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Abstract 
    Aspects cut new interfaces through the primary 
decomposition of a system. This means that in the presence 
of aspects, the complete interface of a module can only be 
determined once the complete configuration of modules in 
the system is known. While this may seem anti-modular, it 
is an inherent property of crosscutting concerns, and using 
aspect-oriented programming serves to recover modular 
reasoning in the presence of such concerns. 

1. Introduction 
Aspect-oriented programming (AOP) has been proposed as 
a mechanism that enables the modular implementation of 
crosscutting concerns [22]. It has proven popular [15, 23, 
26] because it makes it possible for developers to write 
modular code for concerns such as synchronization [11, 
14], error handling [29], persistence [37] and many design 
patterns [18]. Being able to code aspects cleanly is helping 
developers to think in terms of aspects at earlier stages of 
the lifecycle [16, 20, 34, 35]. 
While code written with AOP clearly seems modular, an 
interesting dialogue has been raised about the full 
implications of AOP for modularity and modular reasoning 
[1, 8, 9]. This paper contributes an improved understanding 
of interfaces in the presence of AOP to that dialogue. We 
introduce the concept of aspect-aware interfaces, and show 
that a module’s aspect-aware interface is not completely 
determined by the module, but rather depends in part on the 
other modules in the system – aspects cut new interfaces 
through the primary module structure. We show that 
aspect-aware interfaces support modular reasoning in the 
presence of crosscutting concerns. 
The paper also highlights concerns that have been raised 
about AOP and modular reasoning, since we show that 
some global knowledge is required as a precursor to 
modular reasoning with AOP. But, we also show that in the 
presence of crosscutting concerns – implemented with or 
without AOP – global knowledge is always required and 
that AOP makes this requirement more explicit and 
supports modular reasoning once the initial global analysis 
is complete. 

The paper is structured as follows: Section 2 provides 
working definitions of modularity and modular reasoning. 
Section 3 presents the example used in the paper. Section 4 
presents the key properties of aspect-aware interfaces. 
Section 5 analyzes the modularity of the non-AOP and 
AOP implementations of the example. Section 6 outlines 
open research issues. Related work is discussed as 
appropriate throughout the paper. 

2. Definitions 
In this section we provide working definitions of key 
terms. 
We say the code that implements a concern is modular if: 
- it  is textually local, 
- there is a well-defined interface that describes how it 

interacts with the rest of the system, 
- the interface is an abstraction of the implementation, in 

that it is possible to make material changes to the 
implementation without violating the interface,  

- an automatic mechanism enforces that every module 
satisfies its own interface and respects the interface of all 
other modules, and 

- the module can be automatically composed – by a 
compiler, loader, linker etc. – in various configurations 
with other modules to produce a complete system. 

Modular reasoning means being able to make decisions 
about a module while looking only at its implementation, 
its interface and the interfaces of modules referenced in its 
implementation or interface. For example, the type-
correctness of a method can be judged by looking at its 
implementation, its signature (i.e. interface), and the types 
(i.e. interfaces) of any other code called by the method. 
Not all decisions are amendable to modular reasoning. 
Many program refactorings require more information for 
example [13]. Expanded modular reasoning means also 
consulting the implementations of referenced modules, and 
global reasoning means having to examine all the modules 
in the system or sub-system. 
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interface Shape { 
  public moveBy(int dx, int dy); 
} 
 
class Point implements Shape { 
  int x, y; //intentionally package public 
 
  public int getX() { return x; } 
  public int getY() { return y; } 
 
  public void setX(int x) { 
    this.x = x; 
    Display.update(); 
  } 
  public void setY(int y) { 
    this.y = y; 
    Display.update(); 
  } 
 
  public void moveBy(int dx, int dy) { 
    x += dx; y += dy; 
    Display.udpate(); 
  } 
} 
 
class Line implements Shape { 
  private Point p1, p2; 
 
  public Point getP1() { return p1; } 
  public Point getP2() { return p2; } 
 
  public void moveBy(int dx, int dy) { 
    p1.x += dx; p1.y += dy; 
    p2.x += dx; p2.y += dy; 
    Display.update 
  } 

} 

 

 

 

 

 

Figure 1. The Java and AspectJ implementations

A Running Example 
s section introduces the example that will be used 
ughout the paper. 
 example involves a simple set of graphical shape 
ses, including Point and Line. Imagine that other shapes 
 Circle and Rectangle are also included. Also imagine a 
play class that implements the drawing surface on 
ch the shapes are displayed. This class has a static 
ate method.1 To save space these are not shown. The 
                                                     
is code would be improved if update was an instance method of 
splay. But this requires using an additional feature of AspectJ, inter-
pe declarations, so for simplicity we use the less elegant approach. 

 

interface Shape { 
  public moveBy(int dx, int dy); 
} 
 
class Point implements Shape { 
  int x, y; //intentionally package public 
 
  public int getX() { return x; } 
  public int getY() { return y; } 
 
  public void setX(int x) { 
    this.x = x;  
 
  } 
  public void setY(int y) { 
    this.y = y;  
 
  } 
 
  public void moveBy(int dx, int dy) { 
    x += dx; y += dy;  } 
 
  } 
} 
 
class Line implements Shape { 
  private Point p1, p2; 
 
  public Point getP1() { return p1; } 
  public Point getP2() { return p2; } 
 
  public void moveBy(int dx, int dy) { 
    p1.x += dx; p1.y += dy; 
    p2.x += dx; p2.y += dy; 
 
  } 
} 
 
aspect UpdateSignaling { 
  pointcut change(): 
    execution(void Point.setX(int)) 
    || execution(void Point.setY(int)) 
    || execution(void Shape+.moveBy(int, int)); 
 
  after() returning: change() { 
    Display.update(); 
  } 
} 
 of the shape classes with display update signaling. 

                                                          

instances have state that determines their appearance on the 
display, e.g. Point objects have x and y coordinates. Finally 
there is code to signal the Display to update whenever a 
shape changes.  
Figure 1 shows two implementations of this example: an 
ordinary object-oriented implementation in Java, and an 
aspect-oriented implementation in AspectJ.2 The key 
difference between the implementations is that in the AOP 
version, the update signaling behavior is implemented in an 

 
2 Examples in this paper are written in Java and the pointcut-and-advice 

part of AspectJ. For simplicity we primarily address only execution join 
points, execution pointcuts, and after returning advice. We also ignore 
examples where aspects advise aspects. 
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aspect, whereas in the non-AOP code it is scattered across 
the methods of Point and Line (and their siblings). 
In the UpdateSignaling aspect, the first member declares a 
pointcut named change(). This pointcut identifies certain 
join points in the program’s execution, specifically the 
execution of the setX and setY methods in Point, as well as 
moveBy methods defined on any sub-type of Shape. 
The second member declares after returning advice that 
says that after returning from executing the join points 
identified by change(), the Display.update() static method 
should be called to signal the display to update. 
Note that the semantics of this AspectJ code is that the 
advice body executes at the join points matched by the 
pointcut. The AspectJ semantics are not to generate a new 
program in which the bodies of the advice have been 
woven into the methods, that is simply one possible 
implementation strategy. The AspectJ language design 
contemplates that weaving can happen at any time, even as 
late as in the interpreter, and implementations have been 
developed that weave at a range of times [3, 19, 21]. 
Similarly the semantics of the aspect-aware interfaces we 
will present are to describe the source program; they are 
not a description of an intermediate woven program. 

4. Interfaces in AOP Systems 
This section presents the key properties of interfaces in 
AOP, also called aspect-aware interfaces. We start with one 
possible way of writing aspect-aware interfaces for the 
running example. This serves to give an intuition of how 
aspects change the traditional notion of interface. Because 
our goal is to identify the general properties of aspect-
aware interfaces, we then discuss some of the possible 
variations on that formulation. More significant variations 
and open issues are discussed in Section 6. 
Figure 2 shows the aspect-aware extension of simple Java-
style statically value-typed interfaces for the Shape, Point 
and Line classes. Much of the interface is traditional—it 
describes the type hierarchy, enumerates the public fields 
and methods defined on each class and gives result and 
argument types for each method. (For simplicity we ignore 
exceptions, constructors and non-public members, as well 
as the distinction between interfaces and classes.) 
The interfaces in Figure 2 also have information about how 
the aspects and non-aspects crosscut. The notation 
 : UpdateSignaling – after returning 
                     UpdateSignaling.move() 

following some methods says two things: (i) the 
UpdateSignaling aspect has after returning advice that 
affects this method, and (ii) the pointcut that advice refers 
to is move(), also defined in UpdateSignaling. 

The interface of the UpdateSignaling aspect also has an 
entry for the advice, which includes inverse information 
about what methods it affects. 

4.1 Interface Depends on Deployment 
One key property of aspect-aware interfaces is that the 
interface of a module depends on the complete system into 
which it is deployed – the aspects contribute to the 
interface of the classes, and the classes contribute to the 
interface of the aspects. This means that before we can 
fully know the interfaces of modules in a system, we must 
have a complete system configuration and run through the 
modules collecting aspects and analyzing the crosscutting. 
This brings into focus what some have identified as a 
controversial property of AOP [1, 8, 9]. The concern is that 
prior to AOP, modules had a “black-box” property – 
looking at the module was all that was required to know its 
interface, and so modular reasoning was possible with 
knowledge of only the module and the interfaces of the 
modules to which it explicitly refers. This line of work has 
generally sought to restrict the power of AOP in order to 
preserve existing black-box reasoning mechanisms. 
In contrast, our goal is to show that the full power of AOP 
is compatible with modular reasoning, if we are willing to 
change some of our existing reasoning mechanisms. With 
aspect-aware interfaces we require a global analysis of the 
deployment configuration to determine module interfaces. 
But once that is done, modular reasoning is possible even 
for crosscutting concerns, as we will show in Section 5. 
This phenomenon of interface depending on system 
configuration is similar to what is seen in other fields of 
systems engineering. In mechanical systems, key properties 
of a component with respect to composition depend on the 
whole system. Conductivity and corrosion resistance matter 
when a component is used in some systems but not others. 
Dynamic analysis requires knowing the whole system. Heat 
transfer behaves similarly. Recent research suggests that 
“compartmental systems” are not the only suitable 
modularities for understanding biological systems [24]. 
These aspects that force the analysis to consider the whole 
system – dynamics, corrosion, conductivity, chemical 
propagation etc. – are crosscutting concerns. They cut 
through the primary modularity boundaries and in doing so 
they act to define new module structures with which to 
analyze the system. 
We observe an important difference between AOP and 
these other systems. In the physical systems, composition 
leads to new crosscutting modules. In mechanics, the 
modules involved in dynamic analysis are different than 
those in static analysis. The modules of dynamic analysis 
may not even come into being until the system is 
composed, and the two sets of modules crosscut each other 
with respect to the physical artifact. 
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Shape 
  void moveBy(int, int) : UpdateSignaling – after UpdateSignaling.move(); 
 
Point implements Shape 
  int x; 
  int y; 
  int getX(); 
  int getY(); 
  void setX(int)        : UpdateSignaling – after returning UpdateSignaling.move(); 
  void setY(int)        : UpdateSignaling – after returning UpdateSignaling.move(); 
  void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move(); 
 
Line implements Shape 
  void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move(); 
 
UpdateSignaling 
  after returning: UpdateSignaling.move(): Point.setX(int), Point.setY(int), 
                                           Point.moveBy(int, int), Line.moveBy(int, int); 

 

Figure 2 Interfaces in the AOP code. 

In AOP, the situation is different. Composition leads to 
new crosscutting interfaces, but the modules remain the 
same. From the perspective of traditional software 
interfaces, the idea that composition can lead to new 
interfaces may seem radical, but at least our situation is 
simpler than for some other engineers. We get new 
interfaces, but not new modules. And, once the 
composition (deployment configuration) is known, the 
interfaces can be identified, and, as we will show in 
Section 5, modular reasoning is possible. 

4.2 Formulation of Aspect-Aware Interfaces 
This section discusses some of the design decisions 
underlying the formulation of aspect-aware interfaces 
shown above. Again, our goal in this paper is to identify 
the key properties of aspect-aware interfaces and their 
effect on modularity, not to argue that the above 
formulation is ideal. A great deal of work remains to be 
done in refining aspect-aware interfaces. Section 6 
discusses some of this work. 
Intensional and extensional descriptions. One decision 
was whether to include the pointcut involved in an advice 
declaration in the interface. To be concrete, we could have 
written the following instead of what we have in Figure 2:  
Line extends Shape 
  void moveBy(int, int) : 
     UpdateSignaling – after returning; 

We include the pointcut because we feel it is the key to 
understanding the interface abstraction. An AOP 
programmer thinks about advice being applicable at a 
group of join points with a common property. The 
emphasis is on the property more than the specific points, 
and the pointcut expresses that property. 
The pointcut can be seen as the intensional definition of the 
interface. The set of methods marked is the extensional 
definition. For example, note that the pointcut is what the 

programmer should study when considering changes to the 
implementation of the class. Seeing the pointcut 
    execution(void Point.set*(*))
is different than seeing the pointcut 
    execution(void Point.setX(int)) 
    || execution(void Point.setY(int))

even if, as in this case, the same join points are identified.  
Pointcut abstraction or reduction. Another decision was 
whether the interface should include the pointcut as it 
appears in the advice declaration or include its reduction 
(recursive inlining of the named pointcuts). We chose the 
former, because it reflects abstractions from the aspect. But 
clearly there are times when the programmer will want to 
see a partial or complete reduction of the pointcut. 
We see this as analogous to a programmer sometimes 
wanting to see just a type name in an interface, and other 
times wanting to see more information about the type. As 
such, it seems amenable to being addressed as a tool issue. 
Including advice kind. We also decided to include the 
kind of advice (before, after etc.) rather than just indicating 
the applicability of advice, without saying its kind. We felt 
that including the kind adds to the descriptive power of the 
interface, without overly restricting the implementation of 
the aspect. In practice, advice bodies change about as often 
as method bodies. But changing an advice from before to 
after is less common and more significant. Also, because 
advice declarations are not named, this helps the 
programmer know which advice is being referred to. In a 
system like AspectWerkz [4], the name of the advice 
handler might also be included.3

Expressing extensional definition. A more complex 
decision had to do with deciding what methods to list as 
                                                           
3 In AspectWerkz, advice declarations associate a pointcut with a named 

handler method rather than an anonymous advice body as in AspectJ. 
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being affected by an advice. The answer we chose was to 
list those methods for which executing the body of the 
method might run the advice. In the subset of AspectJ we 
are considering (execution join points, execution pointcuts, 
after returning advice) this is clear enough. But once we 
allow call, get and set join points the issue becomes less 
clear. Should a method be listed as affected because it 
includes a call join point that is advised? Should a method 
be listed as affected because calls to it are advised? This is 
clearly an area for future work. The initial answer we are 
using is to list any method for which the body lexically 
includes the shadow of an advised join point.4  
Rather than marking each affected method, we could have 
marked just the enclosing classes with all the aspects that 
affect any of its methods. This would be a lower-
granularity version of the interfaces we have here. It would 
be minimalistic because given this coarse-grained back link 
to the aspects, expanded modular reasoning could then be 
used to construct the more complete information in the 
interfaces we describe. 
We chose not do this for several reasons. It connotes the 
aspect applies to the whole class, which is often not the 
case. It is less useful, because programmers will almost 
always have to go to the aspect implementation to find out 
exactly what methods are affected. It fails to capture the 
crosscutting structure that is such an important part of AOP 
code. 

5. Modularity Analysis 
This section analyzes the AOP and non-AOP 
implementations. First we analyze the modularity criteria 
from Section 2; this is summarized in Table 1. Then we use 
a simple change scenario to analyze modular reasoning. 

5.1 The Non-AOP Implementation 
In the non-AOP code, the implementation of the display 
updating behavior fails to satisfy our modularity criteria. 
First, it is not localized. Since the additional modularity 
criteria build on locality and each other, they also fail: 
because there is no localized unit, there is nothing for there 
to be an interface to, and without an interface, we cannot 
ask whether it is an abstraction of the implementation. 
Similarly, the implementation cannot be composed 
independently; there is no automatic mechanism for 
producing a version of the shape classes without change 
signaling behavior. 
The Point and Line classes meet our modularity criteria, 
but in a somewhat compromised form: 
                                                           

                                                          
4 The shadow of a dynamic join point is a code structure (expression, 

statement or block) that statically corresponds to execution of the 
dynamic join point. The shadow of a method execution join point is a 
method body; the shadow of a method call is a call expression etc. 

- They are textually local, but that boundary also includes 
the code for signaling the display to update. 

- They have clearly defined interfaces, but those interfaces 
fail to say anything about the included display update 
signaling behavior.  

- The interface is an abstraction of the implementation. The 
internal details of the classes could change in meaningful 
ways without changing the interface. The coordinates of a 
Point could be stored differently for example. 

- The interfaces are enforced in that the Java type checker, 
loader and virtual machine ensure type safety. 

- They can be composed automatically. The Java loader 
can load these with other classes in different 
configurations. 

5.2 The AOP Implementation 
In the AOP code, the UpdateSignaling aspect meets our 
criteria for a modular implementation of the display 
updating behavior: The Point and Line classes also meet 
our criteria, somewhat better than in the non-AOP 
implementation. 
- Each is textually local. Locality is improved over the 

non-AOP implementation because the update signaling 
behavior is not tangled into the Point and Line classes. 

- Each has a clear interface as shown in Figure 2. The 
interfaces are now a more accurate reflection of their 
behavior – update signaling is reflected in the interfaces 
as arising from the interaction between the aspects and 
the classes. 

- In each case the interface is an abstraction of the 
implementation, in that there is room for material 
variation in how each is implemented. For example, a 
helper method could be called to do the signaling, or the 
signaling could be logged. 

- The interfaces are enforced. Type checking works in the 
usual way, and in addition the advice is called when it 
should be and at no other times. The advice calling 
enforcement is somewhat trivial – as with polymorphic 
dispatch a single advice declaration both declares the 
interface and defines the implementation.  

- Each can be composed automatically with other modules 
– this is what the AspectJ weaver does.5 For example, we 
can automatically produce a configuration that includes 
the shape classes but not the UpdateSignaling aspect. 

 
5 Since release 1.2, weaving can happen at compile-time, post compile-

time on jar files, or at load time. 
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display updating no n/a n/a n/a n/a non 
AOP Point, Line medium(1) medium(2) medium(2) yes  yes  

UpdateSignaling high high(3)  high yes(5) yes  AOP 
Point, Line high(4) high(3)(4) high yes(5) yes  

 
(1) Point and Line classes are contaminated with scattered and tangled display updating behavior. 
(2) Except that the tangled display updating behavior is not a documented part of the interface. 
(3) Using aspect-aware interfaces. 
(4) Enhanced because display updating behavior is no longer tangled. 
(5) Standard Java type checking extended to advice and advice parameters. In addition, assurance that 

advice is called when it should be and at no other times 
 

Table 1. Analysis of modularity for non-AOP and AOP implementations of shape package. 

5.3 Informal Reasoning about Change 
In this section we consider a simple change scenario, and 
compare reasoning with traditional interfaces about the 
non-AOP code against reasoning with aspect-aware 
interfaces about the AOP code. 
The example presented in Section 3 has a deliberately 
introduced weakness – the x and y fields of the Point class 
are public, rather than private. We consider the scenario 
where a programmer decides to change the fields to being 
private. When doing this they must ensure the whole 
system continues to work as before. 
We now walk through the reasoning and changes to the 
code that would most likely ensue. We will compare how 
the process works for the non-AOP and AOP code. The 
process starts out following the same path for both 
implementations. We nonetheless discuss the whole 
process, both to make the example realistic, and to stress 
the critical role modular reasoning can play as a sub-part of 
a larger, not necessarily modular, reasoning process. 
The programmer begins by asking what the implications of 
changing the fields are. Making the x and y fields private 
entails a change to the interface of the class. So reasoning 
shifts outside the class (outside the module), to clients of 
the Point interface, or more specifically clients of the x and 
y fields of the Point interface. 
Unfortunately, global reasoning, in the form of a simple 
global search, is required to find all such clients. This is a 
typical consequence of interface changes. In this case, the 

programmer’s attention next focuses on the moveBy 
method of the Line class:6

Reasoning in the non-AOP implementation. In the non-
AOP implementation, the moveBy method of Line is 
originally: 
  public void moveBy(int dx, int dy) { 
    p1.x += dx; p1.y += dy; 
    p2.x += dx; p2.y += dy;  
    Display.update(); 
  } 

To conform to the new interface of Point, this code must be 
revised to call accessor methods rather than access the 
fields directly. A straightforward revision of the code 
would be: 
  public void moveBy(int dx, int dy) { 
    p1.setX(p1.getX() + dx);  
    p1.setY(p1.getY() + dy); 
    p2.setX(p2.getX() + dx);  
    p2.setY(p2.getY() + dy);  
    Display.update(); 
  } 

The programmer must now decide whether this change is 
reasonable. The answer is that it is not – it violates an 
important invariant in the original code, which is that there 
should be a single display update for each top-level change 
to the state of a shape. In the revised code, a call to 
moveBy on a line object would produce 5 display updates. 
What we want to assess is what reasoning is required to 
reach this conclusion. 

                                                           
6 The programmer might feel that private fields should not be accessed 

directly even within a class, and so focus first on the moveBy method of 
Point, and then come to the moveBy method of Line later. 
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To discover the problem with this potential change, the 
programmer needs two pieces of information: a description 
of the invariant and enough of the structure of update 
signaling to infer that the invariant would be violated by 
the change. 
Nothing in the implementation or interface of Line is likely 
to describe the invariant. But because of the explicit call to 
Display.update(), the programmer might go look at the 
implementation of the Display class. We assume, 
optimistically, that the documentation for the update 
method includes a description of the one update per top-
level change invariant. 
At this point expanded modular reasoning with one step 
has led the programmer from a proposed change to the 
moveBy method to the invariant. 
But the programmer still does not have enough information 
to be sure the proposed change is not problematic. They 
must also discover that the setX and setY methods call 
update, or, more generally, discover the existing structure 
of update signaling. This requires at least further expanded 
modular reasoning – to just find the calls from setX and 
setY; or global reasoning – to find all calls to update and 
discover the complete structure of display update signaling. 
Once the programmer concludes, through expanded 
modular or global reasoning that the change to moveBy is 
incorrect, they are in a somewhat difficult situation. One 
solution is to add special non update-signaling setter 
methods to Point, and call those from moveBy. The 
simplest solution is to give up and leave the x and y fields 
package public. (Which is when the programmer has the 
‘aha’ realization of why they were package public in the 
first place.) 
Summarizing the reasoning process in the non-AOP 
implementation, starting at the proposed changed to Line’s 
moveBy method: one-step expanded modular reasoning 
may lead to documentation of the key invariant. Global 
reasoning is required to discover the complete structure of 
update signaling, although expanded modular reasoning 
discovers enough of the updates to handle this specific 
case. 
Reasoning in the AOP Implementation. In the AOP code 
the change process proceeds along the same course as in 
the non-AOP code up to the point of considering the 
possible change to the moveBy method of Line. In the 
AOP code, the straightforward revision of moveBy is: 
  public void moveBy(int dx, int dy) { 
    p1.setX(p1.getX() + dx);  
    p1.setY(p1.getY() + dy); 
    p2.setX(p2.getX() + dx);  
    p2.setY(p2.getY() + dy);  
  } 

As in the non-AOP case, this code is incorrect. It violates 
the update invariant in exactly the same way.  

If we assume, with similar optimism, that the invariant is 
documented in UpdateSignaling then one-step expanded 
modular reasoning leads the programmer from the moveBy 
method to the invariant. If we are less optimistic, and only 
assume that the invariant is documented in Display, then 
two-step expanded modular reasoning is required. 
The interface of UpdateSignaling includes the complete 
structure of what method executions will signal updates. So 
modular reasoning alone provides the programmer with 
this information. 
Once the programmer understands that the simple change 
to moveBy is invalid, the situation is much simpler in the 
AOP case. In AspectJ and similar AOP languages, the 
proper fix is to use the cflowbelow primitive pointcut. 
Using this, the advice would be edited to be: 
  after() returning: change() 
                     && !cflowbelow(change()) { 
    Display.update(); 
  } 

The revised pointcut means only top-level changes are 
advised, and should be read as “any join point matching 
change, unless that join point is in the control flow below a 
join point matching change”. 
Summarizing the reasoning process in the AOP 
implementation, starting at the proposed changed to Line’s 
moveBy method: one- or two-step expanded modular 
reasoning may lead to documentation of the key invariant; 
modular reasoning leads to the complete structure of update 
signaling. Additionally, in the AOP case, a simple local 
change to the UpdatingSignaling aspect solves the 
problem, and results in the invariant being an explicit and 
enforced property of the code that is clearly reflected in the 
interfaces. 
Comparison. In the first step of the process the two 
implementations perform similarly – global reasoning is 
required to find all the references to the x and y fields. 
Neither AOP nor traditional technologies prevent this. 
With respect to documenting and allowing the programmer 
to discover the invariant, the two original implementations 
fare similarly. Under optimistic assumptions about the 
invariant being documented, the non-AOP implementation 
requires one-step expanded modular reasoning to discover 
the documentation. The AOP implementation requires one- 
or two-step expanded modular reasoning.  
With respect to discovering the structure of update 
signaling the two implementations perform significantly 
differently. The non-AOP implementation requires 
expanded modular reasoning to discover the minimal 
structure required to reason about the change. It requires 
global reasoning to discover the complete structure. The 
AOP implementation requires only modular reasoning to 
discover the complete structure. In a more complex 
example the difference would be more dramatic. 
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Fundamentally, display update signaling is a crosscutting 
concern. With AOP, its interface cuts through the classes, 
and the structure of that interface is captured declaratively, 
and the actual implementation is modularized. Without 
AOP, the structure is implicit and the actual 
implementation is not modular. 
The main cost of AOP, with respect to classical modular 
reasoning is that the interface of a module is context 
dependent. We must know the set of modules with which a 
given module will be deployed to know its interface. 
Without AOP, when reasoning about a change to a module 
we must ask whether the interface changes. With AOP, we 
must ask whether the interface for each deployment 
configuration changes. (Section 6.4 outlines an idea that 
can limit how many configurations are explicitly 
consulted.) 
The main benefit of AOP is that once we accept the cost, 
we get the traditional benefits of modularity and modular 
reasoning for crosscutting concerns. 
Without AOP, complete configuration information is not 
needed to determine a module’s interface. But in such a 
world, modular reasoning fails for crosscutting concerns 
like display update signaling. A global search is required to 
discover the key invariant. 
Our conclusion is that for crosscutting concerns 
programmers inherently have to pay the main cost of AOP. 
They have to know something about the total deployment 
configuration in order to do the global reasoning required 
to reason about crosscutting concerns. But using AOP, they 
get modular reasoning benefits back, whereas not using 
AOP they do not. 

5.4 Automatic Reasoning 
We have argued that AOP implies a new kind of interface, 
but that once those interface are computed, the power of 
modular reasoning is improved. In this section we point out 
three existence proofs of this claim. 
Since version 1.2 AspectJ has supported incremental 
compilation and weaving for interactive development [19]. 
This works by having the weaver maintain a list of the 
aspects and classes in a deployment configuration, as well 
as a weaving plan data structure similar to the interfaces we 
describe (the weaving plan has more detailed information). 
When the weaver is called it first checks whether the 
weaving plan has changed. If not, only the code that has 
changed is re-compiled and re-woven. This is limited 
modular reasoning in the face of unchanging interfaces. 
In [25] Krishnamurthi et. al. describe a similar scheme for 
incremental verification of AspectJ code. 
The open modules work described in [1] provides a formal 
justification for our modular reasoning claim. The theorem 
developed in this work implies that once a module's aspect-

aware interface is computed, we can prove functional 
correctness properties, and safely make changes to a 
module without affecting the rest of the program. 

6. Open Issues 
The key property of aspect-aware interfaces is that 
knowledge of the complete system configuration is 
required to compute how interfaces are cut through the 
primary decomposition. But the formulation and use of 
these interfaces can be extended in a variety of ways. 

6.1 Other forms of AOP 
A first task is to expand our concept of aspect-aware 
interfaces and the analysis here to full AspectJ, including 
the other kinds of dynamic join points, as well as inter-type 
declarations (aka introductions). A simpler task is to cover 
similar systems like Caesar [33] and AspectWerkz [4]. We 
expect that the generalized model of AOP presented in [32] 
will provide a basis for this. 
A more interesting challenge is reconciling aspect-aware 
interfaces with systems like MDSOC [38]. At first glance, 
our observation that aspect-aware interfaces show that in 
AOP the interfaces, but not the implementations crosscut, 
(Section 4.1) seems at odds with the conceptual account of 
MDSOC, in which code is explicitly copied into different 
modules (usually in different system configurations). 

6.2 Other Interface Technologies 
The interfaces we describe are the aspect-aware version of 
standard Java interfaces. They support simple static value 
typing. But more sophisticated interface technologies have 
been developed for object-oriented and other languages. 
These include higher-order value typing like generic types, 
[5] state typing [10], behavioral specification [6, 27, 30] 
and others. One area of research is to explore the aspect-
aware equivalent of these other kinds of interfaces.  Our 
belief is that the basic idea of aspect-aware interfaces 
should carry-over to these interface styles.  
Existing work adapting behavioral interfaces to AspectJ 
reinforces this belief [39]. But an experiment is needed to 
be sure. Part of this work would involve exploring what 
issues are better specified as behavioral specifications what 
issues are better addressed directly in pointcuts. 

6.3 More expressive pointcuts 
In Section 4.1 we said that the pointcuts represent the 
abstraction or intensional specification of the interface. 
More work is needed to increase the expressive power and 
abstraction of pointcuts. 
The most common concern is that any use of wildcarding 
opens the door for unintended matches as the program 
evolves. This is a valid concern, although the intentionally  
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limited power of the AspectJ pattern matching, together 
with the available tool support for editing AspectJ code 
mitigates this problem to a large extent in practice. 
Support for use of annotations as in C# [28] and Java JSR-
175 [2] may be of some help, although the use of 
annotations violates the “obliviousness” property of AOP 
pointcuts, and requires scattering the annotations, and so 
has potential scaling and evolution problems. 
Of more interest to us are mechanisms that allow the 
programmer to directly express the true semantics of the 
pointcut, as in the invariants and structural properties 
underlying the pointcut. The use of cflowbelow shows the 
potential power of making pointcuts more semantic. It 
makes it possible to express the structural invariant 
explicitly, and in a checked and enforced form. 
We expect that it will be possible to do better than this. In 
the case of the change pointcut, what the programmer is 
thinking is that these are the methods that change state that 
affects the display. But what the programmer is doing in 
the pointcut is identifying those methods by name or name 
pattern. We would like to write a pointcut that directly says 
“the methods that change the state that affects the display”. 
Computing the actual methods (the extensional description) 
would involve some sort of conservative control and data 
flow analysis. Several efforts are already underway to 
develop “more semantic” pointcuts [7, 12, 17, 31]. 

6.4 Interface Constraints 
A number of researchers have expressed concern that 
aspects can advise classes without the class’s “consent”. 
They argue that classes should be able to prevent advice 
from affecting their methods. Most proposals allow classes 
to explicitly restrict aspects, or require classes to publish 
pointcuts, or even require that classes import explicitly 
import aspects  [1, 8, 9].  All of these inherently limit the 
“obliviousness” property of AOP. 
The identification of aspect-aware interfaces suggests a 
new possibility. Instead of associating aspect constraints 
directly with classes or packages, they could be associated 
with system configurations. System architects could define 
these constraints, and any aspects included in the 
configuration would have to respect them. This would 
make it possible to have different constraints for different 
configurations, and would reflect that reasoning about 
aspect interfaces requires prior knowledge of the 
configuration. It would not place any inherent limits on the 
obliviousness of classes with respect to aspects. A given 
configuration could have no constraints. 
An additional issue for enforcement we see is that the way 
in which a join point is identified for advice is at least as 
important as what join points are identified. Consider 
advice using these two different pointcuts: 

    get(int Point.x) || get(int Point.y) 
 
    get(* Shape+.*) 

With respect to the class Point, these two pointcuts match 
the same join points. But with respect to evolution and 
modularity, the two are quite different. The former hard 
codes exact names of private fields of the class. The latter 
identifies all the fields, regardless of their name. We 
believe that for many advice the latter is more comfortable 
than the former; the latter will evolve better. A means for 
enforcing aspect restrictions should be able to account for 
differences in how join points are identified. 
Several researchers have noted that the nature of the advice 
is critical for enforcement  [1, 8, 9]. The intuition is that 
advice that simply “observes” is less problematic than 
advice that has effect. Unfortunately, categorization of 
whether advice observes or effects appears difficult. What 
it means to observe depends on context – it is different on 
an application server than in real-time control code for 
example. In [36] Rinard et. al. describe an initial empirical 
analysis of advice behavior that we hope will prove helpful 
in better understanding this issue. 

7. Summary 
AOP enables modular implementation of crosscutting 
concerns, and modular reasoning in the presence of 
crosscutting concerns. But it requires an important change 
in how module interfaces are specified. With AOP 
interfaces are defined as aspects cut through the primary 
module structure. So a module’s interface cannot be fully 
determined without a complete system configuration. 
But crosscutting concerns inherently require global 
knowledge to support reasoning. Using AOP, programmers 
get modular reasoning benefits for crosscutting concerns 
whereas without AOP they do not. 
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