database

ruleCheck

editor
event

event

public component class SEEnvironment {
 protected owned Database database = ... ;

 connect pattern Database.event, Tool.event;

 public void instantiateTool(Class tCls) {
 owned Tool tool = (Tool)tCls.newInstance();
 connect(database.event, tool.event);
 tool.initialize();
 }

 // reads config file, calls instantiateTool...
}

public abstract component class Tool {
 public port event {
 domain data;
 requires void signal(unique Event e);
 requires void register(unique EventType t,
 data Callback cb);
 }
}

Figure 4. The architectural specification of a software
engineering environment. The environment is made up of
a central database that stores the code for the project,
and a set of tools that communicate through events that
are mediated by the database.

 6

The callback object needs to access the set of rules, so
the class is parameterized by the domain that holds the
rules, which is instantiated with the owned domain of
RuleChk . It stores the ruleSet internally in a field
annotated with this domain.

When a code change event is fired, the notify
method of the RuleCB callback will be invoked. We
assume that the database owns the events in the system,
but callback objects need to have temporary access to the
event object in order to get information about the event.
Therefore, the database passes the event to the callback as
a lent reference. The callback checks to see if the the
event leads to a rule violation, and notifies the user if a
violation is detected.

This example illustrates ArchJava’s support for event
callback objects, and important object-oriented idiom that
is challenging to reason about in conventional implemen-
tation languages.

3.6. Implementation

An open-source compiler for ArchJava is available for
download at the ArchJava web site [Arc02]. Our com-
piler is implemented on top of the Barat infrastructure
[BS98]. The compiler accepts a list of ArchJava files
(.archj), translates each one down into Java source code,
and invokes javac on the resulting .java files. Both
typechecking and compilation are local, so that when a
source file is updated, only that file and the files that de-
pend on its interface need to be typechecked and recom-
piled.

The most interesting aspect of compiling ArchJava is
that some information about ownership domains must be
maintained at run time, using standard type-passing tech-
niques. Although ArchJava’s type system is mostly static,
ArchJava performs run-time checks at downcasts and ar-
ray writes to ensure that the domain parameters of an ob-
ject match the parameters declared in the type of the cast
or array. These checks are done at the same places where
Java already does dynamic checks; in this sense,
ArchJava’s type system is as static as that of Java. Other
papers provide additional details about the type system
and the implementation techniques used in the compiler
[ACN02b,AKC02,Ald03].

3.7. Summary

ArchJava allows developers to specify the software archi-
tecture of a system as a hierarchy of component instances.
Connections describe which components within the archi-
tecture communicate, and the methods and ownership
domains declared in ports show the details of communica-
tion through method calls and shared data.

4. Communication Integrity
Communication integrity is the key property enforced by
ArchJava, ensuring that components can only communi-
cate using connections and ownership domains that are
explicitly declared in the architecture. In this section, we
define communication integrity more precisely, justify the
definition, and explain how it is enforced.

Before defining communication integrity, we must de-
fine inter-component communication. To do so, we need
the concept of an object’s architectural domain, which
can be found by ascending the ownership tree until an
ownership domain declared in a component is reached. If
an object is unique, it has no architectural domain.

Definition [Inter-component communication]: Two
components communicate whenever:

1. Direct call: Component instance A or an object in
one of its ownership domains invokes a method di-
rectly on component instance B, or

2. Connection call: Component instance A invokes a
method of component instance B through a connec-
tion, or

3. Shared data: An object with architectural domain A
accesses (invokes a method or reads or writes a field
of) a non-component object B, and A and B are in dif-
ferent architectural domains.

We now state the communication integrity theorem for
ArchJava:

Theorem [Communication Integrity]: All run-time
inter-component communication falls into one of the fol-
lowing categories of communication, each of which is
documented explicitly or implicitly in the architecture:

public component class RuleChk extends Tool {
 protected owned Set< owned> ruleSet;

 public port event {
 domain data;
 requires void signal(unique Event e);
 requires void register(unique EventType t,
 data Callback cb);
 }

 public void initialize() {
 event.register(new EventType(“codeChange”),
 new RuleCB< owned>(ruleSet));
 }
}

class RuleCB<rules> implements Callback {
 protected rules Set<rules> ruleSet;

 RuleCB(rules Set<rules> rs) { ruleSet = rs; }

 void notify(lent Event e) {
 // generates an error on rule violations
 }
}

Figure 5. The RuleChk component stores a set of se-
mantic rules, and registers a callback to receive code
change events. Whenever the callback is invoked with an
event, it checks if any of the rules are violated, and if so it
generates an error.

 7

1. Unique communication: Object A invokes a method
on a component B that is annotated unique, or

2. Parent-child communication: Object A invokes a
method on a component B which is owned by A, or

3. Connection communication: Component A invokes
a method on component B through a connection that
matches a connect pattern in the component instance
that directly owns (or is equal to) A and B, or

4. Lent communication: Component or object A in-
vokes a method on an object or component B that has
been temporarily lent to A, or

5. Shared domain communication: Object A accesses
some object B in a different domain, and the architec-
tural domain of A is linked to that of B.

The author’s thesis includes a formal model of the
ArchJava language, a formal statement of the communica-
tion integrity theorem described above, and a rigorous
proof that ArchJava’s type system statically enforces
communication integrity [Ald03]. Below, we outline the
structure of the proof and provide an intuition for how the
property is enforced.

Enforcement. Enforcing communication integrity is es-
sentially ensuring that all instances of inter-component
communication fall into one of the architecturally docu-
mented categories. Consider the cases of inter-component
communication:

1. Direct call case. ArchJava’s type system ensures if
the receiver of a method call is a component, then ei-
ther the receiver is this, or the receiver is unique
or part of a locally declared ownership domain. In
the case of this, the communication is within a
component. In the cases of unique and local do-
mains, the communication is unique communication
and parent-child communication, respectively.

2. Connection call case. The type system must ensure
that the component which owns both the sender and
the receiver declared a connection between them.
When a connection is made, the compiler verifies that
the components in the connection are owned by the
current component, and that the current component
declares a connect pattern that matches the compo-
nents being connected.

3. Shared data case. Consider the annotation on the
object B being accessed. If the annotation is
unique, there is no inter-component communication
occurring—instead, the calling component is modify-
ing one of its own unique data structures. If the anno-
tation is owned, again, there is no inter-component
communication, because the receiver of the access is
part of the same component as the sender. If the an-
notation is a lent domain parameter, the communica-
tion is lent communication.

The remaining case is when the accessed object is
annotated with a ownership domain that is either de-
clared in the current component. We wish to show
that this case is shared domain communication. This
will be true if and only if architectural domain of the
accessing object can access the target object’s domain
according to the aliasing policy. But this is guaran-
teed by the policy soundness property, so we are
done.

Discussion. The theoretical framework described above
is quite general—for example, communication through
static fields or native methods can be modeled as shared
domain communication, where the fields and native meth-
ods are conceptually viewed as part of the shared domain
that is shared between every component. In practice,
however, excessive communication through the global
shared domain makes architectural reasoning more diffi-
cult, and so developers are encouraged to avoid it where
possible, just as good engineers typically avoid using
global variables in today’s programming languages. We
would prefer to omit the global shared domain entirely,
but this would be impractical given that many existing
Java libraries use global data structures.

Communication integrity means that all communication
between components must be declared at the architectural
level—either through required and provided methods in
connected ports, or through an ownership domain de-
clared in connected ports. The ArchJava compiler en-
forces conformance via local rules governing how refer-
ences with different alias annotations can be used. Be-
cause integrity is enforced through the type system, pro-
grammers can develop applications much as they do to-
day, but gain the assurance that architectural properties
are maintained during implementation and evolution.

5. Validation
In order to validate our design, we are undertaking a case
study applying ArchJava to Golden Gate, the real-time
robot control system developed by the NASA Jet Propul-
sion Laboratory, Sun, and Carnegie Mellon University,
and demonstrated at the JavaOne conference in 2003. The
goal of the study is to answer the following research ques-
tions:

• Can ArchJava effectively capture the Mission Data
System architecture used in the Golden Gate code?

• What are the benefits of ArchJava, in terms of under-
standing the actual architecture of the code, and in
finding possible violations of the intended architec-
ture?

• What are the costs of using ArchJava in this system?

While our case study is not yet complete, we report on our
preliminary experience with this application.

 8

Architecture. The core of the Mission Data System
(MDS) architecture [DRR+99] used by Golden Gate is
shown graphically at the top of Figure 6. The architecture
shown is designed to capture the state estimation and con-
trol loop for a single element of hardware within the ro-
bot. A Hardware Proxy, at the bottom, communicates
directly with the hardware, reporting measurements to the
rest of the system and accepting action commands to be
performed by the hardware. To the left is a State Deter-
mination (or estimator) component that takes measure-
ments from the hardware proxy and uses them to estimate
the value of some higher-level state, such as the robot’s
current position. This state is then stored in the State
Knowledge component at the top of the diagram. Finally,
the State Control component on the right accepts external
commands from mission control through an external te-
lemetry module (at the top-right) and uses information
about the current state to determine what actions to per-
form next. An application’s complete architecture is made
of a number of these diamond-shaped subarchitectures.

We chose to represent this with the ControlDia-
mond component class shown at the bottom of Figure 6.1
The four subcomponents in the diagram are represented
by four owned components. The ControlDiamond
has two external ports, one for receiving commands from
mission control and one for reporting information back to
mission control. The connection to hardware in the dia-
gram is not represented in ArchJava, as this is done
through native methods that are beyond the scope of our
language design.

Connections in the architecture correspond to the ar-
rows in the diagram. The last connection uses the key-
word glue, indicating that goals coming from the teleme-
try port should be forwarded directly to the goals port of
the control subcomponent, as shown in the diagram.

Discussion. The original Golden Gate code was designed
with the MDS architecture in mind, and so the source
code refers explicitly to concepts like components and
connectors, making our task easier. On the other hand, it
was still somewhat challenging to associate code with
architectural features, because connections were made by
calls to two connect functions deep within the (quite com-
plex) constructor code of the ControlDiamond . Fur-
thermore, one of the two connect functions does not de-
scribe what interface is used for communication; this is
inferred from the types of the two connected components.
As Figure 6 shows, our ArchJava representation provides
a clearer view of the architecture by declaring architec-
tural connections at the top level, and using ports to show
the interfaces between components.

One difference we found between the abstract architec-
ture and the code was that often the state in one “dia-
mond” in the architecture is used by the control or estima-
tion components in another diamond. This is a natural
requirement of the domain, where different state variables
are somewhat interdependent, but this was not explicit in
the original architectural diagram.

It is too early in our case study to evaluate the costs of
applying ArchJava; our previous experience was that
ArchJava can be applied to 10K-line legacy Java systems
in about 6-30 engineer hours [ACN02a,ACN02b].

6. Related Work
ArchJava. The initial ArchJava system enforced archi-
tectural conformance only for control flow between com-
ponents, not for communication though shared data
[ACN02a, ACN02b]. This paper extends our previous
work to the more challenging case of communication
through shared data, enforcing communication integrity
for all forms of communication.

In addition, the system we describe here is more flexi-
ble and more consistent than our previous system. For
example, the component hierarchy is specified using own-

1Note: because of export restrictions the code shown is not
actual Golden Gate code, but rather is an abstracted view
demonstrating how we are capturing the architecture.

public component class ControlDiamond {
 protected owned State state;
 protected owned Estimator estimator;
 protected owned Control control;
 protected owned Hardware hardware;

 public port telemetry { ... }
 public port report { ... }

 cnct pat Estimator.estimate, State.data;
 cnct pat State.data, Control.state;
 cnct pat Hardware.measure, Estimator.measure;
 cnct pat Control.action, Hardware.action,
 Estimator.action;

 glue telecommand to control.goals;
 // additional code not shown
}

Figure 6. A graphical depiction of the Mission Data Sys-
tem architecture in use at the Jet Propulsion Laboratory,
and simplified ArchJava code that captures the architec-
ture.

 9

ership domains, rather than the ad-hoc and inflexible syn-
tactic criterion used before. One benefit is that we can
now support the factory pattern [GHJ+94] for compo-
nents: a factory component creates and initializes compo-
nents, which are then passed as a unique component to
their final place in the architecture, where they become
owned by their parent component. Another benefit is that
Java constructs like inner classes, interface inheritance,
and native methods fit more cleanly into our current
framework, as discussed elsewhere [Ald03].

We believe these improvements make ArchJava con-
siderably more practical, and that the support for full ar-
chitectural conformance will provide significant benefits
to users of the language.

Architecture Description Languages. A number of ar-
chitecture description languages (ADLs) have been de-
fined to describe, model, check, and implement software
architectures [MT00]. The SADL system formalizes ar-
chitectures in terms of theories, providing a framework for
proving that communication integrity is maintained when
refining an abstract architecture into a concrete one
[MQR95]. However, the system did not provide auto-
mated support for enforcing communication integrity.
The Rapide system includes a tool that dynamically moni-
tors the execution of a program, checking for communica-
tion integrity violations [Mad96]. The Rapide papers also
suggest that integrity could be enforced statically if system
implementers follow style guidelines, such as never shar-
ing mutable data between components [LV95]. However,
the guideline forbidding shared data prohibits many useful
programs, and the guidelines are not enforced automati-
cally.

Module Systems. Module systems such as ML’s functors
[MTH90] and MzScheme’s Units [FF98] support system
composition from separate modules. While these module
systems have rich facilities for information hiding, they do
not provide mechanisms for controlling shared data ob-
jects or functions, and thus do not enforce architectural
conformance.

Enforcing Design. Lam and Rinard have developed a
type system for describing and enforcing design [LR03].
Their designs describe communication between subsys-
tems (corresponding to ArchJava’s components) that is
mediated through shared objects that are labeled with to-
kens (corresponding to ownership domains). Their system
does not model architectural hierarchy, and the set of sub-
systems and tokens is statically fixed rather than dynami-
cally determined, as in ArchJava. Furthermore, their sys-
tem does not describe data sharing as precisely, omitting
constructs like uniqueness and ownership-based encapsu-
lation. However, they do describe a number of useful
analyses which would complement ArchJava’s more de-
tailed architectural descriptions.

Design structure can also be supported with analysis.
For example, the Reflexion Model system uses a call

graph construction analysis in order to find inconsisten-
cies between an architectural model and source code
[MNS01]. This analysis-based approach is more light-
weight than ArchJava’s type system, but does not support
hierarchical, dynamic architectures or precise data sharing
constraints.

CASE Tools. Several CASE tools support the SDL lan-
guage, which allows developers to describe architectural
structure within the implementation of an embedded sys-
tem [ITU99]. The language enforces architectural con-
formance, but only by prohibiting shared references be-
tween components. Other CASE tools such as Rational
Rose RealTime [RSC00] also allow developers to specify
the design of a system, but in the presence of shared ob-
jects and references they do not enforce architectural con-
formance.

Ownership and Uniqueness. Ownership was introduced
in the Flexible Alias Protection paper, which uses owner-
ship polymorphism to strike a balance between guarantee-
ing aliasing properties and allowing flexible programming
idioms [NVP98]. More recent work formalized owner-
ship as a type system and showed how to increase its ex-
pressiveness [CNP01,BLS03]. Uniqueness was proposed
as an aliasing construct by Minsky and later refined by
Boyland and others [Min96,Boy01].

ArchJava’s support for ownership and uniqueness is
most closely based on the author’s previous work on Ali-
asJava. To date, AliasJava is the only ownership type
system that has a publicly available implementation and
substantial experience showing that the system is practical
[AKC02]. AliasJava’s ownership model was extended in
a later paper to support multiple ownership domains per
object and the detailed policy specifications described in
section 2 above, providing both more expressiveness and
stronger aliasing guarantees compared to previous owner-
ship systems [AC04]. Policy specifications and multiple
ownership domains are essential for modeling sharing
constraints in software architecture.

7. Conclusion
The ArchJava language extends Java with constructs that
model hierarchical, dynamically evolving software archi-
tectures. Components communicate through explicit con-
nections as well as through shared objects that are part of
architecturally declared ownership domains. ArchJava’s
type system uses ownership and uniqueness to enforce
structural conformance between architecture and imple-
mentation. Thus, engineers can have confidence that the
code behaves according to the architectural documenta-
tion, and can use this knowledge to build and evolve sys-
tems more effectively.

Acknowledgements
I would like to thank my thesis advisors Craig Chambers
and David Notkin, as well as members of the language

 10

and software engineering groups at the University of
Washingtion and Carnegie Mellon University for their
comments and suggestions. Thanks also to Brian Giovan-
noni for access to the Golden Gate application. This work
was supported in part by NSF grants CCR-9970986,
CCR-0073379, and CCR-0204047, the High Dependabil-
ity Computing Program from NASA Ames cooperative
agreement NCC-2-1298, the Army Research Office grant
number DAAD19-02-1-0389 entitled “Perpetually Avail-
able and Secure Information Systems,” and gifts from Sun
Microsystems and IBM.

References
[AAG93] Gregory Abowd, Robert Allen, and David Garlan.

Using Style to Understand Descriptions of Software Archi-
tecture. Proc. Foundations of Software Engineering, New
Orleans, Louisiana, December 1994.

[AC04] Jonathan Aldrich and Craig Chambers. Ownership
Domains: Separating Aliasing Policy from Mechanism.
Proc. European Conference on Object-Oriented Program-
ming, Oslo, Norway, June 2004.

[ACN02a] Jonathan Aldrich, Craig Chambers, and David Not-
kin. ArchJava: Connecting Software Architecture to Imple-
mentation. Proc. International Conference on Software En-
gineering, Orlando, Florida, May 2002.

[ACN02b] Jonathan Aldrich, Craig Chambers, and David Not-
kin. Architectural Reasoning with ArchJava. Proc. Euro-
pean Conference on Object-Oriented Programming, Málaga,
Spain, June 2002.

[AKC02] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annotations for Program Understanding.
Proc. Object-Oriented Programming Systems, Languages
and Applications, Seattle, Washington, November 2002.

[AG97] Robert Allen and David Garlan. A Formal Basis for
Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3), July 1997.

[Ald03] Jonathan Aldrich. Using Types to Enforce Architec-
tural Structure. Ph.D. Thesis, University of Washington,
August 2003. Available at http://www.archjava.org/.

[Arc02] ArchJava web site. http://www.archjava.org/
[BLS03] Chandrasekhar Boyapati, Barbara Liskov, and Liuba

Shrira. Ownership Types for Object Encapsulation. Invited
talk, Principles of Programming Languages, New Orleans,
Louisiana, January 2003.

[Boy01] John Boyland. Alias Burying: Unique Variables With-
out Destructive Reads. Software Practice & Experience,
6(31):533-553, May 2001.

[BS98] Boris Bokowski and André Spiegel. Barat—A Front-
End for Java. Freie Universität Berlin Technical Report B-
98-09, December 1998.

[CNP01] David G. Clarke, James Noble, and John M. Potter.
Simple Ownership Types for Object Containment. Proc.
European Conference on Object-Oriented Programming,
Budapest, Hungary, June 2001.

[DRR+99] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks.
Software Architecture Themes in JPL's Mission Data Sys-
tem. AIAA Space Technology Conference and Exposition,
Albuquerque, NM,1999.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool mod-
ules for HOT languages. Proc. Programming Language De-
sign and Implementation, Montreal, Canada, June 1998.

[GHJ+94] Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides. Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Reading, Massachusetts: Addison-
Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An Introduction to
Software Architecture. In Advances in Software Engineer-
ing and Knowledge Engineering, I (Ambriola V, Tortora G,
Eds.) World Scientific Publishing Company, 1993.

[ITU99] ITU-T. Recommendation Z.100, Specification and
Description Language (SDL). Geneva, Switzerland, No-
vember 1999.

[LPZ02] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yun-
hong Zhou. Using Data Domains to Specify and Check Side
Effects. Proc. Programming Language Design and Imple-
mentation, Berlin, Germany, June 2002.

[LR03] Patrick Lam and Martin Rinard. A Type System and
Analysis for the Automatic Extraction and Enforcement of
Design Information. Proc. European Conference on Object-
Oriented Programming, Darmstadt, Germany, July 2003.

[LV95] David C. Luckham and James Vera. An Event Based
Architecture Definition Language. IEEE Trans. Software
Engineering 21(9), September 1995.

[Mad96] Testing Ada 95 Programs for Conformance to Rapide
Architectures. Proc. Reliable Software Technologies - Ada
Europe 96, Montreux, Switzerland, June 1996.

[Min96] Naftaly Minsky. Towards Alias-Free Pointers. Proc. of
European Conference on Object Oriented Programming,
Linz, Austria, July 1996.

[MK96] Jeff Magee and Jeff Kramer. Dynamic Structure in
Software Architectures. Proc. Foundations of Software En-
gineering, San Francisco, California, October 1996.

[MNS01] Gail C. Murphy, David Notkin, and Kevin J. Sullivan.
Software Reflexion Models: Bridging the Gap Between De-
sign and Implementation. IEEE Trans. Software Engineer-
ing, 27(4), April 2001.

[MOR+96] Nenad Medvidovic, Peyman Oreizy, Jason E. Rob-
bins, and Richard N. Taylor. Using Object-Oriented Typing
to Support Architectural Design in the C2 Style. Proc.
Foundations of Software Engineering, San Francisco, Cali-
fornia, October 1996.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A. Riemen-
schneider. Correct Architecture Refinement. IEEE Trans.
Software Engineering, 21(4), April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classifi-
cation and Comparison Framework for Software Architec-
ture Description Languages. IEEE Trans. Software Engi-
neering, 26(1), January 2000.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The
Definition of Standard ML. MIT Press, Cambridge, Massa-
chussetts, 1990.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible
Alias Protection. Proc. European Conference on Object-
Oriented Programming, Brussels, Belgium, 1998.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations
for the Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17:40-52, October 1992.

[RSC00] Rational Software Corporation. Rational Rose Real-
Time. http://www.rational.com/, 2000

[SN92] Kevin Sullivan and David Notkin. Reconciling Envi-
ronment Integration and Component Independence. Trans.
Software Engineering and Methodology 1(3):229-268, July
1992.

