
Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 1

Aspect-Oriented Programming and Modular Reasoning

Gregor Kiczales
University of British Columbia

gregork@acm.org

Mira Mezini
Technische Universität Darmstadt

mezini@informatik.tu-darmstadt.de

Abstract
 Aspects cut new interfaces through the primary
decomposition of a system. This means that in the presence
of aspects, the complete interface of a module can only be
determined once the complete configuration of modules in
the system is known. While this may seem anti-modular, it
is an inherent property of crosscutting concerns, and using
aspect-oriented programming serves to recover modular
reasoning in the presence of such concerns.

1. Introduction
Aspect-oriented programming (AOP) has been proposed as
a mechanism that enables the modular implementation of
crosscutting concerns [22]. It has proven popular [15, 23,
26] because it makes it possible for developers to write
modular code for concerns such as synchronization [11,
14], error handling [29], persistence [37] and many design
patterns [18]. Being able to code aspects cleanly is helping
developers to think in terms of aspects at earlier stages of
the lifecycle [16, 20, 34, 35].
While code written with AOP clearly seems modular, an
interesting dialogue has been raised about the full
implications of AOP for modularity and modular reasoning
[1, 8, 9]. This paper contributes an improved understanding
of interfaces in the presence of AOP to that dialogue. We
introduce the concept of aspect-aware interfaces, and show
that a module’s aspect-aware interface is not completely
determined by the module, but rather depends in part on the
other modules in the system – aspects cut new interfaces
through the primary module structure. We show that
aspect-aware interfaces support modular reasoning in the
presence of crosscutting concerns.
The paper also highlights concerns that have been raised
about AOP and modular reasoning, since we show that
some global knowledge is required as a precursor to
modular reasoning with AOP. But, we also show that in the
presence of crosscutting concerns – implemented with or
without AOP – global knowledge is always required and
that AOP makes this requirement more explicit and
supports modular reasoning once the initial global analysis
is complete.

The paper is structured as follows: Section 2 provides
working definitions of modularity and modular reasoning.
Section 3 presents the example used in the paper. Section 4
presents the key properties of aspect-aware interfaces.
Section 5 analyzes the modularity of the non-AOP and
AOP implementations of the example. Section 6 outlines
open research issues. Related work is discussed as
appropriate throughout the paper.

2. Definitions
In this section we provide working definitions of key
terms.
We say the code that implements a concern is modular if:
- it is textually local,
- there is a well-defined interface that describes how it

interacts with the rest of the system,
- the interface is an abstraction of the implementation, in

that it is possible to make material changes to the
implementation without violating the interface,

- an automatic mechanism enforces that every module
satisfies its own interface and respects the interface of all
other modules, and

- the module can be automatically composed – by a
compiler, loader, linker etc. – in various configurations
with other modules to produce a complete system.

Modular reasoning means being able to make decisions
about a module while looking only at its implementation,
its interface and the interfaces of modules referenced in its
implementation or interface. For example, the type-
correctness of a method can be judged by looking at its
implementation, its signature (i.e. interface), and the types
(i.e. interfaces) of any other code called by the method.
Not all decisions are amendable to modular reasoning.
Many program refactorings require more information for
example [13]. Expanded modular reasoning means also
consulting the implementations of referenced modules, and
global reasoning means having to examine all the modules
in the system or sub-system.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 2

3.
Thi
thro
The
clas
like
Dis
whi
upd

1 Th

Di
ty
interface Shape {
 public moveBy(int dx, int dy);
}

class Point implements Shape {
 int x, y; //intentionally package public

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x = x;
 Display.update();
 }
 public void setY(int y) {
 this.y = y;
 Display.update();
 }

 public void moveBy(int dx, int dy) {
 x += dx; y += dy;
 Display.udpate();
 }
}

class Line implements Shape {
 private Point p1, p2;

 public Point getP1() { return p1; }
 public Point getP2() { return p2; }

 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;
 Display.update
 }

}

Figure 1. The Java and AspectJ implementations

A Running Example
s section introduces the example that will be used
ughout the paper.
 example involves a simple set of graphical shape
ses, including Point and Line. Imagine that other shapes
 Circle and Rectangle are also included. Also imagine a
play class that implements the drawing surface on
ch the shapes are displayed. This class has a static
ate method.1 To save space these are not shown. The

is code would be improved if update was an instance method of
splay. But this requires using an additional feature of AspectJ, inter-
pe declarations, so for simplicity we use the less elegant approach.

interface Shape {
 public moveBy(int dx, int dy);
}

class Point implements Shape {
 int x, y; //intentionally package public

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x = x;

 }
 public void setY(int y) {
 this.y = y;

 }

 public void moveBy(int dx, int dy) {
 x += dx; y += dy; }

 }
}

class Line implements Shape {
 private Point p1, p2;

 public Point getP1() { return p1; }
 public Point getP2() { return p2; }

 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;

 }
}

aspect UpdateSignaling {
 pointcut change():
 execution(void Point.setX(int))
 || execution(void Point.setY(int))
 || execution(void Shape+.moveBy(int, int));

 after() returning: change() {
 Display.update();
 }
}
 of the shape classes with display update signaling.

instances have state that determines their appearance on the
display, e.g. Point objects have x and y coordinates. Finally
there is code to signal the Display to update whenever a
shape changes.
Figure 1 shows two implementations of this example: an
ordinary object-oriented implementation in Java, and an
aspect-oriented implementation in AspectJ.2 The key
difference between the implementations is that in the AOP
version, the update signaling behavior is implemented in an

2 Examples in this paper are written in Java and the pointcut-and-advice

part of AspectJ. For simplicity we primarily address only execution join
points, execution pointcuts, and after returning advice. We also ignore
examples where aspects advise aspects.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 3

aspect, whereas in the non-AOP code it is scattered across
the methods of Point and Line (and their siblings).
In the UpdateSignaling aspect, the first member declares a
pointcut named change(). This pointcut identifies certain
join points in the program’s execution, specifically the
execution of the setX and setY methods in Point, as well as
moveBy methods defined on any sub-type of Shape.
The second member declares after returning advice that
says that after returning from executing the join points
identified by change(), the Display.update() static method
should be called to signal the display to update.
Note that the semantics of this AspectJ code is that the
advice body executes at the join points matched by the
pointcut. The AspectJ semantics are not to generate a new
program in which the bodies of the advice have been
woven into the methods, that is simply one possible
implementation strategy. The AspectJ language design
contemplates that weaving can happen at any time, even as
late as in the interpreter, and implementations have been
developed that weave at a range of times [3, 19, 21].
Similarly the semantics of the aspect-aware interfaces we
will present are to describe the source program; they are
not a description of an intermediate woven program.

4. Interfaces in AOP Systems
This section presents the key properties of interfaces in
AOP, also called aspect-aware interfaces. We start with one
possible way of writing aspect-aware interfaces for the
running example. This serves to give an intuition of how
aspects change the traditional notion of interface. Because
our goal is to identify the general properties of aspect-
aware interfaces, we then discuss some of the possible
variations on that formulation. More significant variations
and open issues are discussed in Section 6.
Figure 2 shows the aspect-aware extension of simple Java-
style statically value-typed interfaces for the Shape, Point
and Line classes. Much of the interface is traditional—it
describes the type hierarchy, enumerates the public fields
and methods defined on each class and gives result and
argument types for each method. (For simplicity we ignore
exceptions, constructors and non-public members, as well
as the distinction between interfaces and classes.)
The interfaces in Figure 2 also have information about how
the aspects and non-aspects crosscut. The notation
 : UpdateSignaling – after returning
 UpdateSignaling.move()

following some methods says two things: (i) the
UpdateSignaling aspect has after returning advice that
affects this method, and (ii) the pointcut that advice refers
to is move(), also defined in UpdateSignaling.

The interface of the UpdateSignaling aspect also has an
entry for the advice, which includes inverse information
about what methods it affects.

4.1 Interface Depends on Deployment
One key property of aspect-aware interfaces is that the
interface of a module depends on the complete system into
which it is deployed – the aspects contribute to the
interface of the classes, and the classes contribute to the
interface of the aspects. This means that before we can
fully know the interfaces of modules in a system, we must
have a complete system configuration and run through the
modules collecting aspects and analyzing the crosscutting.
This brings into focus what some have identified as a
controversial property of AOP [1, 8, 9]. The concern is that
prior to AOP, modules had a “black-box” property –
looking at the module was all that was required to know its
interface, and so modular reasoning was possible with
knowledge of only the module and the interfaces of the
modules to which it explicitly refers. This line of work has
generally sought to restrict the power of AOP in order to
preserve existing black-box reasoning mechanisms.
In contrast, our goal is to show that the full power of AOP
is compatible with modular reasoning, if we are willing to
change some of our existing reasoning mechanisms. With
aspect-aware interfaces we require a global analysis of the
deployment configuration to determine module interfaces.
But once that is done, modular reasoning is possible even
for crosscutting concerns, as we will show in Section 5.
This phenomenon of interface depending on system
configuration is similar to what is seen in other fields of
systems engineering. In mechanical systems, key properties
of a component with respect to composition depend on the
whole system. Conductivity and corrosion resistance matter
when a component is used in some systems but not others.
Dynamic analysis requires knowing the whole system. Heat
transfer behaves similarly. Recent research suggests that
“compartmental systems” are not the only suitable
modularities for understanding biological systems [24].
These aspects that force the analysis to consider the whole
system – dynamics, corrosion, conductivity, chemical
propagation etc. – are crosscutting concerns. They cut
through the primary modularity boundaries and in doing so
they act to define new module structures with which to
analyze the system.
We observe an important difference between AOP and
these other systems. In the physical systems, composition
leads to new crosscutting modules. In mechanics, the
modules involved in dynamic analysis are different than
those in static analysis. The modules of dynamic analysis
may not even come into being until the system is
composed, and the two sets of modules crosscut each other
with respect to the physical artifact.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 4

Shape
 void moveBy(int, int) : UpdateSignaling – after UpdateSignaling.move();

Point implements Shape
 int x;
 int y;
 int getX();
 int getY();
 void setX(int) : UpdateSignaling – after returning UpdateSignaling.move();
 void setY(int) : UpdateSignaling – after returning UpdateSignaling.move();
 void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move();

Line implements Shape
 void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move();

UpdateSignaling
 after returning: UpdateSignaling.move(): Point.setX(int), Point.setY(int),
 Point.moveBy(int, int), Line.moveBy(int, int);

Figure 2 Interfaces in the AOP code.

In AOP, the situation is different. Composition leads to
new crosscutting interfaces, but the modules remain the
same. From the perspective of traditional software
interfaces, the idea that composition can lead to new
interfaces may seem radical, but at least our situation is
simpler than for some other engineers. We get new
interfaces, but not new modules. And, once the
composition (deployment configuration) is known, the
interfaces can be identified, and, as we will show in
Section 5, modular reasoning is possible.

4.2 Formulation of Aspect-Aware Interfaces
This section discusses some of the design decisions
underlying the formulation of aspect-aware interfaces
shown above. Again, our goal in this paper is to identify
the key properties of aspect-aware interfaces and their
effect on modularity, not to argue that the above
formulation is ideal. A great deal of work remains to be
done in refining aspect-aware interfaces. Section 6
discusses some of this work.
Intensional and extensional descriptions. One decision
was whether to include the pointcut involved in an advice
declaration in the interface. To be concrete, we could have
written the following instead of what we have in Figure 2:
Line extends Shape
 void moveBy(int, int) :
 UpdateSignaling – after returning;

We include the pointcut because we feel it is the key to
understanding the interface abstraction. An AOP
programmer thinks about advice being applicable at a
group of join points with a common property. The
emphasis is on the property more than the specific points,
and the pointcut expresses that property.
The pointcut can be seen as the intensional definition of the
interface. The set of methods marked is the extensional
definition. For example, note that the pointcut is what the

programmer should study when considering changes to the
implementation of the class. Seeing the pointcut
 execution(void Point.set*(*))
is different than seeing the pointcut
 execution(void Point.setX(int))
 || execution(void Point.setY(int))

even if, as in this case, the same join points are identified.
Pointcut abstraction or reduction. Another decision was
whether the interface should include the pointcut as it
appears in the advice declaration or include its reduction
(recursive inlining of the named pointcuts). We chose the
former, because it reflects abstractions from the aspect. But
clearly there are times when the programmer will want to
see a partial or complete reduction of the pointcut.
We see this as analogous to a programmer sometimes
wanting to see just a type name in an interface, and other
times wanting to see more information about the type. As
such, it seems amenable to being addressed as a tool issue.
Including advice kind. We also decided to include the
kind of advice (before, after etc.) rather than just indicating
the applicability of advice, without saying its kind. We felt
that including the kind adds to the descriptive power of the
interface, without overly restricting the implementation of
the aspect. In practice, advice bodies change about as often
as method bodies. But changing an advice from before to
after is less common and more significant. Also, because
advice declarations are not named, this helps the
programmer know which advice is being referred to. In a
system like AspectWerkz [4], the name of the advice
handler might also be included.3

Expressing extensional definition. A more complex
decision had to do with deciding what methods to list as

3 In AspectWerkz, advice declarations associate a pointcut with a named

handler method rather than an anonymous advice body as in AspectJ.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 5

being affected by an advice. The answer we chose was to
list those methods for which executing the body of the
method might run the advice. In the subset of AspectJ we
are considering (execution join points, execution pointcuts,
after returning advice) this is clear enough. But once we
allow call, get and set join points the issue becomes less
clear. Should a method be listed as affected because it
includes a call join point that is advised? Should a method
be listed as affected because calls to it are advised? This is
clearly an area for future work. The initial answer we are
using is to list any method for which the body lexically
includes the shadow of an advised join point.4
Rather than marking each affected method, we could have
marked just the enclosing classes with all the aspects that
affect any of its methods. This would be a lower-
granularity version of the interfaces we have here. It would
be minimalistic because given this coarse-grained back link
to the aspects, expanded modular reasoning could then be
used to construct the more complete information in the
interfaces we describe.
We chose not do this for several reasons. It connotes the
aspect applies to the whole class, which is often not the
case. It is less useful, because programmers will almost
always have to go to the aspect implementation to find out
exactly what methods are affected. It fails to capture the
crosscutting structure that is such an important part of AOP
code.

5. Modularity Analysis
This section analyzes the AOP and non-AOP
implementations. First we analyze the modularity criteria
from Section 2; this is summarized in Table 1. Then we use
a simple change scenario to analyze modular reasoning.

5.1 The Non-AOP Implementation
In the non-AOP code, the implementation of the display
updating behavior fails to satisfy our modularity criteria.
First, it is not localized. Since the additional modularity
criteria build on locality and each other, they also fail:
because there is no localized unit, there is nothing for there
to be an interface to, and without an interface, we cannot
ask whether it is an abstraction of the implementation.
Similarly, the implementation cannot be composed
independently; there is no automatic mechanism for
producing a version of the shape classes without change
signaling behavior.
The Point and Line classes meet our modularity criteria,
but in a somewhat compromised form:

4 The shadow of a dynamic join point is a code structure (expression,

statement or block) that statically corresponds to execution of the
dynamic join point. The shadow of a method execution join point is a
method body; the shadow of a method call is a call expression etc.

- They are textually local, but that boundary also includes
the code for signaling the display to update.

- They have clearly defined interfaces, but those interfaces
fail to say anything about the included display update
signaling behavior.

- The interface is an abstraction of the implementation. The
internal details of the classes could change in meaningful
ways without changing the interface. The coordinates of a
Point could be stored differently for example.

- The interfaces are enforced in that the Java type checker,
loader and virtual machine ensure type safety.

- They can be composed automatically. The Java loader
can load these with other classes in different
configurations.

5.2 The AOP Implementation
In the AOP code, the UpdateSignaling aspect meets our
criteria for a modular implementation of the display
updating behavior: The Point and Line classes also meet
our criteria, somewhat better than in the non-AOP
implementation.
- Each is textually local. Locality is improved over the

non-AOP implementation because the update signaling
behavior is not tangled into the Point and Line classes.

- Each has a clear interface as shown in Figure 2. The
interfaces are now a more accurate reflection of their
behavior – update signaling is reflected in the interfaces
as arising from the interaction between the aspects and
the classes.

- In each case the interface is an abstraction of the
implementation, in that there is room for material
variation in how each is implemented. For example, a
helper method could be called to do the signaling, or the
signaling could be logged.

- The interfaces are enforced. Type checking works in the
usual way, and in addition the advice is called when it
should be and at no other times. The advice calling
enforcement is somewhat trivial – as with polymorphic
dispatch a single advice declaration both declares the
interface and defines the implementation.

- Each can be composed automatically with other modules
– this is what the AspectJ weaver does.5 For example, we
can automatically produce a configuration that includes
the shape classes but not the UpdateSignaling aspect.

5 Since release 1.2, weaving can happen at compile-time, post compile-

time on jar files, or at load time.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 6

lo
ca

liz
ed

in
te

rf
ac

e

ab
st

ra
ct

io
n

en
fo

rc
ed

co
m

po
sa

bl
e

display updating no n/a n/a n/a n/a non
AOP Point, Line medium(1) medium(2) medium(2) yes yes

UpdateSignaling high high(3) high yes(5) yes AOP
Point, Line high(4) high(3)(4) high yes(5) yes

(1) Point and Line classes are contaminated with scattered and tangled display updating behavior.
(2) Except that the tangled display updating behavior is not a documented part of the interface.
(3) Using aspect-aware interfaces.
(4) Enhanced because display updating behavior is no longer tangled.
(5) Standard Java type checking extended to advice and advice parameters. In addition, assurance that

advice is called when it should be and at no other times

Table 1. Analysis of modularity for non-AOP and AOP implementations of shape package.

5.3 Informal Reasoning about Change
In this section we consider a simple change scenario, and
compare reasoning with traditional interfaces about the
non-AOP code against reasoning with aspect-aware
interfaces about the AOP code.
The example presented in Section 3 has a deliberately
introduced weakness – the x and y fields of the Point class
are public, rather than private. We consider the scenario
where a programmer decides to change the fields to being
private. When doing this they must ensure the whole
system continues to work as before.
We now walk through the reasoning and changes to the
code that would most likely ensue. We will compare how
the process works for the non-AOP and AOP code. The
process starts out following the same path for both
implementations. We nonetheless discuss the whole
process, both to make the example realistic, and to stress
the critical role modular reasoning can play as a sub-part of
a larger, not necessarily modular, reasoning process.
The programmer begins by asking what the implications of
changing the fields are. Making the x and y fields private
entails a change to the interface of the class. So reasoning
shifts outside the class (outside the module), to clients of
the Point interface, or more specifically clients of the x and
y fields of the Point interface.
Unfortunately, global reasoning, in the form of a simple
global search, is required to find all such clients. This is a
typical consequence of interface changes. In this case, the

programmer’s attention next focuses on the moveBy
method of the Line class:6

Reasoning in the non-AOP implementation. In the non-
AOP implementation, the moveBy method of Line is
originally:
 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;
 Display.update();
 }

To conform to the new interface of Point, this code must be
revised to call accessor methods rather than access the
fields directly. A straightforward revision of the code
would be:
 public void moveBy(int dx, int dy) {
 p1.setX(p1.getX() + dx);
 p1.setY(p1.getY() + dy);
 p2.setX(p2.getX() + dx);
 p2.setY(p2.getY() + dy);
 Display.update();
 }

The programmer must now decide whether this change is
reasonable. The answer is that it is not – it violates an
important invariant in the original code, which is that there
should be a single display update for each top-level change
to the state of a shape. In the revised code, a call to
moveBy on a line object would produce 5 display updates.
What we want to assess is what reasoning is required to
reach this conclusion.

6 The programmer might feel that private fields should not be accessed

directly even within a class, and so focus first on the moveBy method of
Point, and then come to the moveBy method of Line later.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 7

To discover the problem with this potential change, the
programmer needs two pieces of information: a description
of the invariant and enough of the structure of update
signaling to infer that the invariant would be violated by
the change.
Nothing in the implementation or interface of Line is likely
to describe the invariant. But because of the explicit call to
Display.update(), the programmer might go look at the
implementation of the Display class. We assume,
optimistically, that the documentation for the update
method includes a description of the one update per top-
level change invariant.
At this point expanded modular reasoning with one step
has led the programmer from a proposed change to the
moveBy method to the invariant.
But the programmer still does not have enough information
to be sure the proposed change is not problematic. They
must also discover that the setX and setY methods call
update, or, more generally, discover the existing structure
of update signaling. This requires at least further expanded
modular reasoning – to just find the calls from setX and
setY; or global reasoning – to find all calls to update and
discover the complete structure of display update signaling.
Once the programmer concludes, through expanded
modular or global reasoning that the change to moveBy is
incorrect, they are in a somewhat difficult situation. One
solution is to add special non update-signaling setter
methods to Point, and call those from moveBy. The
simplest solution is to give up and leave the x and y fields
package public. (Which is when the programmer has the
‘aha’ realization of why they were package public in the
first place.)
Summarizing the reasoning process in the non-AOP
implementation, starting at the proposed changed to Line’s
moveBy method: one-step expanded modular reasoning
may lead to documentation of the key invariant. Global
reasoning is required to discover the complete structure of
update signaling, although expanded modular reasoning
discovers enough of the updates to handle this specific
case.
Reasoning in the AOP Implementation. In the AOP code
the change process proceeds along the same course as in
the non-AOP code up to the point of considering the
possible change to the moveBy method of Line. In the
AOP code, the straightforward revision of moveBy is:
 public void moveBy(int dx, int dy) {
 p1.setX(p1.getX() + dx);
 p1.setY(p1.getY() + dy);
 p2.setX(p2.getX() + dx);
 p2.setY(p2.getY() + dy);
 }

As in the non-AOP case, this code is incorrect. It violates
the update invariant in exactly the same way.

If we assume, with similar optimism, that the invariant is
documented in UpdateSignaling then one-step expanded
modular reasoning leads the programmer from the moveBy
method to the invariant. If we are less optimistic, and only
assume that the invariant is documented in Display, then
two-step expanded modular reasoning is required.
The interface of UpdateSignaling includes the complete
structure of what method executions will signal updates. So
modular reasoning alone provides the programmer with
this information.
Once the programmer understands that the simple change
to moveBy is invalid, the situation is much simpler in the
AOP case. In AspectJ and similar AOP languages, the
proper fix is to use the cflowbelow primitive pointcut.
Using this, the advice would be edited to be:
 after() returning: change()
 && !cflowbelow(change()) {
 Display.update();
 }

The revised pointcut means only top-level changes are
advised, and should be read as “any join point matching
change, unless that join point is in the control flow below a
join point matching change”.
Summarizing the reasoning process in the AOP
implementation, starting at the proposed changed to Line’s
moveBy method: one- or two-step expanded modular
reasoning may lead to documentation of the key invariant;
modular reasoning leads to the complete structure of update
signaling. Additionally, in the AOP case, a simple local
change to the UpdatingSignaling aspect solves the
problem, and results in the invariant being an explicit and
enforced property of the code that is clearly reflected in the
interfaces.
Comparison. In the first step of the process the two
implementations perform similarly – global reasoning is
required to find all the references to the x and y fields.
Neither AOP nor traditional technologies prevent this.
With respect to documenting and allowing the programmer
to discover the invariant, the two original implementations
fare similarly. Under optimistic assumptions about the
invariant being documented, the non-AOP implementation
requires one-step expanded modular reasoning to discover
the documentation. The AOP implementation requires one-
or two-step expanded modular reasoning.
With respect to discovering the structure of update
signaling the two implementations perform significantly
differently. The non-AOP implementation requires
expanded modular reasoning to discover the minimal
structure required to reason about the change. It requires
global reasoning to discover the complete structure. The
AOP implementation requires only modular reasoning to
discover the complete structure. In a more complex
example the difference would be more dramatic.

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 8

Fundamentally, display update signaling is a crosscutting
concern. With AOP, its interface cuts through the classes,
and the structure of that interface is captured declaratively,
and the actual implementation is modularized. Without
AOP, the structure is implicit and the actual
implementation is not modular.
The main cost of AOP, with respect to classical modular
reasoning is that the interface of a module is context
dependent. We must know the set of modules with which a
given module will be deployed to know its interface.
Without AOP, when reasoning about a change to a module
we must ask whether the interface changes. With AOP, we
must ask whether the interface for each deployment
configuration changes. (Section 6.4 outlines an idea that
can limit how many configurations are explicitly
consulted.)
The main benefit of AOP is that once we accept the cost,
we get the traditional benefits of modularity and modular
reasoning for crosscutting concerns.
Without AOP, complete configuration information is not
needed to determine a module’s interface. But in such a
world, modular reasoning fails for crosscutting concerns
like display update signaling. A global search is required to
discover the key invariant.
Our conclusion is that for crosscutting concerns
programmers inherently have to pay the main cost of AOP.
They have to know something about the total deployment
configuration in order to do the global reasoning required
to reason about crosscutting concerns. But using AOP, they
get modular reasoning benefits back, whereas not using
AOP they do not.

5.4 Automatic Reasoning
We have argued that AOP implies a new kind of interface,
but that once those interface are computed, the power of
modular reasoning is improved. In this section we point out
three existence proofs of this claim.
Since version 1.2 AspectJ has supported incremental
compilation and weaving for interactive development [19].
This works by having the weaver maintain a list of the
aspects and classes in a deployment configuration, as well
as a weaving plan data structure similar to the interfaces we
describe (the weaving plan has more detailed information).
When the weaver is called it first checks whether the
weaving plan has changed. If not, only the code that has
changed is re-compiled and re-woven. This is limited
modular reasoning in the face of unchanging interfaces.
In [25] Krishnamurthi et. al. describe a similar scheme for
incremental verification of AspectJ code.
The open modules work described in [1] provides a formal
justification for our modular reasoning claim. The theorem
developed in this work implies that once a module's aspect-

aware interface is computed, we can prove functional
correctness properties, and safely make changes to a
module without affecting the rest of the program.

6. Open Issues
The key property of aspect-aware interfaces is that
knowledge of the complete system configuration is
required to compute how interfaces are cut through the
primary decomposition. But the formulation and use of
these interfaces can be extended in a variety of ways.

6.1 Other forms of AOP
A first task is to expand our concept of aspect-aware
interfaces and the analysis here to full AspectJ, including
the other kinds of dynamic join points, as well as inter-type
declarations (aka introductions). A simpler task is to cover
similar systems like Caesar [33] and AspectWerkz [4]. We
expect that the generalized model of AOP presented in [32]
will provide a basis for this.
A more interesting challenge is reconciling aspect-aware
interfaces with systems like MDSOC [38]. At first glance,
our observation that aspect-aware interfaces show that in
AOP the interfaces, but not the implementations crosscut,
(Section 4.1) seems at odds with the conceptual account of
MDSOC, in which code is explicitly copied into different
modules (usually in different system configurations).

6.2 Other Interface Technologies
The interfaces we describe are the aspect-aware version of
standard Java interfaces. They support simple static value
typing. But more sophisticated interface technologies have
been developed for object-oriented and other languages.
These include higher-order value typing like generic types,
[5] state typing [10], behavioral specification [6, 27, 30]
and others. One area of research is to explore the aspect-
aware equivalent of these other kinds of interfaces. Our
belief is that the basic idea of aspect-aware interfaces
should carry-over to these interface styles.
Existing work adapting behavioral interfaces to AspectJ
reinforces this belief [39]. But an experiment is needed to
be sure. Part of this work would involve exploring what
issues are better specified as behavioral specifications what
issues are better addressed directly in pointcuts.

6.3 More expressive pointcuts
In Section 4.1 we said that the pointcuts represent the
abstraction or intensional specification of the interface.
More work is needed to increase the expressive power and
abstraction of pointcuts.
The most common concern is that any use of wildcarding
opens the door for unintended matches as the program
evolves. This is a valid concern, although the intentionally

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 9

limited power of the AspectJ pattern matching, together
with the available tool support for editing AspectJ code
mitigates this problem to a large extent in practice.
Support for use of annotations as in C# [28] and Java JSR-
175 [2] may be of some help, although the use of
annotations violates the “obliviousness” property of AOP
pointcuts, and requires scattering the annotations, and so
has potential scaling and evolution problems.
Of more interest to us are mechanisms that allow the
programmer to directly express the true semantics of the
pointcut, as in the invariants and structural properties
underlying the pointcut. The use of cflowbelow shows the
potential power of making pointcuts more semantic. It
makes it possible to express the structural invariant
explicitly, and in a checked and enforced form.
We expect that it will be possible to do better than this. In
the case of the change pointcut, what the programmer is
thinking is that these are the methods that change state that
affects the display. But what the programmer is doing in
the pointcut is identifying those methods by name or name
pattern. We would like to write a pointcut that directly says
“the methods that change the state that affects the display”.
Computing the actual methods (the extensional description)
would involve some sort of conservative control and data
flow analysis. Several efforts are already underway to
develop “more semantic” pointcuts [7, 12, 17, 31].

6.4 Interface Constraints
A number of researchers have expressed concern that
aspects can advise classes without the class’s “consent”.
They argue that classes should be able to prevent advice
from affecting their methods. Most proposals allow classes
to explicitly restrict aspects, or require classes to publish
pointcuts, or even require that classes import explicitly
import aspects [1, 8, 9]. All of these inherently limit the
“obliviousness” property of AOP.
The identification of aspect-aware interfaces suggests a
new possibility. Instead of associating aspect constraints
directly with classes or packages, they could be associated
with system configurations. System architects could define
these constraints, and any aspects included in the
configuration would have to respect them. This would
make it possible to have different constraints for different
configurations, and would reflect that reasoning about
aspect interfaces requires prior knowledge of the
configuration. It would not place any inherent limits on the
obliviousness of classes with respect to aspects. A given
configuration could have no constraints.
An additional issue for enforcement we see is that the way
in which a join point is identified for advice is at least as
important as what join points are identified. Consider
advice using these two different pointcuts:

 get(int Point.x) || get(int Point.y)

 get(* Shape+.*)

With respect to the class Point, these two pointcuts match
the same join points. But with respect to evolution and
modularity, the two are quite different. The former hard
codes exact names of private fields of the class. The latter
identifies all the fields, regardless of their name. We
believe that for many advice the latter is more comfortable
than the former; the latter will evolve better. A means for
enforcing aspect restrictions should be able to account for
differences in how join points are identified.
Several researchers have noted that the nature of the advice
is critical for enforcement [1, 8, 9]. The intuition is that
advice that simply “observes” is less problematic than
advice that has effect. Unfortunately, categorization of
whether advice observes or effects appears difficult. What
it means to observe depends on context – it is different on
an application server than in real-time control code for
example. In [36] Rinard et. al. describe an initial empirical
analysis of advice behavior that we hope will prove helpful
in better understanding this issue.

7. Summary
AOP enables modular implementation of crosscutting
concerns, and modular reasoning in the presence of
crosscutting concerns. But it requires an important change
in how module interfaces are specified. With AOP
interfaces are defined as aspects cut through the primary
module structure. So a module’s interface cannot be fully
determined without a complete system configuration.
But crosscutting concerns inherently require global
knowledge to support reasoning. Using AOP, programmers
get modular reasoning benefits for crosscutting concerns
whereas without AOP they do not.

Acknowledgements
We thank Jonathan Aldrich and Curtis Clifton for
discussions about these topics, and for comments on the
paper itself. Klaus Ostermann, Gail Murphy and Maria
Tkatchenko also provided comments on drafts of the paper.

References
[1] Aldrich, J., Open Modules: A Proposal for Modular Reasoning
in Aspect-Oriented Programming, Carnegie Mellon Technical
Report CMU-ISRI-04-108, 2004 (Earlier version appeared in
Workshop on Foundations of Aspect-Oriented Languages.).
[2] Bloch, J. A Metadata Facility for the Java Programming
Language, 2002.
[3] Bockisch, C., Haupt, M., Mezini, M. and Ostermann, K.,
Virtual Machine Support for Dynamic Join Points. International
Conference on Aspect-oriented Software Development (AOSD),
2004, ACM Press, 83-92.
[4] Boner, J., AspectWerkz http://aspectwerkz.codehaus.org/.

http://aspectwerkz.codehaus.org/

Copyright 2004 Gregor Kiczales, Mira Mezini. All rights reserved. 10

[5] Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P.,
Making the Future Safe for the Past: Adding Genericity to the
Java Programming Language. Symposium on Object Oriented
Programming: Systems, Languages, and Applications (OOPSLA),
1998, 183-200.
[6] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens,
G.T., Rustan, K., Leino, M. and Poll, E., An overview of JML
tools and applications. Workshop on Formal Methods for
Industrial Critical Systems (FMICS), 2003.
[7] Chiba, S. and Nakagawa, K., Josh: An Open AspectJ-like
Language. International Conference on Aspect-oriented Software
Development (AOSD), 2004, ACM Press, 102-111.
[8] Clifton, C. and Leavens, G., Obliviousness, Modular
Reasoning, and the Behavioral Subtyping Analogy, Iowa State
University Technical Report, TR 03-15,
[9] Clifton, C. and Leavens, G., Observers and assistants: A
proposal for modular aspect-oriented reasoning. Workshop on
Foundations of Aspect-Oriented Languages (FOAL), 2002.
[10] DeLine, R. and Fähndrich, M., Typestates for Objects.
European Conference on Object-Oriented Programming
(ECOOP), 2004.
[11] Deng, X., Dwyer, M., Hatcliff, J. and Mizuno, M., SyncGen:
An aspect-oriented framework for synchronization. Int'l
Conference Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2004, 158-162.
[12] Eichberg, M., Mezini, M. and Ostermann, K., First-Class
Pointcuts as Queries. Asian Symposium on Programming
Languages and Systems (APLAS), 2004, Springer Lecture Notes
on Computer Science, to appear.
[13] Fowler, M. and Beck, K. Refactoring: improving the design
of existing code. Addison-Wesley, Reading, MA, 1999.
[14] Furfaro, A., Nigro, L. and Pupo, F. Multimedia
synchronization based on aspect oriented programming.
Microprocessors and Microsystems, 8 (2). 47-56.
[15] Gradecki, J. and Lesiecki, N. Mastering AspectJ: Aspect-
oriented Programming in Java. Wiley, Indianapolis, Ind., 2003.
[16] Grundy, J., Aspect-Oriented Requirements Engineering for
Component-based Software Systems. International Symposium on
Requirements Engineering, 1999, IEEE Computer Society Press,
84-91.
[17] Gybels, K. and Brichau, J., Arranging Language Features for
More Robust Pattern--Based Crosscuts. International Conference
on Aspect-Oriented Software Development (AOSD), 2003, ACM
Press, 60-69.
[18] Hannemann, J. and Kiczales, G., Design pattern
implementation in Java and AspectJ. Symposium on Object
Oriented Programming: Systems, Languages, and Applications
(OOPSLA), 2002, 161-173.
[19] Hilsdale, E. and Hugunin, J., Advice Weaving in AspectJ.
International Conference on Aspect-Oriented Software
Development (AOSD), 2004, ACM Press, 26-35.
[20] Jacobson, I. and Ng, P.-W. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2003.
[21] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W.G., An Overview of AspectJ. European
Conference on Object-Oriented Programming (ECOOP), 2001,
Springer, 327-355.
[22] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J. and Irwin, J., Aspect-oriented programming.

European Conference on Object-Oriented Programming
(ECOOP), 1997, 220-242.
[23] Kiselev, I. Aspect-oriented programming using AspectJ.
Sams, Indianapolis, Ind., 2003.
[24] Krakauer, D.C. Robustness in Biological Systems: a
provisional taxonomy. in Complex Systems Science in
Biomedicine, Kluwer, 2004.
[25] Krishnamurthi, S., Fisler, K. and Greenberg, M. Verifying
Aspect Advice Modularly. International Symposium on the
Foundations of Software Engineering (FSE). to appear.
[26] Laddad, R. AspectJ in action: practical aspect-oriented
programming. Manning, Greenwich, CT, 2003.
[27] Leavens, G., Cheon, Y., Clifton, C., Ruby, C. and Cok, D.
How the design of JML accommodates both runtime assertion
checking and formal verification. FORMAL METHODS FOR
COMPONENTS AND OBJECTS, 2852. 262-284.
[28] Liberty, J. Programming C#. O'Reilly, Sebastopol, CA,
2003.
[29] Lippert, M. and Lopes, C.V., A Study on Exception
Detection and Handling Using Aspect-Oriented Programming.
International Conference on Software Engineering, 2002, ACM
Press, 418-427.
[30] Liskov, B.H. and Wing, J.M. A Behavioral Notion of
Subtyping. Transactions on Programming Languages and
Systems (TOPLAS).
[31] Masuhara, H. and Kawauchi, K., Dataflow Pointcut in
Aspect-Oriented Programming. Asian Symposium on
Programming Languages and Systems (APLAS), 2003, 105--121.
[32] Masuhara, H. and Kiczales, G., Modeling crosscutting in
aspect-oriented mechanisms. European Conference on Object-
Oriented Programming (ECOOP), 2003, Springer, 2-28.
[33] Mezini, A.M. and Ostermann, A.K., Conquering aspects with
Caesar. International Conference on Aspect-Oriented Software
Development (AOSD), 2003, ACM Press, 90-100.
[34] Rashid, A., Moreira, A. and Araujo, J. Modularisation and
composition of aspectual requirements International Conference
on Aspect-oriented Software Development (AOSD), ACM Press,
2003, 11-20.
[35] Rashid, A., Sawyer, P., Moreira, A. and Araujo, J. Early
Aspects: A Model for Aspect-Oriented Requirements Engineering
International Conference on Requirements Engineering, IEEE
Computer Society Press, 2002, 199--202.
[36] Rinard, M., Salcianu, A. and Suhabe, B., A Classification
System and Analysis for Aspect-Oriented Programs. International
Symposium on the Foundations of Software Engineering (FSE),
2004, to appear.
[37] Soares, S., Laureano, E. and Borba, P., Implementing
distribution and persistence aspects with AspectJ. Symposium on
Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA), 2002, 174-190.
[38] Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M., N
degrees of separation: multi-dimensional separation of concerns.
International Conference on Software Engineering (ICSE), 1999,
IEEE Computer Society Press, 107-119.
[39] Zhao, J. and Rinard, M., Pipa: A behavioral interface
specification language for AspectJ. Fundamental Approaches to
Software Engineering (FASE), 2003, Springer, 150-165.

	Introduction
	Definitions
	A Running Example
	Interfaces in AOP Systems
	Interface Depends on Deployment
	Formulation of Aspect-Aware Interfaces

	Modularity Analysis
	The Non-AOP Implementation
	The AOP Implementation
	Informal Reasoning about Change
	Automatic Reasoning

	Open Issues
	Other forms of AOP
	Other Interface Technologies
	More expressive pointcuts
	Interface Constraints

	Summary
	Acknowledgements
	References

