
Effectiveness Sans Formality
And

Foundations Of Software Development

Gregor Kiczales
University of British Columbia

© Gregor Kiczales, 2007. Some rights reserved.
Except where otherwise indicated, this work is licensed under
http://creativecommons.org/licenses/by-sa/2.5/ca/

1Tuesday, November 6, 2007

Topics

• Two conflicts

• programming languages vs. design patterns, Mylyn

• PL power vs. flexibility w/ ‘high-level’ abstractions

• our conceptions of field vs. work of PARC colleagues

• proper role of formality in foundations of software?

• Can a single ‘account’ resolve these?

• Can it clarify and support current work?

• Can it point to improved concepts and techniques?

2Tuesday, November 6, 2007

Timeline

more concrete

more conceptual

time

join point
mechanisms

intentionality

radical thesis

design patterns

Mylyn

role based refactoring

ethnomethodology

challenge

DPRG
fluid AOP

programming languages

registration-based
effectiveness

3Tuesday, November 6, 2007

Tactics

• Goal is to draw connections and possible directions

• breadth of topics

• for each some of you will be more expert

• trying to be informed; but will surely make mistakes

• Will use work I know best as examples

• Mylyn, AOP, Fluid AOP, DPRG, role-based refactoring

• not claiming that these are the best examples

• just the ones I know best

4Tuesday, November 6, 2007

Mylyn (née Mylar)

[Kersten, Murphy et. al., www.eclipse.org/mylyn]

5Tuesday, November 6, 2007

Mylyn (née Mylar)

[Kersten, Murphy et. al., www.eclipse.org/mylyn]

5Tuesday, November 6, 2007

Mylyn (née Mylar)

• Definition of task context (a concern)

• not declared explicitly, not formalized

• evolves from watching developer(s)

• not rigidly enforced, adaptive

• socially constructed and negotiated

• Lightweight management of higher-level structures

• emergent, crosscutting...

• Very fast adoption

6Tuesday, November 6, 2007

Vlissides writes:

As we worked on our patterns, it wasn t long before we began to think about automating
their application. By mid-1995 we had developed a tool for browsing patterns on-line
and for generating their implementations automatically [5]. It taught us much about the
relative merits of patterns and tools.
...
As you master the patterns, however, the drawbacks of the tool become apparent. Its
main weakness is inflexibility. Developers use patterns in surprising ways, often as
starting points from which to evolve specialized solutions that the pattern author(s)
never foresaw. The code generator can t help you there. In fact, it makes things worse,
in three ways:

1. It s hard to generate code that s as flexible as the pattern is. The generator can be
designed to cover the trade-offs and variants that are explicit in the pattern, but it can t
vary far from them.

...

[Chambers, Harrison, Vlissides, POPL 2000]

Debate on PL and Tool Support for Design Patterns

7Tuesday, November 6, 2007

2. Generated code is often difficult to integrate with existing code, especially when
they re in a language that lacks multiple inheritance. More advanced tooling (e.g.,
subject-oriented support) might alleviate this problem.

3. Whenever you generate code, you pave the way for the so-called round-trip problem:
Unless you re careful, regenerating the code will overwrite modifications to the previous
generation. Because most pattern implementations do not involve a lot code, common
solutions to this problem [26] render the whole approach more trouble than it s worth.
The most useful aspect of the tool turned out to be decidedly low tech: the book text
itself in HTML form, with hyperlinks for all cross-references. It made navigating and
searching the text much easier, not to mention saving you from lugging the book around
if you already carry a notebook computer.

[Ibid.]

Debate on PL and Tool Support for Design Patterns

8Tuesday, November 6, 2007

Design Patterns and Formality

• Formalized patterns too inflexible in the face of

• surprising uses

• surprising combinations

• integration w/ situation particulars

• Meaning, applicability, form are socially mediated

• Hyper-linked documentation most useful

• Very fast adoption

9Tuesday, November 6, 2007

Programming Languages

• Programs are effective formal abstractions of computation

• effective: programs produce computations (¬ ‘just’ models)

• formal: formal system, crisp, discrete...

• abstraction: of the computation

• Effective composition of abstraction

• well-defined, context insensitive, orthogonal

• OO, declarative, functional...

• supports reasoning from small set of principles

10Tuesday, November 6, 2007

‘Effective Formality All The Way Down’

• Languages, layers, APIs, components, frameworks,
DSLs...

• Each interface presents effective abstraction

• Each module fully implements higher level

• ‘Effective formality all the way down’

• from highest levels

• down to the machine code

• everything is in formal effective notation

11Tuesday, November 6, 2007

PARC Context

• Lucy Suchman et. al.

• ethnomethodological studies of work...

• Plans and Situated Actions

• Brian Smith

• foundations of computation, intentionality

• On the Origin of Objects

• Perceived common threads:

• the world isn’t formal; at least not ‘all the way down’

• that has real consequences for software

12Tuesday, November 6, 2007

Plans & Situated Actions

• Lucy Suchman’s Ph.D. dissertation

• expanded in 2007: Human-Machine Reconfigurations

• Many things, including:

• a discussion of ‘smart’ user-interface design

• a response to planning style AI of early 80s

• how people work together

• construct shared understanding

• roles played by artifacts

13Tuesday, November 6, 2007

The notion that we act in response to an objectively given social world is
replaced by the assumption that our everyday social practices render the
world publicly available and mutually intelligible. It is those practices that
constitute ethnomethods. The methodology of interest to ethnomethodologists,
in other words, is not their own but that deployed by members of the society in
coming to know, and making sense out of, the everyday world of talk and
action.

[Suchman, Human-Machine Reconfigurations: 76]

14Tuesday, November 6, 2007

The ethnomethodological view of purposeful action and shared understanding
is outlined in this chapter under five propositions:

1.Plans are representations of situated actions;

2.In the course of situated action, representation occurs when otherwise
transparent activity becomes in some way problematic;

3.The objectivity of the situations of our action is achieved rather than given;

4.A central resource for achieving the objectivity of situations is language,
which stands in a generally indexical relationship to the circumstances that it
presupposes, produces and describes;

5.As a consequence of the indexicality of language, mutual intelligibility is
achieved on each occasion of interaction with reference to situation
particulars rather than being discharged once and for all by a stable body of
shared meanings.

[Suchman, Human-Machine Reconfigurations: 70]

15Tuesday, November 6, 2007

Expressions that rely on their situation for significance are commonly called
indexical, after the “indexes” of Charles Peirce (1933), the exemplary
indexicals being first- and second-person pronouns, tense and specific time
and place adverbs such as here and now.

[Ibid.: 78]

16Tuesday, November 6, 2007

Expressions that rely on their situation for significance are commonly called
indexical, after the “indexes” of Charles Peirce (1933), the exemplary
indexicals being first- and second-person pronouns, tense and specific time
and place adverbs such as here and now.

[Ibid.: 78]

looking at photo album

“that s a nice one”

in front of lettuce bin

“that s a nice one”

16Tuesday, November 6, 2007

Expressions that rely on their situation for significance are commonly called
indexical, after the “indexes” of Charles Peirce (1933), the exemplary
indexicals being first- and second-person pronouns, tense and specific time
and place adverbs such as here and now.

[Ibid.: 78]

looking at photo album

“that s a nice one”

in front of lettuce bin

“that s a nice one”

clearly indexical:
a picture, a head

of lettuce

16Tuesday, November 6, 2007

Expressions that rely on their situation for significance are commonly called
indexical, after the “indexes” of Charles Peirce (1933), the exemplary
indexicals being first- and second-person pronouns, tense and specific time
and place adverbs such as here and now.

[Ibid.: 78]

looking at photo album

“that s a nice one”

in front of lettuce bin

“that s a nice one”

clearly indexical:
a picture, a head

of lettuce

also indexical:
very different

properties

16Tuesday, November 6, 2007

...visitor and host will never establish in just so many words precisely what it is
that the visitor intends and the host understands. Their interpretation of the
term [nice] will remain partially unarticulated, located in their unique
relationship to the photograph and to the context of the remark. Yet the shared
understanding they do achieve will be perfectly adequate for purposes of their
interaction. [Ibid.: 78]

“[S]peakers can...do the immense work they do with natural language, even
though over the course of their talk it is not known, and is never, not even “in
the end,” available for saying in so many words just what they are talking
about. Emphatically, that does not mean that speakers do not know what they
are talking about, but instead that they know what they are talking about in
that way.” [Garfield and Sacks 1970: 342-4, original emphasis]

In this sense deictic expressions, time and place adverbs and pronouns are
just particularly clear illustrations of the general fact that all language,
including the most abstract or eternal, stands in an essentially indexical
relationship to the embedding world.

[Suchman, Human-Machine Reconfigurations: 79]

17Tuesday, November 6, 2007

On the Origin of Objects

• Brian Cantwell Smith, 1996

• Started as project in foundations of computation

• became exploration of intentionality and ontology

• “a new metaphysics--a philosophy of presence”

• How does intentionally work, arise...

18Tuesday, November 6, 2007

Intentionality is the power of minds to be about, to represent, or to stand
for, things, properties and states of affairs. The puzzles of intentionality lie
at the interface between the philosophy of mind and the philosophy of
language.1

This is different than intention and intent:
 A course of action that one intends to follow.2

And different than intension and intensionality:
 Any property or quality connoted by a word, phrase or other symbol.
 Intension is generally discussed with regard to extension (or denotation).
 Intension refers to the set of all possible things a word or phrase could
 describe, extension to the set of all actual things the word describes.3

1. Stanford Encyclopedia of Philosophy.
2. American Heritage Dictionary.
3. Wikipedia.

19Tuesday, November 6, 2007

Developing A Trivial Banking System

void deposit(Cash x) {

 ...
}

<Sue’s account>

acct# balance

75629 2,500.23
75630 395.50

20Tuesday, November 6, 2007

Developing A Trivial Banking System

void deposit(Cash x) {

 ...
}

<Sue’s account>

acct# balance

75629 2,500.23
75630 395.50

formal

abstract/concrete,
formal/not...

concrete

concrete

20Tuesday, November 6, 2007

Developing A Trivial Banking System

void deposit(Cash x) {

 ...
}

<Sue’s account>

acct# balance

75629 2,500.23
75630 395.50effective

formal
implements1

effective
formal
implements2

represents
implements3

20Tuesday, November 6, 2007

Developing A Trivial Banking System

void deposit(Cash x) {

 ...
}

<Sue’s account>

acct# balance

75629 2,500.23
75630 395.50

not effective

20Tuesday, November 6, 2007

Developing A Trivial Banking System

void deposit(Cash x) {

 ...
}

<Sue’s account>

acct# balance

75629 2,500.23
75630 395.50

20Tuesday, November 6, 2007

Developing Software

Design...

<configuration>

C

W
Decorator

Manual

FAQ

code

Bug # 3251

• many kinds of artifact

• diverse properties and relationships

• numerous theories and areas of work

21Tuesday, November 6, 2007

Developing Software

Design...

<configuration>

C

W
Decorator

Manual

FAQ

code

Bug # 3251

• many kinds of artifact

• diverse properties and relationships

• numerous theories and areas of work

computability

denotational
semantics

development
tools

RA

real-time

product lines

21Tuesday, November 6, 2007

Intentionality As Spanning*

Design...

<configuration>

C

W
Decorator

Manual

FAQ

code

Bug # 3251

• all these relationships are intentional*

• crosses boundaries

• bridges divisions and highlights distinctions

22Tuesday, November 6, 2007

The world is fundamentally characterized by an underlying
flex or slop--a kind of slack or “play” that allows some bits
to move about or adjust without much influencing, and
without being much influenced by, other bits.
[Smith, On the Origin of Objects: 199]

Overall, my aim in this book is to show that the world s primordial flex or play does
two crucial things: (i) establishes the problem that intentionality solves; and (ii)
provides the wherewithal for its solution.
[Ibid.: 200]

That semantic reach exceeds effective grasp is essentially a theorem of this
metaphysical account.
[Ibid.: 211]

23Tuesday, November 6, 2007

...the world is not presumptively discrete--indeed it is as completely opposite of
formal as it is possible to imagine. It is instead permeated by:
1.Indefiniteness [zest]1 at the edges of given objects, such as the boundaries of
the region on the wall where I ask you to write your name...
2.Indefiniteness [zest] between and among objects of the same type, such as
whether you are standing on this sand dune or the neighboring one
3.Indefiniteness [zest] among different types, such as among chutzpah, bravado,
ego, self-confidence and brashness;
4.Indefiniteness [zest] among the notions ʻconcept,ʼ ʻtype,ʼ and ʻpropertyʼ...
5.Indefiniteness [zest] between objects and the types they exemplify, implying that
the “instance-of” relation is itself approximate, contested, and potentially
unstable--as for example in whether the headache you have this morning is the
same one you had last night, or a different one of the same type; and similarly for
patches of color, fog and “the rain”; and
6.Indefiniteness [zest] between and among different realms of human endeavor,
such as the political, the social, the technical, the religious, the esthetic, the
psychological, etc.
[Ibid: 324]

1. Page 324 has indefiniteness ; page 325 explains that zest is a better word.

24Tuesday, November 6, 2007

Registration

By register I mean something like parse, make sense of, find there to be,
structure, take as being a certain way -- even carve the world into, to use a
familiar if outmoded phrase.

[Ibid.: 191]

...summarize three essential properties of [registration]:

1. Registration is the net activity that leads to (what we theorists register as) a
conception of, or take on, or intentional attitude towards, the world as given or
available--anyway as world.

2. Registration is originally neutral as to the appropriate locus, if any, of two
essential subject/world splits: (i) that between registrar (subject) and what is
registered (object), and (ii) that between subject and supporting community
(people, instruments, practices, documents, culture, etc.).

3. Registration does not single out objects as a premier ontological category or
class--or even, necessarily, require that objects count as a distinct ontological
species.

[Ibid: 197]

25Tuesday, November 6, 2007

Combined Themes

• “The world is as opposite of formal as it is possible to imagine”

• no single right structure, or even ontology

• abstractions are transient, shifting, negotiated

• things are not formal at the bottom

• “ they know what they are talking about in that way”

• actions, including plan production are situated

• objectivity is achieved rather than given, all language is indexical

• things are not formal at the top

26Tuesday, November 6, 2007

• To get at higher-level (interesting?) issues

• formality is not the foundational idea, and

• layers of effective formality is not the right mechanism

• Effectiveness has to be more sloppy

• negotiated, periodic, partial, evolving

• built on something like registration

• Want a corresponding supporting theory

Radical Thesiswork with,
have effective

access to

27Tuesday, November 6, 2007

Some Objections

• This kind of stuff is hooey!

• This kind of stuff isn't hooey, but this version of it is

• Maybe this is true for people

• but programs are engineered, they can and must be crisp

• This is the unavoidable difference between PL and tools

• The thing you are talking about is already happening

• Interesting, but can’t be made to do work

28Tuesday, November 6, 2007

Registration in Emacs

Note that EMACS, a popular text and programming editor, derives much of its
power from supporting multiple simultaneous “takes” on the string of characters in
its buffer, in just the way suggested here. One command can view the buffer as a
Lisp program definition; another, as a linear sequence of characters; another, as
bracketed or parenthesized region. In order to support these multiple
simultaneous views, EMACS in effect “lets go” of its parse of the buffer after every
single keystroke, and re-parses all over the next time a key is struck--possibly with
respect to an wholly different grammar.
[Smith, Origin of Objects: 48]

29Tuesday, November 6, 2007

Registration in Emacs

;; make a new point

(define make-point

 (lambda (x y)

 (list ‘point x y)))

;; getters

(define point-x second)

(define point-y third)

30Tuesday, November 6, 2007

Registration in Emacs

;; make a new point

(define make-point

 (lambda (x y)

 (list ‘point x y)))

;; getters

(define point-x second)

(define point-y third)

;; make a new point

(define make-point

 (lambda (x y)

 (list ‘point x y)))

;; getters

(define point-x second)

(define point-y third)

ctrl-k (kill line) command
registers text at point as
first line and rest

30Tuesday, November 6, 2007

Registration in Emacs

;; make a new point

(define make-point

 (lambda (x y)

 (list ‘point x y)))

;; getters

(define point-x second)

(define point-y third)

;; make a new point

(define make-point

 (lambda (x y)

 (list ‘point x y)))

;; getters

(define point-x second)

(define point-y third)

;; make a new point

(define make-point

 (lambda (x y)

 (list ‘point x y)))

;; getters

(define point-x second)

(define point-y third)

so giving up true
structure editors was a

deeply good thing?

ctrl-meta-k (kill sexp)
registers text at point as
first sexp and rest

ctrl-k (kill line) command
registers text at point as
first line and rest

30Tuesday, November 6, 2007

• (Start with classic structure)

• Atomize to see sub-elements

• Dissolve structure boundaries

• Register new structural elements

• using sub-elements properties

• and context dependence

• Provide effective access via new structure

Join Point Mechanisms

31Tuesday, November 6, 2007

• (Start with classic structure)

• Atomize to see sub-elements

• Dissolve structure boundaries

• Register new structural elements

• using sub-elements properties

• and context dependence

• Provide effective access via new structure

Join Point Mechanisms

31Tuesday, November 6, 2007

• (Start with classic structure)

• Atomize to see sub-elements

• Dissolve structure boundaries

• Register new structural elements

• using sub-elements properties

• and context dependence

• Provide effective access via new structure

Join Point Mechanisms

31Tuesday, November 6, 2007

• (Start with classic structure)

• Atomize to see sub-elements

• Dissolve structure boundaries

• Register new structural elements

• using sub-elements properties

• and context dependence

• Provide effective access via new structure

Join Point Mechanisms

31Tuesday, November 6, 2007

• (Start with classic structure)

• Atomize to see sub-elements

• Dissolve structure boundaries

• Register new structural elements

• using sub-elements properties

• and context dependence

• Provide effective access via new structure

Join Point Mechanisms

31Tuesday, November 6, 2007

• (Start with classic structure)

• Atomize to see sub-elements

• Dissolve structure boundaries

• Register new structural elements

• using sub-elements properties

• and context dependence

• Provide effective access via new structure

Join Point Mechanisms

...

31Tuesday, November 6, 2007

JPMs In Familiar AOP Systems

• AspectJ pointcuts and advice

• points in execution flow, pointcuts, advice

• AspectJ intertype declarations

• class member declarations, signatures, declarations

• Hyper/J

• class members (broadly), signature patterns, slice, compose
but these (and emacs)

start with formal
ontology, not zest

32Tuesday, November 6, 2007

Registration-Based Effectiveness

• Not formal?

• but digitality at the bottom implies formalilty

• Focus on zest and other properties

• tradeoff between crispness and effectiveness

• negotiated abstractions, effectiveness

• transient registrations

• external semantics

• Also see Rok Sosic’s dissertation

33Tuesday, November 6, 2007

Design Pattern Rational Graphs

[Baniassad, Murphy, Schwanninger. ICSE 03]

34Tuesday, November 6, 2007

Role Based Refactoring

[Hannemann, Murphy, Kiczales. AOSD 05]

35Tuesday, November 6, 2007

Fluid AOP Prototype

[Hon, Kiczales. OOPLSA 06 Demonstration]

36Tuesday, November 6, 2007

Fluid AOP Prototype

[Hon, Kiczales. OOPLSA 06 Demonstration]

36Tuesday, November 6, 2007

Fluid AOP Prototype

[Hon, Kiczales. OOPLSA 06 Demonstration]

36Tuesday, November 6, 2007

Fluid AOP Prototype

[Hon, Kiczales. OOPLSA 06 Demonstration]

36Tuesday, November 6, 2007

Fluid AOP Prototype

[Hon, Kiczales. OOPLSA 06 Demonstration]

36Tuesday, November 6, 2007

Fluid AOP Prototype

[Hon, Kiczales. OOPLSA 06 Demonstration]

37Tuesday, November 6, 2007

• External socially-mediated semantics

• Effectiveness via external semantics

• Negotiated, transient abstraction

• Abstraction/effectiveness tradeoff

Example Summary

38Tuesday, November 6, 2007

The Challenge

As much as twenty years ago, members of the knowledge representation
community in artificial intelligence, and also a number of researchers working on
databases, began to wrestle with many of the same problems as now face object-
oriented system designers. In part as a reaction to the insuperable difficulties they
encountered, many people in the knowledge representation community
abandoned the idea that a system s ontological categories (those in terms of
which it deals with its primary subject matter) should be explicitly represented at
all. Instead they viewed them as emerging in constant and dynamic renegotiation
with the with the environments in which these systems play or are deployed. It is
interesting to speculate on how the mainstream programming community will rise
to this challenge of developing external, social and negotiated categories.
[Smith, Origin of Objects: 48]

39Tuesday, November 6, 2007

Recap

• Patterns and Mylyn

• flexibility with high-level abstracions & situation particulars

• Programming languages

• effective, but problems with flexibility

• Conflicting foundational stories

• our current foundations

• intentionality, ethnomethodology

40Tuesday, November 6, 2007

Intentionality As Spanning*

Design...

<configuration>

C

W
Decorator

Manual

FAQ

code

Bug # 3251

41Tuesday, November 6, 2007

Summary

• Software development is rich with intentional relationships

• Intentional things are not formal all the way down

• at the ‘highest levels’ -- ethnomethodology, indexicality of language

• at the ‘lowest levels’ -- O^3, ‘flex and slop’, registration

• Effective higher-level abstractions must cope with this limit of formality

• Suggested what ‘registration-based’ effectiveness might be

• characteristics (negotiated, social, external...)

• old and new examples (patterns, Mylyn, fluid AOP, DPRG, RBR)

• A new ‘foundations of software development’ can and should be built this way

42Tuesday, November 6, 2007

