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ABSTRACT 
Aspects cut new interfaces through the primary decomposition of 
a system. This implies that in the presence of aspects, the 
complete interface of a module can only be determined once the 
complete configuration of modules in the system is known. While 
this may seem anti-modular, it is an inherent property of 
crosscutting concerns, and using aspect-oriented programming 
enables modular reasoning in the presence of such concerns. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – classes and objects, modules, packages. 

General Terms 
Languages, Theory. 

Keywords 
Aspect-oriented programming, modularity, modular reasoning. 

1. INTRODUCTION 
Aspect-oriented programming (AOP) has been proposed as a 
mechanism that enables the modular implementation of 
crosscutting concerns [22]. It has proven popular [15, 23, 26] 
because it makes it possible for developers to write modular code 
for concerns such as synchronization [11, 14], error handling [29], 
persistence [37], certain design patterns [18] etc. Being able to 
code aspects cleanly is helping developers to think in terms of 
aspects at earlier stages of the lifecycle [16, 20, 34, 35]. 
An important dialogue has been raised about the full implications 
of AOP for modularity and modular reasoning [1, 8, 9]. This 
paper contributes an improved understanding of interfaces in the 
presence of AOP to that dialogue. We introduce the concept of 
aspect-aware interfaces, and show that a module’s aspect-aware 
interface is not completely determined by the module, but rather 
depends in part on the other modules in the system – aspects cut 
new interfaces through the primary module structure. Using 
aspect-aware interfaces, we provide an argument based on first-

principles that AOP supports modular reasoning in the presence 
of crosscutting concerns. 
We show that some global knowledge is required as a precursor to 
modular reasoning with AOP. But, we also show that in the 
presence of crosscutting concerns – implemented with or without 
AOP – global knowledge is always required and that AOP makes 
this requirement more explicit and enables modular reasoning 
once the initial global analysis is complete. 
The paper is structured as follows: Section 2 provides definitions 
of modularity and modular reasoning. Section 3 presents the 
example used in the paper. Section 4 presents the key properties 
of aspect-aware interfaces. Section 5 analyzes the modularity of 
the non-AOP and AOP implementations of the example. Section 6 
outlines open research issues. Related work is discussed as 
appropriate throughout the paper (this crosscutting concern is not 
modularized). 

2. DEFINITIONS 
We say the code that implements a concern is modular if: 
- it  is textually local, 
- there is a well-defined interface that describes how it interacts 

with the rest of the system, 
- the interface is an abstraction of the implementation, in that it is 

possible to make material changes to the implementation 
without violating the interface,  

- an automatic mechanism enforces that every module satisfies its 
own interface and respects the interface of all other modules, 
and 

- the module can be automatically composed – by a compiler, 
loader, linker etc. – in various configurations with other 
modules to produce a complete system. 

Modular reasoning means being able to make decisions about a 
module while looking only at its implementation, its interface and 
the interfaces of modules referenced in its implementation or 
interface. For example, the type-correctness of a method can be 
judged by looking at its implementation, its signature (i.e. 
interface), and the types (i.e. interfaces) of any other code called 
by the method.  
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Not all decisions are amendable to modular reasoning. Many 
program refactorings require more information for example [13]. 
Expanded modular reasoning means also consulting the 
implementations of referenced modules, and global reasoning 
means having to examine all the modules in the system or sub-
system. 
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interface Shape { 
  public moveBy(int dx, int dy); 
} 
 
class Point implements Shape { 
  int x, y; //intentionally package public
 
  public int getX() { return x; } 
  public int getY() { return y; } 
 
  public void setX(int x) { 
    this.x = x; 
    Display.update(); 
  } 
  public void setY(int y) { 
    this.y = y; 
    Display.update(); 
  } 
 
  public void moveBy(int dx, int dy) { 
    x += dx; y += dy; 
    Display.udpate(); 
  } 
} 
 
class Line implements Shape { 
  private Point p1, p2; 
 
  public Point getP1() { return p1; } 
  public Point getP2() { return p2; } 
 
  public void moveBy(int dx, int dy) { 
    p1.x += dx; p1.y += dy; 
    p2.x += dx; p2.y += dy; 
    Display.update 
  } 

} 

 

 

 

 

 

Figure 1. The Java and AspectJ implementations

A RUNNING EXAMPLE 
 section introduces the example that will be used throughout 

paper. 
 example involves a simple set of graphical shape classes, 
uding Point and Line. Imagine that other shapes like Circle 
 Rectangle are also included. Also imagine a Display class that 
lements the drawing surface on which the shapes are 
layed. This class has a static update method.1 To save space 

                                                           
is code would be improved if update was an instance method 
 Display. But this requires using an additional feature of 
spectJ, inter-type declarations, so for simplicity we use the 
ss elegant approach. 

 

 

interface Shape { 
  public moveBy(int dx, int dy); 
} 
 
class Point implements Shape { 
  int x, y; //intentionally package public 
 
  public int getX() { return x; } 
  public int getY() { return y; } 
 
  public void setX(int x) { 
    this.x = x;  
 
  } 
  public void setY(int y) { 
    this.y = y;  
 
  } 
 
  public void moveBy(int dx, int dy) { 
    x += dx; y += dy;  } 
 
  } 
} 
 
class Line implements Shape { 
  private Point p1, p2; 
 
  public Point getP1() { return p1; } 
  public Point getP2() { return p2; } 
 
  public void moveBy(int dx, int dy) { 
    p1.x += dx; p1.y += dy; 
    p2.x += dx; p2.y += dy; 
 
  } 
} 
 
aspect UpdateSignaling { 
  pointcut change(): 
    execution(void Point.setX(int)) 
    || execution(void Point.setY(int)) 
    || execution(void Shape+.moveBy(int, int)); 
 
  after() returning: change() { 
    Display.update(); 
  } 
} 
 of the shape classes with display update signaling. 

                                                                

these are not shown. The instances have state that determines their 
appearance on the display, e.g. Point objects have x and y 
coordinates. Finally there is code to signal the Display to 
update whenever a shape changes.  
Figure 1 shows two implementations of this example: an ordinary 
object-oriented implementation in Java, and an aspect-oriented 
implementation in AspectJ.2 The key difference between the 
implementations is that in the AOP version the update signaling 
behavior is implemented in an aspect, whereas in the non-AOP 

 
2 Examples in this paper are written in Java and the pointcut-and-

advice part of AspectJ. For simplicity we focus on execution 
join points, execution pointcuts, and after returning advice. We 
also ignore examples where aspects advise aspects. 



code it is scattered across the methods of Point and Line (and 
their siblings). 
In the UpdateSignaling aspect, the first member declares a 
pointcut named change(). This pointcut identifies certain join 
points in the program’s execution, specifically the execution of 
the setX and setY methods in Point, as well as moveBy 
methods defined on any sub-type of Shape. 

The second member declares after returning advice that says that 
after returning from executing the join points identified by 
change(), the Display.update() static method should be 
called to signal the display to update.3

4. INTERFACES IN AOP SYSTEMS 
This section presents the key properties of interfaces in AOP, also 
called aspect-aware interfaces. We start with one possible way of 
writing aspect-aware interfaces for the running example. This 
serves to give an intuition of how AOP changes the traditional 
notion of interface. Because our goal is to identify the general 
properties of aspect-aware interfaces, we then discuss some 
possible variations on that formulation. More significant 
variations and open issues are discussed in Section 6. 
Figure 2 shows the aspect-aware extension of simple Java-style 
statically value-typed interfaces for the Shape, Point and 
Line classes. Much of the interface is traditional—it describes 
the type hierarchy, the public fields and methods defined on each 
class and gives result and argument types for each method. (For 
simplicity we ignore exceptions, constructors and non-public 
members, as well as the distinction between interfaces and 
classes.) 
The interfaces in Figure 2 also describe how the aspects and non-
aspects crosscut. The notation 
 : UpdateSignaling – after returning 
                     UpdateSignaling.move() 

following some methods says that: (i) the UpdateSignaling 
aspect has after returning advice that affects execution of the 
method, and (ii) the pointcut that advice refers to is move(), also 
defined in UpdateSignaling. 

The interface of the UpdateSignaling aspect also has an 
entry for the advice, which includes inverse information about 
what methods it affects. 

4.1 Interface Depends on Deployment 
A key property of AOP, made explicit by aspect-aware interfaces, 
is that the interface of a module depends on the complete system 
                                                                 
3 The semantics of this AspectJ code is that the advice body 
executes at the join points matched by the pointcut. The semantics 
are not to generate a new program in which the bodies of the 
advice have been woven into the methods, that is simply one 
possible implementation strategy. The AspectJ language design 
contemplates that weaving can happen at any time, even as late as 
in the interpreter, and implementations have been developed that 
weave at a range of times [3, 19, 21]. The aspect-aware interfaces 
are similar; they describe the semantics of the source AspectJ 
code, not its possible compilation into intermediate code. 
 

into which it is deployed. Because aspects contribute to the 
interface of classes, and classes contribute to the interface of 
aspects, we cannot know the complete interfaces of modules in a 
system until we have a complete system configuration and run 
through the modules collecting aspects and analyzing the 
crosscutting. 
This brings into focus what some authors have identified as a 
controversial property of AOP [1, 8, 9]. The concern is as 
follows: Prior to AOP modules had a "black-box" property – the 
interface of a module was defined in a single place, either part of 
the nodule or directly referred to by the module. So looking at the 
module was sufficient to know its interface. As a result, modular 
reasoning was possible with knowledge of only the module and 
the interfaces of the modules to which it explicitly refers. No 
knowledge of the rest of the system was required. This 
assumption does not hold for AOP.  
These authors have generally sought to restrict the power of AOP 
in order to preserve existing black-box reasoning mechanisms. 
In contrast, our goal is to show that the full power of AOP is 
compatible with modular reasoning, if we are willing to change 
some of our existing reasoning mechanisms. With aspect-aware 
interfaces we require a global analysis of the deployment 
configuration to determine module interfaces. But once that is 
done, modular reasoning is possible even for crosscutting 
concerns, as we will show in Section 5. 
This phenomenon of interface depending on system configuration 
is similar to what is seen in other fields of systems engineering. In 
mechanical systems, key properties of a component with respect 
to composition depend on the whole system. Conductivity and 
corrosion resistance matter when a component is used in some 
systems but not others. Dynamic analysis requires knowing the 
whole system. Heat transfer behaves similarly. Recent research 
suggests that “compartmental systems” are not the only suitable 
modularities for understanding biological systems [24]. 
These aspects that force the analysis to consider the whole system 
– dynamics, corrosion, conductivity, chemical propagation etc. – 
are crosscutting concerns. They cut through the primary 
modularity boundaries and in doing so they act to define new 
module structures with which to analyze the system. 
We observe an important difference between AOP and these other 
systems. In the physical systems, composition leads to new 
crosscutting modules. In mechanics, the modules involved in 
dynamic analysis are different than those in static analysis. The 
spring-damper-mass model of a simple system has a very 
different structure than the simple finite-element static model, 
even though they both describe the same system. The modules of 
the dynamic analysis may not even come into being until the 
system is composed, and the two sets of modules crosscut each 
other with respect to the physical artifact. 
In AOP, the situation is different. Composition leads to new 
crosscutting interfaces, but the modules remain the same. From 
the perspective of traditional software interfaces, the idea that 
composition can lead to new interfaces may seem radical, but at 
least our situation is simpler than for some other engineers. We 
get new interfaces, but not new modules. And, once the 
composition (deployment configuration) is known, the interfaces 
can be identified, and, as we will show in Section 5, modular 
reasoning is possible. 



Shape 
  void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move(); 
 
Point implements Shape 
  int x; 
  int y; 
  int getX(); 
  int getY(); 
  void setX(int)        : UpdateSignaling – after returning UpdateSignaling.move(); 
  void setY(int)        : UpdateSignaling – after returning UpdateSignaling.move(); 
  void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move(); 
 
Line implements Shape 
  void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move(); 
 
UpdateSignaling 
  after returning: UpdateSignaling.move(): Point.setX(int), Point.setY(int), 
                                           Point.moveBy(int, int), Line.moveBy(int, int); 

 

Figure 2 Interfaces in the AOP code. 

4.2 Formulation of Aspect-Aware Interfaces 
This section discusses some of the design decisions underlying 
the formulation of aspect-aware interfaces shown above. Our goal 
here is to identify the key properties of aspect-aware interfaces 
not to argue that the above formulation is ideal. A great deal of 
work remains to be done in refining aspect-aware interfaces, some 
of which is discussed in Section 6. 

Intensional and extensional descriptions. One decision was 
whether to include the pointcut involved in an advice declaration 
in the interface. To be concrete, we could have written the 
following instead of what we have in Figure 2:  
Line extends Shape 
  void moveBy(int, int) : 
     UpdateSignaling – after returning; 

We include the pointcut because we feel it is key to understanding 
the interface abstraction. An AOP programmer thinks about 
advice being applicable at a group of join points with a common 
property. The emphasis is on the property more than the specific 
points, and the pointcut expresses that property. 
The pointcut can be seen as the intensional definition of the 
interface. The marked set of methods is the extensional definition. 
For example, note that the pointcut is what the programmer 
should study when considering changes to the implementation of 
the class. Seeing the pointcut 
    execution(void Point.set*(*))
is different than seeing the pointcut 
    execution(void Point.setX(int)) 
    || execution(void Point.setY(int))

even if, as in this case, the same join points are identified.  

Pointcut abstraction or reduction. Another decision was 
whether the interface should include the pointcut as it appears in 
the advice declaration or include its reduction (recursive inlining 
of the named pointcuts). We chose the former, because it reflects 
abstractions from the aspect. But clearly there are times when the 
programmer will want to see a partial or complete reduction of the 
pointcut. 

We see this as analogous to a programmer sometimes wanting to 
see just a type name in an interface, and other times wanting to 
see more information about the type. As such, it seems amenable 
to being addressed as a tool issue. 
Including advice kind. We also decided to include the kind of 
advice (before, after etc.) rather than just indicating the 
applicability of advice, without saying its kind. We feel that 
including the kind adds to the descriptive power of the interface, 
without overly restricting the implementation of the aspect. In 
practice, advice bodies change about as often as method bodies. 
But changing an advice from before to after is less common and 
more significant. Also, because advice declarations are not 
named, this helps the programmer know which advice is being 
referred to.4

Expressing extensional definition. A more complex decision had 
to do with deciding what methods to list as being affected by an 
advice. The answer we chose was to list those methods for which 
executing the body of the method might run the advice. In the 
subset of AspectJ we are considering (execution join points, 
execution pointcuts, after returning advice) this is clear enough. 
But once we allow call, get and set join points the issue becomes 
less clear. Should a method be listed as affected because it 
includes a call join point that is advised? Should a method be 
listed as affected because calls to it are advised? This is clearly an 
area for future work. One initial answer is to list any method for 
which the body lexically includes the shadow of an advised join 
point.5  
Rather than marking each affected method, we could have marked 
just the enclosing classes with all the aspects that affect any of its 
                                                                 
4 In a system like AspectWerkz [4], where advice declarations 

associate a pointcut with a named method rather than an 
anonymous code block, the name of the method might also be 
included.  

5 The shadow of a dynamic join point is a code structure 
(expression, statement or block) that statically corresponds to 
execution of the dynamic join point. The shadow of a method 
execution join point is a method body; the shadow of a method 
call is a call expression etc. 



 
Table 1. Analysis of modularity for non-AOP and AOP implementations of shape package. 

 

  localized interface abstraction enforced composable 

display updating no n/a n/a n/a n/a 
non AOP 

Point, Line medium(1) medium(2) medium(2) yes  yes  

UpdateSignaling high high(3)  high yes(5) yes  
AOP 

Point, Line high(4) high(3)(4) high yes(5) yes  

 
(1) Point and Line classes are contaminated with scattered and tangled display updating behavior. 
(2) Except that the tangled display updating behavior is not a documented part of the interface. 
(3) Using aspect-aware interfaces. 
(4) Enhanced because display updating behavior is no longer tangled. 
(5) Standard Java type checking extended to advice and advice parameters. In addition, assurance that advice is called 

when it should be and at no other times 

methods. This would be a lower-granularity version of the 
interfaces we have here. Given this coarse-grained back link to 
the aspects, expanded modular reasoning could then be used to 
construct the more complete information in the interfaces we 
describe. 
We chose not do this because it connotes the aspect applies to the 
whole class, which is often not the case. It is also less useful, 
because programmers will almost always have to go to the aspect 
implementation to find out exactly what methods are affected. 
And it fails to capture the crosscutting structure that is such an 
important part of AOP code. 

5. MODULARITY ANALYSIS 
We now analyze the AOP and non-AOP implementations. First 
we address the modularity criteria from Section 2; this is 
summarized in Table 1. Then we use a simple change scenario to 
analyze modular reasoning. 

5.1 The Non-AOP Implementation 
In the non-AOP code, the implementation of the display updating 
behavior fails to satisfy our modularity criteria. First, it is not 
localized. Since the additional modularity criteria build on 
locality and each other, they also fail: because there is no 
localized unit, there is nothing for there to be an interface to, and 
without an interface, we cannot ask whether it is an abstraction of 
the implementation. Similarly, the implementation cannot be 
composed independently; there is no automatic mechanism for 
producing a version of the shape classes without change signaling 
behavior. 
The Point and Line classes meet our modularity criteria, but in 
a somewhat compromised form: 
- They are textually local, but that boundary also includes the 

code for signaling the display to update. 
- They have clearly defined interfaces, but those interfaces fail to 

say anything about the included display update signaling 
behavior.  

- The interface is an abstraction of the implementation. The 
internal details of the classes could change in meaningful ways 
without changing the interface. The coordinates of a Point 
could be stored differently for example. 

- The interfaces are enforced in that the Java type checker, loader 
and virtual machine ensure type safety. 

- They can be composed automatically. The Java loader can load 
these with other classes in different configurations. 

5.2 The AOP Implementation 
In the AOP code, the UpdateSignaling aspect meets our 
criteria for a modular implementation of the display updating 
behavior: The Point and Line classes also meet our criteria, 
somewhat better than in the non-AOP implementation. 
- Each is textually local. Locality is improved over the non-AOP 

implementation because the update signaling behavior is not 
tangled into the Point and Line classes. 

- Each has a clear interface as shown in Figure 2. The interfaces 
are now a more accurate reflection of their behavior – update 
signaling is reflected in the interfaces as arising from the 
interaction between the aspects and the classes. 

- In each case the interface is an abstraction of the 
implementation, in that there is room for material variation in 
how each is implemented. For example, a helper method could 
be called to do the signaling, or the signaling could be logged. 

- The interfaces are enforced. Type checking works in the usual 
way, and the advice is called when it should be and at no other 
times. The advice calling enforcement is somewhat trivial – as 
with polymorphic dispatch a single advice declaration both 
declares the interface and defines the implementation.  

- Each can be composed automatically with other modules – this 
is what the AspectJ weaver does.6 For example, we can 

                                                                 
6 Since release 1.2, weaving can happen at compile-time, post 

compile-time on jar files, or at load time. 

 



automatically produce a configuration that includes the shape 
classes but not the UpdateSignaling aspect. 

5.3 Informal Reasoning about Change 
In this section we consider a simple change scenario, and compare 
reasoning with traditional interfaces about the non-AOP code 
against reasoning with aspect-aware interfaces about the AOP 
code. 
The example presented in Section 3 has a deliberately introduced 
weakness – the x and y fields of the Point class are public, not 
private. We now consider the scenario where a programmer 
decides to change the fields to being private. When doing this 
they must ensure the whole system continues to work as before. 
We now walk through the reasoning and changes to the code that 
would most likely ensue for both the non-AOP and AOP code. 
The process starts out following the same path for both 
implementations. We nonetheless discuss the whole process, both 
to make the example realistic, and to stress the critical role 
modular reasoning can play as a sub-part of a larger, not entirely 
modular, reasoning process. 
The programmer begins by asking what the implications of 
changing the fields are. Making the x and y fields private entails 
a change to the interface of the class. So reasoning shifts outside 
the class (outside the module), to clients of the Point interface, 
or more specifically clients of the x and y fields of the Point 
interface. 
Unfortunately, global reasoning, in the form of a simple global 
search, is required to find all such clients. This is a typical 
consequence of interface changes. In this case, the programmer’s 
attention next focuses on the moveBy method of the Line class:7

Reasoning in the non-AOP implementation. In the non-AOP 
implementation, the moveBy method of Line is originally: 
  public void moveBy(int dx, int dy) { 
    p1.x += dx; p1.y += dy; 
    p2.x += dx; p2.y += dy;  
    Display.update(); 
  } 

To conform to the new interface of Point, this code must be 
revised to call accessor methods rather than access the fields 
directly. A straightforward revision of the code would be: 
  public void moveBy(int dx, int dy) { 
    p1.setX(p1.getX() + dx);  
    p1.setY(p1.getY() + dy); 
    p2.setX(p2.getX() + dx);  
    p2.setY(p2.getY() + dy);  
    Display.update(); 
  } 

The programmer must now decide whether this change is 
reasonable. The answer is that it is not – it violates an important, 
but not explicit, invariant of the original code, which is that there 
should be a single display update for each top-level change to the 
state of a shape. In the revised code, a call to moveBy on a line 

                                                                 
7 The programmer might feel that private fields should not be 

accessed directly even within a class, and so focus first on the 
moveBy method of Point, and then come to the moveBy method 
of Line later. 

object would produce 5 display updates. What we want to assess 
is what reasoning is required to reach this conclusion. 
To discover the problem with this potential change, the 
programmer needs two pieces of information: a description of the 
invariant and enough of the structure of update signaling to infer 
that the invariant would be violated by the change. 
Nothing in the implementation or interface of Line is likely to 
describe the invariant. But because of the explicit call to 
Display.update(), the programmer might choose to study the code 
for the Display class. We assume, optimistically, that the 
documentation for the update method includes a description of the 
one update per top-level change invariant. 
At this point expanded modular reasoning with one step has led 
the programmer from a proposed change to the moveBy method 
to the invariant. 
But the programmer still does not have enough information to be 
sure the proposed change is not problematic. They must also 
discover that the setX and setY methods call update, or, more 
generally, discover the existing structure of update signaling. This 
requires at least further expanded modular reasoning – to just find 
the calls from setX and setY; or global reasoning – to find all 
calls to update and discover the complete structure of display 
update signaling. 
Once the programmer concludes, through expanded modular or 
global reasoning that the change to moveBy is incorrect, they are 
in a somewhat difficult situation. One solution is to add special 
non update-signaling setter methods to Point, and call those 
from moveBy. (This is when the programmer has the ‘aha’ 
realization of why they were package public in the first place, and 
perhaps gives up and leaves them that way.) 
Summarizing the reasoning process in the non-AOP 
implementation, starting at the proposed changed to Line’s 
moveBy method: 

- One-step expanded modular reasoning may lead to 
documentation of the key invariant. 

- Global reasoning is required to discover the complete structure 
of update signaling. 

- Expanded modular reasoning discovers enough of the updates 
to handle this specific case. 

Reasoning in the AOP Implementation. In the AOP code the 
change process proceeds along the same course as in the non-
AOP code up to the point of considering the possible change to 
the moveBy method of Line. In the AOP code, the 
straightforward revision of moveBy is: 
  public void moveBy(int dx, int dy) { 
    p1.setX(p1.getX() + dx);  
    p1.setY(p1.getY() + dy); 
    p2.setX(p2.getX() + dx);  
    p2.setY(p2.getY() + dy);  
  } 

As in the non-AOP case, this code is incorrect. It violates the 
update invariant in exactly the same way.  
If we assume, with similar optimism, that the invariant is 
documented in UpdateSignaling then one-step expanded modular 
reasoning leads the programmer from the moveBy method to the 
invariant. If we are less optimistic, and only assume that the 



invariant is documented in Display, then two-step expanded 
modular reasoning is required. 
The interface of UpdateSignaling includes the complete 
structure of what method executions will signal updates. So 
modular reasoning alone provides the programmer with this 
information. 
Once the programmer understands that the simple change to 
moveBy is invalid, the situation is much simpler in the AOP case. 
In AspectJ and similar AOP languages, the proper fix is to use the 
cflowbelow primitive pointcut. Using this, the advice would be 
edited to be: 
  after() returning: change() 
                     && !cflowbelow(change()) { 
    Display.update(); 
  } 

The revised pointcut means only top-level changes are advised, 
and is read as “any join point matching change, unless that join 
point is in the control flow below a join point matching change”. 
Summarizing the reasoning process in the AOP implementation, 
starting at the proposed change to Line's moveBy method:  

- One- or two-step expanded modular reasoning may lead to 
documentation of the key invariant. 

- Modular reasoning leads to the complete structure of update 
signaling. 

- A simple local change to the UpdatingSignaling aspect 
solves the problem, and results in the invariant being explicit. 
enforced and clearly reflected in the interfaces. 

Comparison. In the first step of the process the two 
implementations perform similarly – global reasoning is required 
to find all the references to the x and y fields. Neither AOP nor 
traditional technologies prevent this. 
With respect to documenting and allowing the programmer to 
discover the invariant, the two original implementations fare 
similarly. Under optimistic assumptions about the invariant being 
documented, the non-AOP implementation requires one-step 
expanded modular reasoning to discover the documentation. The 
AOP implementation requires one- or two-step expanded modular 
reasoning.  
With respect to discovering the structure of update signaling the 
two implementations perform significantly differently. The non-
AOP implementation requires expanded modular reasoning to 
discover the minimal structure required to reason about the 
change. It requires global reasoning to discover the complete 
structure. The AOP implementation requires only modular 
reasoning to discover the complete structure. In a more complex 
example the difference would be more dramatic. 
Fundamentally, display update signaling is a crosscutting concern. 
With AOP, its interface cuts through the classes, and the structure 
of that interface is captured declaratively, and the actual 
implementation is modularized. Without AOP, the structure is 
implicit and the actual implementation is not modular. 
The main cost of AOP, with respect to classical modular 
reasoning is that the interface of a module is context dependent. 
We must know the set of modules with which a given module will 
be deployed to know its interface. Without AOP, when reasoning 
about a change to a module we must ask whether the interface 

changes. With AOP, we must ask whether the interface for each 
deployment configuration changes. (Section 6.4 outlines an idea 
that can limit how many configurations are explicitly consulted.) 
The main benefit of AOP is that once we accept the cost, we get 
the traditional benefits of modularity and modular reasoning for 
crosscutting concerns. 
Without AOP, complete configuration information is not needed 
to determine a module’s interface. But in such a world, modular 
reasoning fails for crosscutting concerns like display update 
signaling. A global search is required to discover the key 
invariant. 
Our conclusion is that for crosscutting concerns programmers 
inherently have to pay the main cost of AOP – they have to know 
something about the total deployment configuration in order to do 
the global reasoning required to reason about crosscutting 
concerns. But using AOP, they get modular reasoning benefits 
back, whereas not using AOP they do not. 

5.4 Automatic Reasoning 
We have argued that AOP implies a new kind of interface, but 
that once those interface are computed, the power of modular 
reasoning is improved. In this section we point out three existence 
proofs of this claim. 
Since version 1.2 AspectJ has supported incremental compilation 
and weaving for interactive development [19]. This works by 
having the weaver maintain a list of the aspects and classes in a 
deployment configuration, as well as a weaving plan data 
structure similar to the interfaces we describe (the weaving plan 
has more detailed information). When the weaver is called it first 
checks whether the weaving plan has changed. If not, only the 
code that has changed is re-compiled and re-woven. This is 
limited modular reasoning in the face of unchanging interfaces. 
In [25] Krishnamurthi et. al. describe a similar scheme for 
incremental verification of AspectJ code. 
The open modules work described in [1] provides a formal 
justification for our modular reasoning claim. The theorem 
developed in this work implies that once a module's aspect-aware 
interface is computed, we can prove functional correctness 
properties, and safely make changes to a module without affecting 
the rest of the program. 

6. OPEN ISSUES 
The key property of aspect-aware interfaces is that knowledge of 
the complete system configuration is required to compute how 
interfaces are cut through the primary decomposition. But the 
formulation and use of these interfaces can be extended in a 
variety of ways. 

6.1 Other forms of AOP 
A first task is to expand our concept of aspect-aware interfaces 
and the analysis here to full AspectJ, including the other kinds of 
dynamic join points, as well as inter-type declarations (aka 
introductions). A simpler task is to cover similar systems like 
Caesar [33] and AspectWerkz [4]. We expect that the generalized 
model of AOP presented in [32] will provide a basis for this. 



A more interesting challenge is reconciling aspect-aware 
interfaces with aspect-oriented systems like MDSOC [38]. At first 
glance, our observation that aspect-aware interfaces show that in 
AOP the interfaces, but not the implementations crosscut, 
(Section 4.1) seems at odds with the conceptual account of 
MDSOC, in which code is explicitly copied into different 
modules (usually in different system configurations). But our 
account of aspect interfaces might enable a re-characterization of 
MDSOC that preserves the nice symmetrical properties, without 
having the code copying semantics. 

6.2 Other Interface Technologies 
The interfaces we describe are the aspect-aware version of 
standard Java interfaces. They support simple static value typing. 
But more sophisticated interface technologies have been 
developed for object-oriented and other languages. These include 
higher-order value typing like generic types, [5] state typing [10], 
behavioral specification [6, 27, 30] and others. One area of 
research is to explore the aspect-aware equivalent of these other 
kinds of interfaces.  Our belief is that the basic idea of aspect-
aware interfaces should carry-over to these interface styles.  
Existing work adapting behavioral interfaces to AspectJ 
reinforces this belief [39]. But an experiment is needed to be sure. 
Part of this work would involve exploring what issues are better 
specified as behavioral specifications what issues are better 
addressed directly in pointcuts. 

6.3 More expressive pointcuts 
In Section 4.1 we said that the pointcuts represent the abstraction 
or intensional specification of the interface. More work is needed 
to increase the expressive power and abstraction of pointcuts. 
The most common concern is that use of wildcarding risks 
unintended matches as the program evolves. This concern is valid 
concern, although the intentionally limited power of AspectJ 
pattern matching, together with the tool support for editing 
AspectJ code tends to mitigate this problem in practice. 
Support for use of annotations as in C# [28] and Java JSR-175 [2] 
may be of some help, although the use of annotations violates the 
“obliviousness” property of AOP pointcuts, and requires 
scattering the annotations, and so has potential scaling and 
evolution problems. 
Of more interest to us are mechanisms that allow the programmer 
to directly express the true intended semantics of the pointcut. 
The use of cflowbelow shows the power of making pointcuts 
more expressive this way. It makes it possible to express the 
structural invariant explicitly, and in a checked and enforced 
form. 
We expect that it will be possible to do better than this. In the 
case of the change pointcut, what the programmer is thinking is 
that these are the methods that change state that affects the 
display. But what the programmer is doing in the pointcut is 
identifying those methods by name or name pattern. We would 
like to write a pointcut that directly says “the methods that change 
the state that affects the display”. Computing the actual methods 
(the extensional description) would involve some sort of 
conservative control and data flow analysis. Several efforts are 

already underway to develop more expressive pointcuts [7, 12, 
17, 31]. 

6.4 Interface Constraints 
A number of researchers have expressed concern that aspects can 
advise classes without the class’s “consent”. They argue that 
classes should be able to prevent advice from affecting their 
methods. Most proposals allow classes to explicitly restrict 
aspects, or require classes to publish pointcuts, or even require 
that classes import explicitly import aspects  [1, 8, 9].  All of 
these inherently limit the “obliviousness” property of AOP. 
The identification of aspect-aware interfaces suggests a new 
possibility. Instead of associating aspect constraints directly with 
classes or packages, they could be associated with system 
configurations. System architects could define these constraints, 
and any aspects included in the configuration would have to 
respect them. This would make it possible to have different 
constraints for different configurations, and would reflect that 
reasoning about aspect interfaces requires prior knowledge of the 
configuration. It would not place any inherent limits on the 
obliviousness of classes with respect to aspects. A given 
configuration could have no constraints. 
An additional issue for enforcement we see is that the way in 
which a join point is identified for advice is at least as important 
as what join points are identified. Consider advice using these two 
different pointcuts: 
    get(int Point.x) || get(int Point.y) 
    get(* Shape+.*) 

With respect to the class Point, these two pointcuts match the 
same join points. But with respect to evolution and modularity, 
the two are quite different. The former hard codes exact names of 
private fields of the class. The latter identifies all the fields, 
regardless of their name. We believe that for many advice the 
latter is more comfortable than the former; the latter will evolve 
better. A means for enforcing aspect restrictions should be able to 
account for differences in how join points are identified. 
Several researchers have noted that the nature of the advice is 
critical for enforcement [1, 8, 9]. The intuition is that advice that 
simply “observes” is less problematic than advice that has effect. 
Unfortunately, categorization of whether advice observes or 
effects appears difficult. What it means to observe depends on 
context – it is different on an application server than in real-time 
control code for example. In [36] Rinard et. al. describe an initial 
empirical analysis of advice behavior that we hope will prove 
helpful in better understanding this issue. 

7. SUMMARY 
AOP enables modular implementation of crosscutting concerns, 
and modular reasoning in the presence of crosscutting concerns. 
But it requires a change in how module interfaces are specified. 
With AOP interfaces are extended as aspects cut through the 
primary module structure. So a module’s interface cannot be fully 
determined without a complete system configuration. 
But crosscutting concerns inherently require global knowledge to 
support reasoning. Using AOP, programmers get modular 
reasoning benefits for crosscutting concerns whereas without 
AOP they do not. 
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