
Obliviousness, Modular Reasoning, and

the Behavioral Subtyping Analogy

Curtis Clifton and Gary T. Leavens

TR #03-01a
January 2003, Revised March 2003

Keywords: Spectators, assistants, aspect-oriented programming, modular reasoning, behavioral subtyp-
ing, obliviousness, AspectJ language.

2002 CR Categories: D.1.5 [Programming Techniques] Object-oriented programming — aspect-oriented
programming; D.2.1 [Requirements/Specifications] Languages — JML; D.2.4 [Software/Program Verification]
Programming by Contract; D.3.2 [Programming Languages] Language Classifications — object-oriented
languages, Java, AspectJ; D.3.3 [Programming Languages] Language Constructs and Features — control
structures, modules, packages, procedures, functions and subroutines, advice, spectators, assistants, aspects.

Copyright c© 2003, Curtis Clifton and Gary T. Leavens, All Rights Reserved.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040, USA



Obliviousness, Modular Reasoning, and

the Behavioral Subtyping Analogy∗

Curtis Clifton and Gary T. Leavens
Department of Computer Science, Iowa State University

226 Atanasoff Hall, Ames, IA 50011-1041 USA
+1-515-294-1580 {cclifton,leavens}@cs.iastate.edu

March 5, 2003

Abstract

The obliviousness property of AspectJ conflicts with
the ability to reason about an AspectJ program in a
modular fashion. This makes debugging and main-
tenance difficult. In object-oriented programming,
the discipline of behavioral subtyping allows one to
reason about programs modularly, despite the some-
what oblivious nature of dynamic binding; however,
it is not clear what discipline would help AspectJ
programmers obtain modular reasoning. We de-
scribe this problem in detail, and sketch a solution
that allows programmers to tell both “superimposi-
tion” and “evolution” stories in their AspectJ pro-
grams.

1 Introduction

Much of the work on aspect-oriented programming
languages refers to the work of Parnas [18]. Par-
nas argues that the modules into which a system is
decomposed should provide benefits in three areas
(p. 1054):

The benefits expected of modular program-
ming are: (1) managerial—development
time should be shortened because separate
groups would work on each module with
little need for communication; (2) product
flexibility—it should be possible to make
drastic changes to one module without a
need to change others; (3) comprehensi-
bility—it should be possible to study the
system one module at a time. The whole
system can therefore be better designed be-
cause it is better understood.

∗Copyright c© 2003, Curtis Clifton and Gary T. Leavens,
All Rights Reserved

While much has been written about aspect-
oriented programming as it relates to Parnas’s sec-
ond point, his third point is the primary concern of
this paper. AspectJ [2, 9] does not provide this third
benefit in general, because it requires that systems
be studied in their entirety.

The whole-program analysis required by AspectJ
is due to the form of obliviousness allowed by the
language. Filman and Friedman define oblivious-
ness as the execution of additional aspect-oriented
code, A, without effort by the programmer of the
client code that A cross-cuts [8]. Filman and Fried-
man’s paper argues that obliviousness is an essen-
tial property of aspect-oriented programming lan-
guages. But because of the obliviousness of As-
pectJ, it is difficult for programmers to find the code
that may be executed at any given point in the pro-
gram. This presents difficulties for debugging and
for code understanding. This problem is currently
being addressed via tool support (e.g., in Eclipse1,
the QJBrowser2, and plug-ins for various IDEs) in-
stead of via the language. Such tools perform the
necessary whole-program analysis to direct the pro-
grammer to the applicable aspects that affect pieces
of a module’s source code. Furthermore, the need for
such tools indicates that client programmers cannot
really remain oblivious to code introduced by as-
pects, except in a narrow technical sense.

It is interesting to examine the conflicting de-
mands of comprehensibility and obliviousness in the
context of object-oriented programming. Filman
and Friedman point out that dynamic binding in
object-oriented languages represents a form of obliv-
iousness [8, §2]. Behavioral subtyping [7, 11, 12] re-
stores Parnas’s ideal of comprehensibility to object-

1Information on the AspectJ development tools for Eclipse
is available from http://www.eclipse.org/ajdt/

2Information available from http://www.cs.ubc.ca/labs/

spl/projects/qjbrowser.html

1



oriented programs, in spite of the obliviousness of-
fered by dynamic binding. We will use this as an
analogy for considering the problem of comprehen-
sibility and obliviousness in AspectJ.

As an initial consideration of comprehensibility
with aspect-oriented obliviousness, in this proposal
we focus on AspectJ.3 We believe that our discus-
sion applies to other AspectJ-like languages (such as
AspectC). However, the problems and possible solu-
tions we discuss do not necessarily apply to other
aspect-oriented languages.

2 The Goal:
Modular Reasoning

We would like to have both obliviousness and com-
prehensibility in an AspectJ-like language. This
comprehensibility is often termed “modular reason-
ing”. Thus, we begin by defining a notion of modular
reasoning that corresponds to Parnas’s comprehen-
sibility benefit.

Modular reasoning is the process of understand-
ing a system one module at a time. A language
supports modular reasoning if the actions of a mod-
ule M written in that language can be understood
based solely on the code contained in M and the
code surrounding M , along with the signature and
behavior of any modules referred to by that code.
The notion of a module and the surrounding code
for a module are determined by the programming
language. In Java, we might consider a compilation
unit to be a module, and in standard Java no code
surrounds a module4. Code, C, refers to a module
N if C explicitly names N , if C is lexically nested
within N , or if N is a standard module in a fixed
place (such as Object in Java).

We use contracts to specify the code’s behav-
ior. In the most concrete case, the contract is the
method’s code, but we prefer to think of more ab-
stract contracts. These can be written in a formal
specification language [10, 13], or informally by writ-
ing comments such as “This method returns true if
the given file exists”.

Our interest in modular reasoning in aspect-
oriented programming languages is motivated in
part by our initial work on combining MultiJava
[4, 6] and JML [10].

3We are omitting AspectJ’s introduction mechanisms, i.e,
inter-type declarations.

4Another interpretation of “module” and “surrounding
code” in Java might be that a type declaration is a module,
and, for nested type declarations, the code for the enclosing
type declaration is the surrounding code.

public class Point {
private int pos;
public final int getPos() {

return pos;
}

/* ... */

//@ requires true;
//@ modifies pos;
//@ ensures getPos() ==
//@ dist + \old(getPos());
public void move(int dist) {

pos = pos + dist;
}

}

Figure 1: A Point class

public void client(Point p) {
/* ... */
assert p.getPos() == 0;
p.move(-10);
assert p.getPos() == -10;

}

Figure 2: Sample client code

3 The Problem:
Undisciplined Obliviousness

In typical object-oriented languages, the dynamic
type of the receiver object is used to select the ap-
propriate method to invoke for a given message send.
Such dynamic selection of the target method can
prevent modular reasoning. For example, consider
the declaration of Point in Figure 1 and its method,
move. The //@-comments before move’s declaration
give its behavioral specification in JML.

• The clause “requires true” says that clients
are not obliged to establish any precondition.

• The clause “modifies pos” says that the pos
field of the receiver object may be changed by
the method, but not any other locations.

• The clause “ensures ...” says that, after move
returns, the value returned by getPos() is
equal to the sum of the dist argument and the
value returned by getPos() before move was
called.

Suppose an object of static type Point is passed
to a method client, as in Figure 2. If modular rea-

2



public class RightMovingPoint
extends Point {

public void move(int dist) {
if (dist < 0) super.move(-dist);
else super.move(dist);

}
}

Figure 3: A RightMovingPoint class

soning is sound, then the programmer can reason
about the invocation of move based on its specifi-
cation in Point. That is, if the first assertion in
Figure 2 holds, then the second assertion is valid
based on the specification of Point’s move method.
The definition of modular reasoning requires that
the programmer should not have to consider possible
subtypes of Point when doing this reasoning, since
they are not mentioned in the client code. However,
by subsumption, an instance of an unseen subtype
of Point, say RightMovingPoint, may be passed
to client. What if (as in Figure 3) RightMoving-
Point overrides method move, but the override does
not satisfy the specification of move in Point? Then
modular reasoning such as that described for client
is not valid. Using Figure 3, after the client’s invo-
cation of p.move(-10), p.getPos() returns 10, not
-10 as asserted.

The concept of behavioral subtyping restores
sound modular reasoning by imposing the specifi-
cation of Point on all its subtypes [7, 11, 12]. Thus,
RightMovingPoint is not a behavioral subtype of
Point, because its implementation does not satisfy
the specification of move in Point. Behavioral sub-
typing is often described by saying that the behavior
of a subtype should not be surprising , with respect
to the specified behavior of a supertype.

As pointed out by Filman and Friedman [8], sub-
typing with subsumption, as above, is an example
of obliviousness. Aspect-oriented programming lan-
guages allow programmers much greater latitude in
defining oblivious behaviors.

3.1 Non-modular Reasoning
in AspectJ

Next we show that, just as modular reasoning is not
a general property of object-oriented programming
languages in the absence of behavioral subtyping,
modular reasoning is not a general property of As-
pectJ. We do this by considering an aspect-oriented
extension to our Point example.

Figure 4 gives an aspect, MoveLimiting, that

public aspect MoveLimiting {
void around(int dist):

call(void Point.move(int))
&& args(dist)

{
if (dist < 0) proceed(-dist);
else proceed(dist);

}
}

Figure 4: A MoveLimiting aspect

modifies the behavior of Point instances in a man-
ner similar to that of RightMovingPoint. MoveLim-
iting declares a piece of around-advice. This advice
intercepts calls to Point’s move method. If the ar-
gument passed to the client is negative, then, just as
in RightMovingPoint, control proceeds to Point’s
move method with the parameter set to the absolute
value of the original parameter. As with RightMov-
ingPoint, the client programmer’s reasoning, as
indicated by the assert statements in Figure 2, is
not correct in the presence of the MoveLimiting as-
pect.

In AspectJ the advice is applied by the compiler
without explicit reference to the aspect from either
the Point module or a client module. (Instead the
classes and aspect are simply passed as arguments
to the same compiler invocation.) Thus, modular
reasoning about the Point module or a client mod-
ule has no way to detect that the behavior of the
move method will be changed when the Point mod-
ule and MoveLimiting are compiled together. In
AspectJ the programmer must potentially consider
every combination of such aspects and the Point
class in order to reason about the Point module.
Some potentially applicable aspects may not even
name Point directly, but instead may use wild card
type patterns. So, in general, a programmer cannot
“study the system one module at a time” [18].

Therefore, just as in object-oriented programming
without behavioral subtypes, the obliviousness of
AspectJ can prevent modular reasoning.

3.2 Problem Summary

The obliviousness of dynamic binding in object-
oriented programming languages can prevent modu-
lar reasoning. The concept of behavioral subtyping
was based on programmers’ stories about how they
used and reasoned about subtypes. The formaliza-
tion of behavioral subtyping builds on a program-
ming discipline that evolved “in the wild”.

3



It is not yet clear how to modularly reason about
AspectJ programs. What programming discipline,
akin to behavioral subtyping, could be used to al-
low modular reasoning for AspectJ programs, while
retaining obliviousness?

It seems that any such discipline must allow pro-
grammers to tell at least two sorts of stories5,

• superimposition stories, combining modules for
separate concerns without surprising behavior,
and

• evolution stories, modifying the behavior of ex-
isting programs without changing the code of
those programs.

4 Solution Sketch

Our solution sketch is based on separate approaches
to telling superimposition and evoluation stories.

4.1 Spectators

Superimposition stories are analogous to the sto-
ries told with subtypes in object-oriented langauges;
both seek to enhance existing behavior without in-
troducing surprising behavior. We hope to exploit
this analogy to understand how to restore modu-
lar reasoning for AspectJ, while retaining oblivious-
ness. Following this analogy we seek additional con-
straints on aspects.

We propose a category of aspects, called specta-
tors, that are prevented, in some well-defined sense,
from changing the behavior of the modules that they
advise. Spectators will allow programmers to tell su-
perimposition stories.

The term “spectator” is intended to denote the
hands-off nature of these aspects. We consider two
possible interpretations for this notion.

• We could limit the state that may be mutated
by a spectator to just that state that it owns
(in the sense of any of the various ownership
type systems [1, 14, 15, 16]). Such a limitation
is statically checkable, but requires additional
annotations in the source code. However, these
annotation offer the additional benefit of con-
trolling aliasing.

• We could allow spectators to do anything that
does not violate the specification of the ad-
vised modules. Such an approach gives broad

5Thanks to Arno Schmidmeier, Juri Memmert, Karl
Lieberherr, Frank Sauer, and others for discussions at AOSD
’02 on the ways they are using aspect-oriented programming.

latitude to the spectator’s programmer, but
requires verification techniques beyond simple
static checking (e.g., theorem proving). Also,
since aspects provide advice via pattern match-
ing (that is, they use quantification [8]), it is
not clear that one could modularly find all the
modules advised by a given spectator, which
is necessary to determine the set of inviolable
specifications.

In addition to these safety properties, we must
also consider liveness properties. For example, must
advice in spectators always proceed to the advised
method? It seems like that should be the case, but
because of the halting problem, checking this is not
decidable in general. Possible solutions include:

• restricting the set of control flow constructs al-
lowed in spectators, so that the checks are de-
cidable,

• having spectator advice run in a separate
thread, so that the main thread of control al-
ways continues to the advised method, or

• prohibiting spectators from using around-
advice or throwing checked exceptions, so that
control proceeds in normal circumstances.

4.2 Assistants

To tell evolution stories, programmers need a cate-
gory of aspect that allows them to change the be-
havior of existing modules. We call such aspects
assistants to denote their active role. We propose
that assistants should have the full expressive power
of AspectJ aspects. The MoveLimiting aspect of
Figure 4 would be a valid assistant, but we have
already seen that such aspects prevent modular rea-
soning. So how do we reconcile assistants with our
desire for modular reasoning?

We think the answer is that we must limit the
obliviousness of client code with regard to assistants.
We propose that an AspectJ-like language include a
module interconnect language that allows program-
mers to specify which assistants are potentially ap-
plicable to any given client module. (The filter spec-
ifications in Composition Filters [3] have this flavor,
as does Hyper/J’s meta-language for compositing
hyperslices into hypermodules [19, 17], perhaps in-
dicating that these languages are better suited for
modular aspect-oriented reasoning.)

The module interconnection specifications for a
given client module would be found in a well-defined

4



place relative to the client module. A single inter-
conneciton specification might describe the intercon-
nections for multiple client modules, so that pattern
matching could still be used. Because the inter-
connection specification would be in a well-defined
place, the reader of a client module could readily
identify all of the potentially applicable assistants
for that client module. This ready identification al-
lows modular reasoning and obviates the need for a
whole-program analysis.

In our discussions with users of AspectJ we found
that most are using their build systems (e.g., Ant or
Make) in place of the proposed module interconnect
language. We are suggesting that, instead of using
ad hoc techniques to specify the interconnection of
aspects and types, such interconnection should be
part of the language.

5 Summary and Future Work

We have shown that obliviousness can prevent mod-
ular reasoning, as demonstrated by the MoveLim-
iting aspect, and by the (non-behavioral) subtype
RightMovingPoint. Behavioral subtyping adds
modular reasoning to object-oriented programming
languages. We seek a similar programming dis-
cipline for AspectJ-like languages that will allow
sound modular reasoning while still letting program-
mers tell superimposition and evolution stories.

We have suggested that, appropriately defined,
spectators and assistants might add modular rea-
soning to AspectJ-like languages. Spectators in
an AspectJ-like language could be used to tell su-
perimposition stories. Just as behavioral subtyp-
ing places constraints on subtype designers so that
client programmers may remain oblivious, the def-
inition of spectators constrains aspect designers so
that client programmers may remain oblivious. As-
sistants, together with a module interconnection lan-
guage, could be used to tell evolution stories. The
cost of telling evolution stories is that client pro-
grams may not be completely oblivious to the mod-
ule interconnections.

It is tempting to relate the superimposition and
evolution stories to the distinction between produc-
tion and development aspects made by others [9].
However, it seems that there are differences. For
example, distinct production aspects for persistence
and accounting rules might be part of a superim-
position story if their specifications do not interact.
We hope to better understand these distinctions by
investigating possible solutions to the problem pre-
sented in this paper.

We plan to formalize the problem and investigate
the solution space by building a core calculus for
an AspectJ-like language with support for modu-
lar reasoning. After proving appropriate modular-
ity properties for this calculus we will develop a
full-scale programming language (a successor to As-
pectJ) with similar properties.

Another avenue for understanding possible solu-
tions is to investigate the modular reasoning prop-
erties of aspect-oriented languages other than As-
pectJ.

The parallel of obliviousness in subtyping and in
aspect-oriented programming, pointed out by Fil-
man and Friedman [8] provokes a useful analogy be-
tween reasoning in the two styles. It may be inter-
esting to consider how the notions of spectators and
assistants might provide new insight on the earlier
work on behavioral subtyping.

6 Acknowledgments

We thank Yoonsik Cheon, Todd Millstein, Markus
Lumpe, and Robyn Lutz, for their helpful com-
ments on an early version of this work [5]. We
also thank the workshop participants at Founda-
tions of Aspect-oriented Languages 2002, in partic-
ular Gregor Kiczales, Doug Orleans, and Hidehiko
Masushara, for discussions regarding this work. Fi-
nally, we thank the anonymous referees from the
Aspect-Oriented Software Development 2003 Pro-
gram Committee, for helping us to understand the
scope of the problems we are addressing, and from
Software-Engineering Properties of Languages for
Aspect Technologies 2003, for helping us tighten the
presentation in this paper.

The work of both authors was supported in part
by a grant from the US National Science Foundation
under grants CCR-0097907 and CCR-0113181.

References

[1] J. Aldrich, V. Kostadinov, and C. Chambers.
Alias annotations for program understanding.
In Proceedings of the 17th ACM conference
on Object-oriented programming, systems, lan-
guages, and applications, volume 37(11) of
ACM SIGPLAN Notices, pages 311–330. ACM,
Nov. 2002.

[2] AspectJ Team. The AspectJ programming
guide. Available from http://aspectj.org/
doc/dist/progguide/index.html, Feb. 2002.

5



[3] L. Bergmans and M. Aksits. Composing
crosscutting concerns using composition filters.
Commun. ACM, 44(10):51–57, Oct. 2001.

[4] C. Clifton. MultiJava: Design, implementa-
tion, and evaluation of a Java-compatible lan-
guage supporting modular open classes and
symmetric multiple dispatch. Technical Report
01-10, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011, Nov. 2001.
Available from www.multijava.org.

[5] C. Clifton and G. T. Leavens. Observers and
assistants: A proposal for modular aspect-
oriented reasoning. Technical Report 02-04a,
Iowa State University, Department of Com-
puter Science, Apr. 2002.

[6] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular open classes
and symmetric multiple dispatch for Java. In
OOPSLA 2000 Conference on Object-Oriented
Programming, Systems, Languages, and Appli-
cations, volume 35(10) of ACM SIGPLAN No-
tices, pages 130–145, New York, Oct. 2000.
ACM.

[7] K. K. Dhara and G. T. Leavens. Weak behav-
ioral subtyping for types with mutable objects.
In S. Brookes, M. Main, A. Melton, and M. Mis-
love, editors, Mathematical Foundations of Pro-
gramming Semantics, Eleventh Annual Confer-
ence, volume 1 of Electronic Notes in Theoret-
ical Computer Science. Elsevier, 1995. Avail-
able from http://www.elsevier.nl/locate/
entcs/volume1.html.

[8] R. E. Filman and D. P. Friedman. Aspect-
oriented programming is quantification and
obliviousness. In OOPSLA 2000 Workshop
on Advanced Separation of Concerns, Min-
neapolis, MN, Oct. 2000. Available from
http://ic.arc.nasa.gov/~filman/text/
oif/aop-is.pdf.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Ker-
sten, J. Palm, and W. Griswold. Get-
ting started with AspectJ. Commun. ACM,
44(10):59–65, Oct. 2001.

[10] G. T. Leavens, A. L. Baker, and C. Ruby. Pre-
liminary design of JML: A behavioral inter-
face specification language for Java. Techni-
cal Report 98-06q, Iowa State University, De-
partment of Computer Science, June 2002. See
www.jmlspecs.org.

[11] G. T. Leavens and W. E. Weihl. Reasoning
about object-oriented programs that use sub-
types (extended abstract). In N. Meyrowitz,
editor, OOPSLA ECOOP ’90 Proceedings, vol-
ume 25(10) of ACM SIGPLAN Notices, pages
212–223. ACM, Oct. 1990.

[12] B. Liskov and J. Wing. A behavioral notion
of subtyping. ACM Trans. Prog. Lang. Syst.,
16(6):1811–1841, Nov. 1994.

[13] B. Meyer. Eiffel: The Language. Object-
Oriented Series. Prentice Hall, New York, NY,
1992.

[14] P. Müller. Modular Specification and Ver-
ification of Object-Oriented Programs, vol-
ume 2262 of Lecture Notes in Computer
Science. Springer-Verlag, 2002. The
author’s Ph.D. Thesis. Available from
http://www.informatik.fernuni-hagen.
de/import/pi5/publications.html.

[15] P. Müller, A. Poetzsch-Heffter, and G. T. Leav-
ens. Modular specification of frame properties
in JML. Technical Report 02-02a, Department
of Computer Science, Iowa State University,
Ames, Iowa, 50011, Oct. 2002. To appear in
Concurrency, Computation Practice and Expe-
rience.

[16] J. Noble, J. Vitek, and J. Potter. Flexible alias
protection. In E. Jul, editor, ECOOP ’98 –
Object-Oriented Programming, 12th European
Conference, Brussels, Belgium, volume 1445 of
Lecture Notes in Computer Science, pages 158–
185. Springer-Verlag, July 1998.

[17] H. Ossher and P. Tarr. Using multidimensional
separation of concerns to (re)shape evolving
software. Commun. ACM, 44(10):43–50, Oct.
2001.

[18] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun.
ACM, 15(12):1053–1058, Dec. 1972.

[19] P. L. Tarr, H. Ossher, W. H. Harrison, and
S. M. Sutton Jr. N degrees of separation: Multi-
dimensional separation of concerns. In Inter-
national Conference on Software Engineering,
pages 107–119, 1999.

6


