

Separation of Concerns
with

Procedures, Annotations, Advice and Pointcuts

Gregor Kiczales

University of British Columbia
201-2366 Main Mall

Vancouver, BC V6R 1X4, Canada

gregork@acm.org

Mira Mezini

Technische Universität Darmstadt
Hochschulstrasse 10

D-64289 Darmstadt, Germany

mezini@informatik.tu-darmstadt.de

Abstract. There are numerous mechanisms for separation of concerns at the
source code level. Three mechanisms that are the focus of recent attention –
metadata annotations, pointcuts and advice – can be modeled together with
good old-fashioned procedures as providing different kinds of bindings:
procedure calls bind program points to operations, annotations bind attributes to
program points; pointcuts bind sets of points to various descriptions of those
sets; named pointcuts bind attributes to sets of points; and advice bind the
implementation of an operation to sets of points. This model clarifies how the
mechanisms work together to separate concerns, and yields guidelines to help
developers use the mechanisms in practice.

1 Introduction

Programming language designers have developed numerous mechanisms for
separation of concerns (SOC) at the source code level, including procedures, object-
oriented programming and many others. In this paper we focus on three mechanisms –
metadata annotations [4], pointcuts [16] and advice [33] – that are currently attracting
significant research [9, 10, 19, 34] and developer interest [1, 11, 12, 14, 20].1

Our goal is understand what kinds of concerns each mechanism best separates, and
how the mechanisms work together to separate multiple concerns in a system. We
also seek to provide developers with answers to questions about what mechanism to
use in any given situation. To enable this, we study how the three newer mechanisms,
along with good old-fashioned procedures, separate concerns in a simple example.

1 The paper assumes a reading familiarity with pointcuts and advice as manifested by
AspectJ [16] as well as the Java 1.5 metadata facility [4]. Metadata annotations,
pointcuts and advice can appear in a wide range of other languages [3, 13, 21, 28,
31] [8, 30], but we do not explicitly discuss that generalization here.

The study is focused on four key design concerns within the example. We present
seven implementations of the example that use the mechanisms in different ways. We
also present ten change tasks and how they are carried out in each implementation.
Based on this, the paper provides:

1. An analysis of the degree to which the different mechanisms are able to separate
and clarify the four design concerns in the seven implementations.

2. An analysis of the degree of locality of each change task for each
implementation, and a comparison of that locality to the static separation.

3. A unified model of the four mechanisms showing how they work together to
separate concerns.

4. An initial set of guidelines for using the mechanisms in development practice.

The paper is structured as follows: Section 2 presents the example, its four key design
concerns and the seven implementations. Section 3 analyzes the static locality of the
concerns in each implementation, and the locality of the change tasks for each
implementation. Section 4 presents the unified model of the mechanisms. Section 5
presents the usage guidelines. We finish with related and future work and a summary.

2 The Example

Our comparison of the mechanisms is based on seven implementations of a simple
graphical shapes example [16, 18]. In this example, a number of graphical shapes are
shown on a display. Each shape has its own display state, and when that state changes,
the display must be signaled so it can refresh itself. This design is shown in Figure 1.

The key objects in the design are the shapes and the display. There is an abstract
Shape class, with concrete Point and Line subclasses. (Assume there are other
concrete shapes such as Triangle. To save space they are not discussed here.) There is
a single Display class, and, for simplicity, there is just a single system-wide display.

2.1 Four Design Concerns

In addition to concerns involving the functionality of the shapes, the design comprises
four key design concerns, which are shown as dotted line boxes in Figure 1.

Refresh-Implementation – What is the behavior and implementation of the actual
refresh operation?

Context-to-Refresh – What context from the actual display state change points
should be available to the refresh implementation?

When-to-Refresh – When should the display be refreshed?

What-Constitutes-Change – What operations change the state that affects how
shapes look on the display, i.e. their position?

Figure 1. The design of the graphical shapes program, showing the main classes and two
additional design concerns not separated as classes.

what context
from change

goes to refresh
implementation

refresh implementation

signal refresh
on display

state change

Display
moveBy(int, int)

Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Line

Shape

what constitutes
display state change

As is common, these concerns are interconnected. Our design resolves When-to-
Refresh by deciding that refresh should happen immediately after each display state
changes. This brings What-Constitutes-Change into focus as a concern that must be
resolved. One could also argue the causality in the other direction, in that having
thought about display state changes one then decides they should cause refreshes.

2.2 Seven Implementations

This rest of this section presents the code for seven implementations of the example.
Discussion of the implementations is deferred until Section 3.

Straw-Man

The first implementation is a straw man, no good programmer would write this code
today. Its purpose is to explicitly introduce procedures into the discussion.

In this implementation all of the methods that change display state directly include
several lines of code that implement the actual display refresh. For example, the setX
method looks like:

 void setX(int nx) {
 x = nx;
 Graphics g = Display.getGraphics();
 g.clear();
 for(Shape s : Display.getShapes()) {
 s.draw(g);
 }
 }

GOFP

This implementation uses a good old-fashioned procedure (GOFP) to capture the
refresh implementation. Each of the methods includes, at the end of the method, a call
to a procedure (static method in Java) that refreshes the display.

 void setX(int nx) {
 x = nx;
 Display.refresh();
 }

The body of that procedure is the several lines of code that was duplicated in I1.

 static void refresh() {
 Graphics g = getGraphics();
 g.clear();
 for(Shape s : getShapes()) {
 s.draw(g);
 }
 }

Annotation-Call

This implementation uses Java 1.5 metadata annotations [4]. Each method that
changes display state has an annotation that says that executing the method should
also refresh the display.

 @RefreshDisplay
 void setX(int nx) {
 x = nx;
 }

A single after advice declaration serves to ensure that execution of methods with this
tag calls Display.refresh(). The advice is written as:

 after() returning: execution(@RefreshDisplay * *(..)) {
 Display.refresh();
 }

There are other ways to associate run-time behavior with annotations, typically
involving ad-hoc post-processors. We use advice in this paper because it is simple and
compatible with the rest of the paper.

Annotation-Property

This implementation differs from the previous one only in the name of the annotation.
Here the annotation name describes a property of the method – that it changes state
that affects the display of the shape – rather than directly saying that executing the
method should refresh the display. So the methods look like

 @DisplayStateChange
 void setX(int nx) {
 x = nx;
 }

Again, a separate advice declaration says that execution of methods with the
DisplayStateChange annotation should call Display.refresh().

 after() returning: execution(@DisplayStateChange * *(..)) {
 Display.refresh();
 }

Anonymous-Enumeration-Pointcut

This implementation uses an anonymous enumeration-based pointcut to identify
method executions that change display state. So the methods have no explicit
marking, and simply look like:2

 void setX(int nx) {
 x = nx;
 }

The entire implementation of signaling a display refresh consists of a single advice on
an anonymous pointcut that explicitly enumerates the six methods; the body of the
advice calls Display.refresh().

 after() returning: execution(void Shape.moveBy(int, int)
 || execution(void Point.setX(int))
 || execution(void Point.setY(int))
 || execution(void Line.setP1(Point))
 || execution(void Point.setP2(Point)) {
 Display.refresh();
 }

2 Even though the method is not explicitly marked by the programmer, IDE support

such as the ADJT Eclipse plug-in will show that the advice exists, for example with
a gutter marker next to the method declaration [27].

Named-Enumeration-Pointcut

In this implementation the pointcut from the previous implementation is pulled out
and given an explicit name. Again, the method bodies require no marking to enable
display refresh signaling.

 void setX(int nx) {
 x = nx;
 }

The pointcut and advice are:

 pointcut displayStateChange():
 execution(void Shape.moveBy(int, int)
 || execution(void Point.setX(int))
 || execution(void Point.setY(int))
 || execution(void Line.setP1(Point))
 || execution(void Point.setP2(Point));

 after() returning: displayStateChange() {
 Display.refresh();
 }

Named-Pattern-Pointcut

In this implementation only the pointcut differs from the previous implementation.
Rather than enumerating the signatures of the methods that change display state, this
implementation relies on the naming convention the methods follow to write a more
concise pointcut. Again, the method bodies require no marking to enable display
refresh signaling.

 void setX(int nx) {
 x = nx;
 }

The pointcut and advice are:

 pointcut displayStateChange():
 execution(void Shape.moveBy(int, int)
 || execution(void Shape+.set*(..));

 after() returning: displayStateChange() {
 Display.refresh();
 }

The execution(void Shape+.set*(..)) pointcut means execution of any
method defined in Shape or a subclass of Shape, that returns void, has a name
beginning with ‘set’, and takes any number of arguments.

3 Analysis of the Implementations

Our analysis of the different mechanisms is based on assessing the degree to which
the seven implementations separate the four design concerns identified in Section 2.1.
The assessment uses three criteria: locality of implementation, degree to which the
implementation is explicit rather than implicit, and locality of change in a simple
evolution experiment. The assessment of locality and explicit implementation is
discussed in Section 3.1. The locality of change assessment is covered in Section 3.2.
All three assessments are summarized in Table 1.

3.1 Locality and Explicit Representation

One way to compare how the implementations separate these design decisions is
whether the code that implements the decision is localized. Another criterion is the
degree to which the implementation of the decision is captured explicitly as opposed
to implicitly. This analysis is summarized in the top part of Table 1.

The capture of Refresh-Implementation is implicit and non-localized in Straw-
Man. There is no single place in the code that explicitly says that display refresh is
implemented by the several lines of code. Instead, each method that the developer
decided constitutes a display state change includes code that implements refresh. In
the GOFP and subsequent implementations, the refresh procedure declaration captures
this concern in an explicit and localized way. The declaration is read as saying “this is
the refresh implementation – bind Display.refresh() to this code”.

The capture of Context-to-Refresh is implicit and non-localized in Straw-Man. No
single place in the code explicitly says that no values from the change context are
available to the display refresh implementation. In GOFP, the procedure declaration
and every call to the procedure explicitly say that no arguments are passed, so this
concern is explicit. But because this is expressed in the procedure and all the calls to
it, it is non-localized. In the Annotation implementations there is a single call to the
procedure, so this concern is captured explicitly and in two places. The same is true
for the Anonymous-Enumeration-Pointcut implementation. In the last two
implementations the named pointcut also expresses this concern, so it is captured
explicitly in three places.

The capture of the When-to-Refresh is implicit and non-localized in Straw-Man,
GOFP and Annotation-Call. It is localized but implicit in Anonymous-Enumeration-
Pointcut. No single place in these implementations explicitly says that execution of
methods that change display state should cause a display refresh. In GOFP the
scattered calls to Display.refresh() are implicitly about the fact that the affected
methods change display state and so must refresh; but all they say explicitly is that the
affected methods call Display.refresh(). The same is true for the scattered
RefreshDisplay tags in Annotation-Call. In Anonymous-Enumeration-Pointcut, the
pointcut localizes the description of what constitutes change, but because no name is
given to it, the binding of when to refresh is not to a clear notion of on display state
changes, but instead to an enumerated set of conditions. In the other implementations,

this concern is explicit and localized in the after advice declarations, which say that
any display state change should cause a refresh.

The capture of the What-Constitutes-Change is implicit and non-localized in
Straw-Man, GOFP and Annotation-Call – no single place in these implementations
explicitly says that execution of the four setter methods and the two moveBy methods
changes display state. In Annotation-Property, the DisplayStateChange annotations
capture this concern in an explicit, but non-localized way. In Anonymous-
Enumeration-Pointcut, this concern is localized, but implicit. In the two named
pointcut implementations this concern is localized and explicit. The Named-Pattern-
Pointcut captures the decision about what methods change display state, as well as a
rule for what methods are considered to change display state. The variation among the
pointcut based implementations is discussed in more depth in Section 5.

Names Matter

The two annotation-based implementations differ only in the name of the annotation,
but come out significantly different in our separation of concern analysis. Annotation-
Call has the same properties as GOFP with regard to When-to-Refresh and What-
Constitutes-Change. This should not be surprising since in Annotation-Call the
annotation name makes it feel like alternate syntax for a procedure call, or a syntactic
macro [6, 7]. So, like GOFP, Annotation-Call, is conflating these two concerns and
simply saying to call refresh at certain points.

On the other hand, in Annotation-Property, When-to-Refresh is captured explicitly
and in just one place in the code; What-Constitutes-Change is captured explicitly but
is not localized. The different annotation name causes both concerns to be explicit.
That names matter is not surprising to programmers, but it is important to note its
significance in this case. We return to this issue in Section 5.

3.2 Ease of Evolution

This section analyzes the implementations in terms of how well they fare when
performing a set of ten representative change tasks. Most tasks affect just a single
concern, reflecting a good modularity in the concern model itself. The question we
explore now is what must be done to the code to perform each task – how many edits
and how localized are they. The analysis is summarized in the lower part of Table 1
by showing, for each change and each implementation, how many places in each
implementation have to be visited and possibly edited by the programmer.

Double-buffering – changes the refresh implementation to use double buffering. So it
is a change to just the Refresh-Implementation concern. In Straw-Man, the
programmer must edit the refresh implementation code that appears in all the display
state change methods. For GOFP and all other implementations only the
Display.refresh() procedure must be edited. In Table 1, the Double-Buffering row
shows ‘n’ in the first column and 1 in the remaining columns. This is one of the
reasons we have learned to introduce a procedure in such cases.

Pass-Changed-Object – provides the actual shape that has changed to the refresh
implementation, so that it can optimize refresh based on that information. This
constitutes a change to both Refresh-Implementation and Context-to-Refresh. In
Straw-Man, this change task involves editing all the state change methods. In GOFP it
involves editing the procedure declaration and the call sites in all the state change
methods. In the remaining implementations this involves editing the procedure, advice
and pointcut declarations. The procedure is edited to accept the shape as an argument,
the call sites are edited to pass the current object, and the pointcuts are edited to make
the current object accessible.

Disable-Refresh – simply disables activation of display refresh when the state of
shapes changes. So this is a change to just When-to-Refresh. In Straw-Man this
change requires editing all the state change methods to delete the refresh
implementation. GOFP and Annotation-Call require editing all the methods to remove
the call to the refresh procedure or the refresh annotation respectively. In the last four
implementations this change can be accomplished by removing the aspect containing
the advice from the system, or by editing the aspect to delete the advice if for some
reason the aspect should remain. The Disable-Refresh table row shows ‘n’ in the first
3 columns and ‘1’ in the last four.

One might argue that GOFP and Annotation-Call can accommodate Disable-Refresh
more expeditiously – for GOFP, one could simply “comment out” the body of the
refresh procedure declaration, and for Annotation-Call one could delete the advice
declaration. But these alternatives are problematic. There may be other callers of the
refresh procedure (or clients of the tag), since nothing has marked the procedure or the
tag as particular to handling this kind of refresh activation. Even if there are no other
callers, the expeditious changes make the code confusing – the reader sees a call to
refresh (or the annotation), but must learn elsewhere that they do not do anything.

A programmer might deal with this by introducing an additional procedure, perhaps
called Shape.fireDisplayStateChange(), and have that procedure call Display.refresh().
Then this change can be easily accommodated by making the body of the new
procedure empty. This has the same effect of introducing the intermediate annotation,
and has the same separation properties as Annotation-Property. Other more elaborate
rendezvous mechanisms could be used as well. Having this extra procedure vs. not
having it is similar to the difference between the two annotation-based
implementations.

Reuse-What-Constitutes-Change adds logging of display state changes. So it reuses
What-Constitutes-Change, but does not actually change any of the design concerns. In
Straw-Man all the state change methods are edited to add logging code. In GOFP all
the state change methods are edited to add a call to a logging operation. In
Annotation-Call, each method gets an annotation and a new advice is defined. In the
last four implementations, a new advice is defined; in Annotation-Property it
references the @DisplayStateChange annotation, in the anonymous pointcut it
duplicates the anonymous enumeration-based pointcut, and in the named pointcut
implementations it references the displayStateChange pointcut. For all but Straw-Man

the table includes an extra count assuming the logging operation must be defined as a
procedure.

Again, one might argue that this can be accomplished more expeditiously in GOFP
and Annotation-Call, simply by directly editing the refresh procedure or the advice to
do the logging. This however, associates the logging with the activation of the refresh,
rather than directly with the state changes.

Refresh-Top-Level-Changes-Only ensures that in recursive state change methods (e.g.
moveBy on Line calls moveBy on Point, which calls setX and setY on Point) only the
top-level display state change method causes a refresh. This prevents multiple
refreshes for such methods. So it is a change to the When-to-Refresh concern. In
Straw-Man and GOFP this change requires editing all the state change methods, to
introduce some mechanism that can detect recursive state change method calls and
prevent the sub-calls from calling refresh. A common pattern for doing this is to add a
second parameter to all the state change methods, indicating whether they are part of a
recursive call. Often a second overloaded method is introduced to handle this. In Java
the programmer can use thread local state to do this in a more elegant way.

In the implementations that use pointcuts (all after GOFP), this can be done by editing
the pointcut to use the cflowbelow primitive to filter out recursive calls; in the named
pointcut implementations the AspectJ code for this would involve modifying the
advice to be:

 after() returning: displayStateChange()
 && !cflowbelow(displayStateChange()) {
 Display.refresh();
 }

which is read as saying to call refresh after any display state change that is not itself
within the control flow of another display state change.

The next five changes all affect What-Constitutes-Change in different ways.

Add-Related-Class adds a new Circle subclass of Shape. The new class has setX,
setY, setRadius and moveBy methods that constitute display state changes. This
represents a modification of the What-Constitutes-Change concern. Straw-Man,
GOFP and both annotation-based implementations each require that all the new state
change methods be appropriately edited. The two enumeration-based pointcut
implementations require that the pointcut be edited. The pattern-based pointcut does
not need to be edited, but it must be at least examined to ensure that the new methods
are covered by the pointcut.

The next two changes have the same implications for all implementations as Add-
Related-Class. They are included nonetheless because they are typical changes to
expect in such a system.

Add-Related-Method adds a new Line.setColor(Color) method that should be
considered to change display state.

Table 1. Analysis of the seven implementations. The top part of the table shows many places in
the code implement the concern, and whether the implementation is Explicit or Implicit; ‘n’
means each of the display state change methods. The bottom part of the table summarizes the
change task analysis, showing the number of places each implementation must be edited for
each change. The ‘n’ notation indicates that the number goes up as the number of shape classes
increases, whereas other numbers are constant. The ‘*’ indicates that the code is only examined,
not edited. In this part of the table the first column shows what concerns each tasks changes.

Im
pl

em
en

ta
tio

ns

St
ra

w
-M

an

G
O

FP

A
nn

ot
at

io
n-

C
al

l

A
nn

ot
at

io
n-

Pr
op

er
ty

A
no

ny
m

ou
s-

En
um

er
at

io
n-

Pt
c.

N
am

ed
-E

nu
m

er
at

io
n-

Pt
c.

N
am

ed
-P

at
te

rn
-P

tc
.

Design Concerns

Refresh-Implementation I, n E, 1

Context-to-Refresh I, n E, n+1 E, 2 / 3

When-to-Refresh I, n E, 1 I, 1 E, 1

What-Constitutes-Change

I, n E, n I, 1 E, 1

Change Tasks Concerns

Double-Buffering RI n 1

Pass-Changed-Object RI, CtR n n+1 2 3

Disable-Refresh WtR n 1

Reuse-What-Constitutes-Change WCC n n+1 n+2 2

Refresh-Only-Top-Level-Changes WtR n 1 1 + 1

Add-Related-Class WCC each new method

Add-Related-Method WCC each new method

Rename-Methods WCC 0

1

1*

Add-Unrelated-Class WCC 0

Add-Unrelated-Method WCC 0 1

Rename-Methods renames the Line.setP1(Point) and Line.setP2(Point) methods to
Line.setEnd1(Point) and Line.setEnd(2).

Add-Unrelated-Class adds an entirely unrelated class to the system. It does not change
any of the four concerns. None of the implementations require any editing or
examination to perform this change.

Add-Unrelated-Method adds a new Shape.setOwner(Owner) method that has nothing
at all to do with display state. This change also does not change any of the four
concerns. The first six implementations require no editing, but the pattern-based
pointcut must be edited to exclude the new setOwner method.

4 Uniform Characterization of Mechanisms

The above analysis suggests that one useful way to characterize the four mechanisms
is as establishing different kinds of bindings along a path from points in a program to
the implementation of an operation that must execute at those points. As shown in
Figure 2, each mechanism introduces an explicit intermediate step along the path, and
makes an explicit binding between those steps. These explicit steps and bindings work
together to separate larger, higher-level concerns such as the four discussed here.

In these terms, a procedure call binds a point in the program to an operation – it says
call this operation at this point in the program execution. A procedure declaration
binds the operation to an implementation. So the effect of using a procedure – a
declaration and one or more calls to it – is to introduce an explicit operation (the
procedure), bindings from points in the program to the operation (calls), and a binding
from the operation to the implementation (the declaration).3 Annotations, pointcuts
and advice introduce other explicit intermediate elements and bindings.

In discussing the relation between annotations and pointcuts, we use the following
terminology: Annotations are the syntactic identifiers described by JSR-175 [4] that
the programmer places in the program (i.e. @DisplayStateChange). Properties are the
characteristics of points on which pointcuts can match, including class and method
names, access modifiers etc. Pointcut names are the programmer defined names for
pointcuts. We use the term attribute to include both annotations and pointcut names.
In other words, attributes are user-defined names that can be attached to program
points.

Annotations bind attributes to program points. An annotation such as
@DisplayStateChange binds the DisplayStateChange attribute to the program point.

3 We use the term procedure declaration to refer to a construct that defines both

signature and implementation, such as a static method declaration within a class in
Java, as opposed to a construct that just declares the procedure’s signature.

Figure 2. Intermediate elements and bindings established by the mechanis
shown in boldface, the mechanisms are in italics.

point

operation

enumeration ptc.

pattern ptc.

annotation ptc.

There are several different kinds of pointcuts. Enumeration-based p
set of points explicit, and establish a binding between the set and each

Pattern based pointcuts make a set of points and the fact that the
common pattern explicit; they also establish a binding between the se
Property-based pointcuts, such as ‘execution(public com.acme.*.*(.
for properties instead of patterns. Annotation-based pointcuts do this f

Named pointcut declarations establish a binding between an attribu
name) and a (possibly singleton) set of points.

Advice can be used with any kind of pointcut to bind between the i
that pointcut makes explicit and the implementation of an operatio
those points.

This characterization provides an interesting perspective on one dif
AspectJ and AspectWerkz [5]. In AspectJ, the body of an advice is a
in AspectWerkz, advice has no code block; instead it is written as a
annotation that contains the kind of advice and the pointcut.4 In term
this means that in AspectWerkz, the advice construct binds to an op
in AspectJ it binds to an operation implementation. So AspectWerkz p
binding step. In AspectJ the programmer can achieve the extra bindin
having the advice body call a procedure.

5 Usage Guidelines

Our model of how the different mechanisms serve to separate con
way to approach the process of deciding which mechanism(s) to

4 AspectJ 5 includes both alternatives.
implementation
procedure
declaration
 set of points

 enumerated

 matching pattern

 with attribute
procedure
call
annotation
point w/
annotation
named ptc.
advice
ms. Elements are

ointcuts make a
 of the points.

y conform to a
t and the points.
.))’ do the same
or annotations.

te (the pointcut

ntermediate step
n to execute at

ference between
 code block. But
method, with an
s of our model,

eration, whereas
rovides an extra
g step simply by

cerns suggests a
 use in a given

situation. The following guidelines are organized around the binding steps in Figure 2
and work to help the programmer decide which path through the figure is most
appropriate in a given situation. For each guideline, we discuss how it is validated
from by the study described above.

Procedures

If an operation is needed at a given point, then using a procedure (call and
declaration) serves to make the operation explicit and local, and to make the binding
from the point to the operation explicit. This can improve comprehensibility of both
the operation and the context, enable reuse of the operation in other contexts, and
facilitate later change to the operation.

Comparing Straw-Man to the subsequent implementations, we see that the use of a
procedure makes Refresh-Implementation explicit and local. Separating this concern
explicitly makes its implementation more clear, and also clarifies the contexts where
the operation is invoked (e.g. the setX method). The refresh procedure can easily be
called from other points (reused). When Refresh-Implementation changes in the
Double-Buffering and Pass-Changed-Object tasks the implementations that use the
procedure fare better. None of this is a surprise; we are all familiar with these
properties of using procedures. We are elaborating this here only to show how this set
of guidelines encompasses the familiar case of procedures and to lay a foundation for
discussion guidelines regarding annotations, pointcuts and advice.

Advice and Pointcuts

If an operation is needed at a given set of points then using advice and pointcuts
serves to make the binding from the set to the operation explicit and local, which can
improve comprehensibility and evolvability in some cases. In particular, consider
using advice and pointcut rather than multiple procedure calls if: (i) more than a
small number of points must invoke the operation, (ii) the binding between the points
and the operation may be disabled or otherwise be context-sensitive, or, (iii) the
calling protocol to the operation may change.

All the implementations that use advice and pointcuts (Annotation-Property and on)
make the calling protocol to Display.refresh explicit and localized. So they support
part iii of this guideline.

But in this regard it is worth looking carefully at the way the implementations that use
advice and pointcuts enhance the capture of When-to-Refresh (WtR) and What-
Constitutes-Change (WCC). Annotation-Call does not improve WtR or WCC over
GOFP. Annotation-Property makes WtR explicit and local and makes WCC explicit
but non-local. With Anonymous-Enumeration-Pointcut both concerns are local, but
are once again implicit. In the named pointcut implementations both concerns are
local and back to being explicit. Since all these implementations use advice and
pointcuts of some form, this suggests an interaction between using advice and the
form of the pointcut used in the advice, which leads to the next guideline.

Attributes – Named Pointcuts or Annotations

If a set of points used in an advice has a common attribute, then using a named
pointcut or an annotation can make that common attribute explicit. Using named
pointcuts makes the attribute explicit and local, annotations make it explicit and non-
local. When using named attributes, choose a name that describes what is true about
the points, rather than describing what a particular advice will do at those points.

This guideline is supported by the Annotation-Property and the two named pointcut
implementations. What-Constitutes-Change is made explicit in all three of these
implementations. It is made local in the two named pointcut implementations. In each
case, the capture of When-to-Refresh also benefits, which is the link to the previous
guideline.

As with procedures, the motivation to make the additional bindings and intermediate
steps explicit using advice and named attributes comes from comprehensibility, reuse,
evolution and other considerations. Comprehensibility is subjective, but to our eye,
Annotation-Property and the two named pointcut implementations are the easiest to
understand because they make all the steps leading up to a refresh clear. They clearly
say “there is an explicit concept of display state change”, “here are points that
constitute such changes”; and “call refresh at those points”. Straw-Man, GOFP and
Annotation-Call make it clear that refresh is happening, but not why. Anonymous-
Enumeration-Pointcut makes it clear that there is a general condition that causes
refresh to happen, but without a pointcut name the abstraction of the condition is not
clear.

In terms of reusability, because Annotation-Property and the two named pointcut
implementations make the (d/D)isplayStateChange attribute explicit, they make it
easy to reuse What-Constitutes-Change in the change task.

In terms of evolution, making the binding from the (d/D)isplayStateChange attribute
to the refresh signaling behavior explicit makes the Disable-Refresh change task easy.

The Annotation-Call and Annotation-Property implementations demonstrate the
importance of choosing good annotation names. In Annotation-Call the name of the
annotation is such that it fails to introduce the intermediate step and make clear why
refresh is happening. A named pointcut with a similar name would have similar
problems.

Introducing additional attribute names does not always add value. When writing
procedural code, most programmers are unlikely to define a new onePlus procedure
for the expression ‘x + 1’. They could, but in this case the primitive expression is
sufficiently clear that it is usually left in line. Named abstraction has to stop at some
point, or else programs would never reach primitives.

The same is true for attributes. The pointcut ‘execution(public com.acme.*.*(..))’ is
sufficiently clear that it usually does not warrant a named pointcut. On the other hand
‘execution(* Shape+.set*(..))’ probably does warrant the displayStateChange named
pointcut.

Enumeration, Property, Pattern-Based Pointcuts and Annotations

The previous guidelines leave open the question of what mechanism to use to
establish the binding between the individual point(s) and the actual set of points. The
choices are enumeration-based pointcuts, name-pattern based pointcuts, property-
based pointcuts or annotations.

Prefer enumeration-based pointcuts when: (i) it is difficult to write a stable property-
based pointcut to capture the members and (ii) the set of points is relatively small.

Prefer property- or pattern-based pointcuts when: (i) it is possible to write one that is
stable or (ii) the set of points is relatively large (more than ten).

Use annotations to mark points when three things are true: (i) it is difficult to write a
stable property-based pointcut to capture the points, (ii) the name of the annotation is
unlikely to change, and (iii) the meaning of the annotation is an inherent to the points,
rather than a context-dependent aspect of the points only true in some configurations.

In addition, lean towards annotations when the property that defines inclusion in the
set is an inherent property of the points, and lean towards other pointcuts when the
binding from points to the set might change non-locally, or come into existence non-
locally.

The implementations after GOFP provide some support for these guidelines, but the
example is too small to fully support them.

The difference between how Named-Enumeration-Pointcut and Named-Pattern-
Pointcut fare for Add-Unrelated-Method both shows the concern about pattern-based
pointcuts, and also shows that using stable patterns can mitigate that concern.5 For
example ‘Shape+.set*(*)’ means methods defined on Shape or a subtype of Shape, for
which the name begins with set, and that have a single argument. This pattern has
good stability both because it is restricted to a small part of the type hierarchy, and
because it is based on a well-established Java naming convention. By contrast,
‘set*(..)’ is less stable, it covers any type of object, and methods with any number of
arguments.

Once again, the difference between Annotation-Call and Annotation-Property
supports the importance of annotation names. As formulated above, the guideline is
intended to reduce the likelihood that the name will need to change, and will make it

5 Practicing AspectJ developer report that the restrictions that come from the use of

name patterns often benefits their code. The patterns force them to regularize the
rules they use for naming, and that helps with overall system comprehensibility.
Nonetheless, this issue is motivating a variety of important research in more
powerful pointcut languages, that make it possible to express pointcuts in terms of
properties that are more accurate and robust than name patterns [24, 35].

more natural to reference the same annotation in other aspects or in compositions of
pointcuts based on the annotation. For example DisplayStateChange may be
reasonable as an annotation. But MakesRemoteCall may not be, because it may
depend on a particular deployment configuration rather than always being true of a
method.

While the guidelines for preferring property and pattern-based pointcuts when the
number of points is large and it is possible to write such pointcuts are not supported
by this study, they seem fairly straightforward, although it would be valuable to
validate them, and all the other above guidelines, in a larger case study.

6 Related Work

There have been a number of characterizations of aspect-oriented programming
(AOP) mechanisms: as a means for modularizing crosscutting concerns [16, 17], in
terms of obliviousness and quantification [10], in terms of a common join point model
framework [25] and others. By contrast, the focus of this paper is on analyzing the
separation of concern properties of annotations, pointcuts and advice, and describing
those as binding mechanisms similar to procedures.

The work described in [10] and [24] is closer to this paper in that they characterize
AOP mechanisms as a new step in “introducing non-locality in our programs” [10],
specifically as a means of binding points in the execution space [24]. But, they do not
consider annotations. They also do not focus on the way in which the mechanisms
compare for separating different kinds of concern or provide guidelines for choosing
among the mechanisms.

The discussion by Lopes et al. [22] shares with this paper the view that pointcuts act
as a kind of referencing mechanism. The focus in [22] is more on motivating and
speculating about future “more naturalistic” referencing mechanisms that go beyond
current pointcut mechanisms. On the contrary, our focus is on characterizing and
assessing state-of-the-art mainstream pointcut mechanisms and especially on
providing guidelines for using them.

Rinard et al. [29] propose a classification and an analysis system for AOP programs
that classifies interactions between aspects and methods to identify potentially problematic
interactions (e.g., caused by the aspect and the method both writing the same field), and guide
the developer’s attention to the causes of such interactions. Hence, their focus is different
than ours. They also do not discuss annotations, and only indirectly suggest usage
guidelines. To the extent they do suggest guidelines there appear to be no conflicts
between their work and ours.

Baldwin and Clark have developed a general framework for assessing the value of
modularity in technical systems [2]. Sullivan et al. [32] show how this framework can
be applied to software systems. Lopes and Bajracharya [23] went on to apply the
framework to AOP systems. The Baldwin and Clark framework is more heavy-weight
than ours, and seems more suitable for architectural decision making than what we
discuss here. But again, there does not appear to be any inherent conflict between the

analyses. One interesting next experiment would be to see how the guidelines we
develop interact with the analyses and net option value framework used by these
researchers.

Our guidelines are ‘bottom-up’ or in-situ in nature. They are focused on how a
developer makes isolated decisions about what mechanism to use guided by design
goals. By contrast, Jacobsen and Ng have proposed a methodology for designing
systems in an aspect-oriented style [15]. Again, there appears to be no contradictions
between our guidelines and their methodology.

The work presented in [26] also involves an assessment of pointcut mechanisms with
respect to how well programs using them fare in presence of change, as compared to
equivalent OO programs that use method calls only. That assessment does not
consider annotations, and is primarily on assessing the need for pointcut mechanisms
that refer to more dynamic properties of join points than possible today. The design
and implementation of such pointcuts is the main focus of their paper.

7 Future Work

The analysis and guidelines in this paper are based on first-principles analysis with a
single small example. Based on this, there are several attractive avenues for future
work.

One next step would be large-scale validation of these guidelines. There are (at least)
two dimensions of improvement. First, they could be validated against a larger sample
of code developed by experts. While attractive, at present there do not appear to be
large bodies of suitable open source code to work with, although this appears to be
changing rapidly.

A second line of work would be to validate these guidelines in some form of user
study in which programmers are asked to work with the guidelines in a controlled
experiment.

As discussed in Section 6, it would also be interesting to develop a detailed account of
how the guidelines we propose interact with classifications such as in [29],
architectural analyses such as in [2], and design methodologies such as in [15].

8 Summary

Metadata annotations, pointcuts and advice are useful techniques for separating
concerns in source code. To better understand and be able to work with these
mechanisms, we propose a characterization in which each is seen as making a
different kind of binding: annotations bind attributes to program points; pointcuts
create bindings between sets of points and descriptions of those sets; named pointcuts
bind attributes to sets of points; and advice bind the implementation of an operation to
sets of points.

This characterization yields insight into how the mechanisms relate and suggests areas
for improvement. It also yields guidelines for how to choose among the mechanisms
in the course of programming with them. The guidelines can be phrased in terms of
deciding which kind of binding is appropriate in a given situation or they can be
formulated in more prescriptive terms that may be more appropriate in some contexts.

The model and guidelines proposed here provide a good basis for further research and
near-term development. We expect improvements to the model and guidelines as the
combined use of annotations, pointcuts and advice grows.

Acknowledgements

The author would like to thank Mik Kersten and Gail Murphy for fruitful discussions
on the ideas developed in this paper. Thanks also go to Andrew Eisenberg, Mik
Kersten, Gail Murphy, Kevin Sullivan and Maria Tkatchenko who provided detailed
comments on earlier drafts of the paper.

This work is partially funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC), IBM Canada Ltd. and the European Network of
Excellence in Aspect-Oriented Software Development (AOSD-Europe)

References

1. The Server Side Symposium: AOP Expert Panel, 2004,
http://www.theserverside.com/news/thread.tss?thread_id=30564.

2. Baldwin, C.Y. and Clark, K.B. Design Rules: The Power of Modularity. MIT Press, 2000.
3. Bergmans, L. and Aksit, M. Principles and Design Rationale of Composition Filters. in

Filman, R.E., Elrad, T., Aksit, M. and Clarke, S. eds. Aspect-Oriented Software
Development, Addison Wesley Professional, 2004, 63 - 95.

4. Bloch, J. A Metadata Facility for the Java Programming Language, 2004.
5. Boner, J., AspectWerkz http://aspectwerkz.codehaus.org/.
6. Bryant, A., Catton, A., Volder, K.D. and Murphy, G.C., Explicit programming. Aspect-

Oriented Software Development, 2002, ACM Press, 10-18.
7. Cheatham, T.E., JR., The introduction of definitional facilities into higher level

programming languages. (AFIPS) Fall Joint Computer Conference, 1966, Spartan Books,
623-673.

8. Coady, Y., Kiczales, G., Feeley, M. and Smolyn, G., Using AspectC to improve the
modularity of path-specific customization in operating system code. Foundations of
Software Engineering (FSE), 2001, ACM Press, 88 - 98.

9. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K. and Ossher, H. Discussing aspects of
AOP. COMMUNICATIONS OF THE ACM, 44 (10). 33-38.

10. Filman, R.E., Elrad, T., Aksit, M. and Clarke, S. (eds.). Aspect-Oriented Software
Development. Addison Wesley Professional, 2004.

11. Gradecki, J. and Lesiecki, N. Mastering AspectJ: Aspect-oriented Programming in Java.
Wiley, Indianapolis, Ind., 2003.

12. Group, G., Hype Cycle for Application Development, 2004,
http://www4.gartner.com/DisplayDocument?doc_cd=120914.

13. Hirschfeld, R. AspectS - Aspect-oriented programming with squeak. Revised Papers from
the International Conference NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World, 2591. 216-232.

14. Jacobson, I. and Ng, P.-W. Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, 2003.

15. Jacobson, I. and Ng, P.-W. Aspect-Oriented Software Development with Use Cases.
Addison Wesley Professional, 2004.

16. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G., An
Overview of AspectJ. European Conference on Object-Oriented Programming (ECOOP),
2001, Springer, 327-355.

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. and Irwin, J.,
Aspect-oriented programming. European Conference on Object-Oriented Programming
(ECOOP), 1997, 220-242.

18. Kiczales, G. and Mezini, M., Aspect-Oriented Programming and Modular Reasoning. ACM
International Conference on Software Engineering, 2005 (to appear).

19. Krishnamurthi, S., Fisler, K. and Greenberg, M. Verifying aspect advice modularly.
Foundations of Software Engineering (FSE). 137 - 146.

20. Laddad, R. AspectJ in action: practical aspect-oriented programming. Manning, Greenwich,
CT, 2003.

21. Liberty, J. Programming C#. O'Reilly, Sebastopol, CA, 2003.
22. Lopes, C., Dourish, P., Lorenz, D. and Lieberherr, K. Beyond AOP: Toward naturalistic

programming. ACM SIGPLAN NOTICES, 38 (12). 34-43.
23. Lopes, C.V. and Bajracharya, S., An Analysis of Modularity in Aspect-Oriented Design.

Aspect-Oriented Software Development (AOSD'05), 2005 (to appear).
24. Masuhara, H. and Kawauchi, K., Dataflow Pointcut in Aspect-Oriented Programming.

Asian Symposium on Programming Languages and Systems (APLAS), 2003, 105--121.
25. Masuhara, H. and Kiczales, G., Modeling crosscutting in aspect-oriented mechanisms.

European Conference on Object-Oriented Programming (ECOOP), 2003, Springer, 2-28.
26. Ostermann, K., Mezini, M. and Bockisch, C., Expressive Pointcuts for Increased

Modularity. In Proc. of European Conference on Object-Oriented Programming (ECOOP),
2005, Springer.

27. Project, A., AJDT Demonstration, 2004, http://eclipse.org/ajdt/demos/.
28. Rajan, H. and Sullivan, K., Eos: instance-level aspects for integrated system design.

Foundations of Software Engineering (FSE), 2003, ACM Press, 297 - 306.
29. Rinard, M., Salcianu, A. and Suhabe, B., A Classification System and Analysis for Aspect-

Oriented Programs. Foundations of Software Engineering (FSE), 2004, ACM Press, 147 -
158.

30. Schutter, K.D., What does aspect-oriented programming mean to Cobol? Aspect-Oriented
Software Development, 2005, ACM Press, (to appear).

31. Spinczyk, O., Gal, A. and Schröder-Preikschat, W., AspectC++: an aspect-oriented
extension to the C++ programming language. Fortieth International Confernece on Tools
Pacific: Objects for internet, mobile and embedded applications, 2002, Australian
Computer Society, 53 - 60.

32. Sullivan, K.J., Griswold, W.G., Cai, Y. and Hallen, B., The structure and value of
modularity in software design. Foundations of Software Engineering, 2001, ACM Press, 99
- 108.

33. Teitelman, W. PILOT: A Step Toward Man-Computer Symbiosis Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1966.

34. Walker, D., Zdancewic, S. and Ligatti, J., A theory of aspects. International Conference on
Functional Programming, 2003, ACM Press, 127 - 139.

35. Walker, R. and Viggers., K., Implementing protocols via declarative event patterns. ACM
Sigsoft International Symposium on Foundations of Software Engineering (FSE-12), 2004.

	Introduction
	The Example
	Four Design Concerns
	Seven Implementations
	Straw-Man
	GOFP
	Annotation-Call
	Annotation-Property
	Anonymous-Enumeration-Pointcut
	Named-Enumeration-Pointcut
	Named-Pattern-Pointcut

	Analysis of the Implementations
	Locality and Explicit Representation
	Names Matter

	Ease of Evolution

	Uniform Characterization of Mechanisms
	Usage Guidelines
	Procedures
	Advice and Pointcuts
	Attributes – Named Pointcuts or Annotations
	Enumeration, Property, Pattern-Based Pointcuts and Annotatio

	Related Work
	Future Work
	Summary
	Acknowledgements
	References

