
Aspect-Oriented Programming and Modular Reasoning
Gregor Kiczales

University of British Columbia
2366 Main Mall

Vancouver, BC, Canada

gregork@acm.org

Mira Mezini
Technische Universität Darmstadt

Hochschulstrasse 10
D-64289 Darmstadt, Germany

mezini@informatik.tu-darmstadt.de

ABSTRACT
Aspects cut new interfaces through the primary decomposition of
a system. This implies that in the presence of aspects, the
complete interface of a module can only be determined once the
complete configuration of modules in the system is known. While
this may seem anti-modular, it is an inherent property of
crosscutting concerns, and using aspect-oriented programming
enables modular reasoning in the presence of such concerns.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, modules, packages.

General Terms
Languages, Theory.

Keywords
Aspect-oriented programming, modularity, modular reasoning.

1. INTRODUCTION
Aspect-oriented programming (AOP) has been proposed as a
mechanism that enables the modular implementation of
crosscutting concerns [22]. It has proven popular [15, 23, 26]
because it makes it possible for developers to write modular code
for concerns such as synchronization [11, 14], error handling [29],
persistence [37], certain design patterns [18] etc. Being able to
code aspects cleanly is helping developers to think in terms of
aspects at earlier stages of the lifecycle [16, 20, 34, 35].
An important dialogue has been raised about the full implications
of AOP for modularity and modular reasoning [1, 8, 9]. This
paper contributes an improved understanding of interfaces in the
presence of AOP to that dialogue. We introduce the concept of
aspect-aware interfaces, and show that a module’s aspect-aware
interface is not completely determined by the module, but rather
depends in part on the other modules in the system – aspects cut
new interfaces through the primary module structure. Using
aspect-aware interfaces, we provide an argument based on first-

principles that AOP supports modular reasoning in the presence
of crosscutting concerns.
We show that some global knowledge is required as a precursor to
modular reasoning with AOP. But, we also show that in the
presence of crosscutting concerns – implemented with or without
AOP – global knowledge is always required and that AOP makes
this requirement more explicit and enables modular reasoning
once the initial global analysis is complete.
The paper is structured as follows: Section 2 provides definitions
of modularity and modular reasoning. Section 3 presents the
example used in the paper. Section 4 presents the key properties
of aspect-aware interfaces. Section 5 analyzes the modularity of
the non-AOP and AOP implementations of the example. Section 6
outlines open research issues. Related work is discussed as
appropriate throughout the paper (this crosscutting concern is not
modularized).

2. DEFINITIONS
We say the code that implements a concern is modular if:
- it is textually local,
- there is a well-defined interface that describes how it interacts

with the rest of the system,
- the interface is an abstraction of the implementation, in that it is

possible to make material changes to the implementation
without violating the interface,

- an automatic mechanism enforces that every module satisfies its
own interface and respects the interface of all other modules,
and

- the module can be automatically composed – by a compiler,
loader, linker etc. – in various configurations with other
modules to produce a complete system.

Modular reasoning means being able to make decisions about a
module while looking only at its implementation, its interface and
the interfaces of modules referenced in its implementation or
interface. For example, the type-correctness of a method can be
judged by looking at its implementation, its signature (i.e.
interface), and the types (i.e. interfaces) of any other code called
by the method.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.

Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

Not all decisions are amendable to modular reasoning. Many
program refactorings require more information for example [13].
Expanded modular reasoning means also consulting the
implementations of referenced modules, and global reasoning
means having to examine all the modules in the system or sub-
system.

3.
This
the
The
incl
and
imp
disp

1 Th

of
A
le

interface Shape {
 public moveBy(int dx, int dy);
}

class Point implements Shape {
 int x, y; //intentionally package public

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x = x;
 Display.update();
 }
 public void setY(int y) {
 this.y = y;
 Display.update();
 }

 public void moveBy(int dx, int dy) {
 x += dx; y += dy;
 Display.udpate();
 }
}

class Line implements Shape {
 private Point p1, p2;

 public Point getP1() { return p1; }
 public Point getP2() { return p2; }

 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;
 Display.update
 }

}

Figure 1. The Java and AspectJ implementations

A RUNNING EXAMPLE
 section introduces the example that will be used throughout

paper.
 example involves a simple set of graphical shape classes,
uding Point and Line. Imagine that other shapes like Circle
 Rectangle are also included. Also imagine a Display class that
lements the drawing surface on which the shapes are
layed. This class has a static update method.1 To save space

is code would be improved if update was an instance method
 Display. But this requires using an additional feature of
spectJ, inter-type declarations, so for simplicity we use the
ss elegant approach.

interface Shape {
 public moveBy(int dx, int dy);
}

class Point implements Shape {
 int x, y; //intentionally package public

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x = x;

 }
 public void setY(int y) {
 this.y = y;

 }

 public void moveBy(int dx, int dy) {
 x += dx; y += dy; }

 }
}

class Line implements Shape {
 private Point p1, p2;

 public Point getP1() { return p1; }
 public Point getP2() { return p2; }

 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;

 }
}

aspect UpdateSignaling {
 pointcut change():
 execution(void Point.setX(int))
 || execution(void Point.setY(int))
 || execution(void Shape+.moveBy(int, int));

 after() returning: change() {
 Display.update();
 }
}
 of the shape classes with display update signaling.

these are not shown. The instances have state that determines their
appearance on the display, e.g. Point objects have x and y
coordinates. Finally there is code to signal the Display to
update whenever a shape changes.
Figure 1 shows two implementations of this example: an ordinary
object-oriented implementation in Java, and an aspect-oriented
implementation in AspectJ.2 The key difference between the
implementations is that in the AOP version the update signaling
behavior is implemented in an aspect, whereas in the non-AOP

2 Examples in this paper are written in Java and the pointcut-and-

advice part of AspectJ. For simplicity we focus on execution
join points, execution pointcuts, and after returning advice. We
also ignore examples where aspects advise aspects.

code it is scattered across the methods of Point and Line (and
their siblings).
In the UpdateSignaling aspect, the first member declares a
pointcut named change(). This pointcut identifies certain join
points in the program’s execution, specifically the execution of
the setX and setY methods in Point, as well as moveBy
methods defined on any sub-type of Shape.

The second member declares after returning advice that says that
after returning from executing the join points identified by
change(), the Display.update() static method should be
called to signal the display to update.3

4. INTERFACES IN AOP SYSTEMS
This section presents the key properties of interfaces in AOP, also
called aspect-aware interfaces. We start with one possible way of
writing aspect-aware interfaces for the running example. This
serves to give an intuition of how AOP changes the traditional
notion of interface. Because our goal is to identify the general
properties of aspect-aware interfaces, we then discuss some
possible variations on that formulation. More significant
variations and open issues are discussed in Section 6.
Figure 2 shows the aspect-aware extension of simple Java-style
statically value-typed interfaces for the Shape, Point and
Line classes. Much of the interface is traditional—it describes
the type hierarchy, the public fields and methods defined on each
class and gives result and argument types for each method. (For
simplicity we ignore exceptions, constructors and non-public
members, as well as the distinction between interfaces and
classes.)
The interfaces in Figure 2 also describe how the aspects and non-
aspects crosscut. The notation
 : UpdateSignaling – after returning
 UpdateSignaling.move()

following some methods says that: (i) the UpdateSignaling
aspect has after returning advice that affects execution of the
method, and (ii) the pointcut that advice refers to is move(), also
defined in UpdateSignaling.

The interface of the UpdateSignaling aspect also has an
entry for the advice, which includes inverse information about
what methods it affects.

4.1 Interface Depends on Deployment
A key property of AOP, made explicit by aspect-aware interfaces,
is that the interface of a module depends on the complete system

3 The semantics of this AspectJ code is that the advice body
executes at the join points matched by the pointcut. The semantics
are not to generate a new program in which the bodies of the
advice have been woven into the methods, that is simply one
possible implementation strategy. The AspectJ language design
contemplates that weaving can happen at any time, even as late as
in the interpreter, and implementations have been developed that
weave at a range of times [3, 19, 21]. The aspect-aware interfaces
are similar; they describe the semantics of the source AspectJ
code, not its possible compilation into intermediate code.

into which it is deployed. Because aspects contribute to the
interface of classes, and classes contribute to the interface of
aspects, we cannot know the complete interfaces of modules in a
system until we have a complete system configuration and run
through the modules collecting aspects and analyzing the
crosscutting.
This brings into focus what some authors have identified as a
controversial property of AOP [1, 8, 9]. The concern is as
follows: Prior to AOP modules had a "black-box" property – the
interface of a module was defined in a single place, either part of
the nodule or directly referred to by the module. So looking at the
module was sufficient to know its interface. As a result, modular
reasoning was possible with knowledge of only the module and
the interfaces of the modules to which it explicitly refers. No
knowledge of the rest of the system was required. This
assumption does not hold for AOP.
These authors have generally sought to restrict the power of AOP
in order to preserve existing black-box reasoning mechanisms.
In contrast, our goal is to show that the full power of AOP is
compatible with modular reasoning, if we are willing to change
some of our existing reasoning mechanisms. With aspect-aware
interfaces we require a global analysis of the deployment
configuration to determine module interfaces. But once that is
done, modular reasoning is possible even for crosscutting
concerns, as we will show in Section 5.
This phenomenon of interface depending on system configuration
is similar to what is seen in other fields of systems engineering. In
mechanical systems, key properties of a component with respect
to composition depend on the whole system. Conductivity and
corrosion resistance matter when a component is used in some
systems but not others. Dynamic analysis requires knowing the
whole system. Heat transfer behaves similarly. Recent research
suggests that “compartmental systems” are not the only suitable
modularities for understanding biological systems [24].
These aspects that force the analysis to consider the whole system
– dynamics, corrosion, conductivity, chemical propagation etc. –
are crosscutting concerns. They cut through the primary
modularity boundaries and in doing so they act to define new
module structures with which to analyze the system.
We observe an important difference between AOP and these other
systems. In the physical systems, composition leads to new
crosscutting modules. In mechanics, the modules involved in
dynamic analysis are different than those in static analysis. The
spring-damper-mass model of a simple system has a very
different structure than the simple finite-element static model,
even though they both describe the same system. The modules of
the dynamic analysis may not even come into being until the
system is composed, and the two sets of modules crosscut each
other with respect to the physical artifact.
In AOP, the situation is different. Composition leads to new
crosscutting interfaces, but the modules remain the same. From
the perspective of traditional software interfaces, the idea that
composition can lead to new interfaces may seem radical, but at
least our situation is simpler than for some other engineers. We
get new interfaces, but not new modules. And, once the
composition (deployment configuration) is known, the interfaces
can be identified, and, as we will show in Section 5, modular
reasoning is possible.

Shape
 void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move();

Point implements Shape
 int x;
 int y;
 int getX();
 int getY();
 void setX(int) : UpdateSignaling – after returning UpdateSignaling.move();
 void setY(int) : UpdateSignaling – after returning UpdateSignaling.move();
 void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move();

Line implements Shape
 void moveBy(int, int) : UpdateSignaling – after returning UpdateSignaling.move();

UpdateSignaling
 after returning: UpdateSignaling.move(): Point.setX(int), Point.setY(int),
 Point.moveBy(int, int), Line.moveBy(int, int);

Figure 2 Interfaces in the AOP code.

4.2 Formulation of Aspect-Aware Interfaces
This section discusses some of the design decisions underlying
the formulation of aspect-aware interfaces shown above. Our goal
here is to identify the key properties of aspect-aware interfaces
not to argue that the above formulation is ideal. A great deal of
work remains to be done in refining aspect-aware interfaces, some
of which is discussed in Section 6.

Intensional and extensional descriptions. One decision was
whether to include the pointcut involved in an advice declaration
in the interface. To be concrete, we could have written the
following instead of what we have in Figure 2:
Line extends Shape
 void moveBy(int, int) :
 UpdateSignaling – after returning;

We include the pointcut because we feel it is key to understanding
the interface abstraction. An AOP programmer thinks about
advice being applicable at a group of join points with a common
property. The emphasis is on the property more than the specific
points, and the pointcut expresses that property.
The pointcut can be seen as the intensional definition of the
interface. The marked set of methods is the extensional definition.
For example, note that the pointcut is what the programmer
should study when considering changes to the implementation of
the class. Seeing the pointcut
 execution(void Point.set*(*))
is different than seeing the pointcut
 execution(void Point.setX(int))
 || execution(void Point.setY(int))

even if, as in this case, the same join points are identified.

Pointcut abstraction or reduction. Another decision was
whether the interface should include the pointcut as it appears in
the advice declaration or include its reduction (recursive inlining
of the named pointcuts). We chose the former, because it reflects
abstractions from the aspect. But clearly there are times when the
programmer will want to see a partial or complete reduction of the
pointcut.

We see this as analogous to a programmer sometimes wanting to
see just a type name in an interface, and other times wanting to
see more information about the type. As such, it seems amenable
to being addressed as a tool issue.
Including advice kind. We also decided to include the kind of
advice (before, after etc.) rather than just indicating the
applicability of advice, without saying its kind. We feel that
including the kind adds to the descriptive power of the interface,
without overly restricting the implementation of the aspect. In
practice, advice bodies change about as often as method bodies.
But changing an advice from before to after is less common and
more significant. Also, because advice declarations are not
named, this helps the programmer know which advice is being
referred to.4

Expressing extensional definition. A more complex decision had
to do with deciding what methods to list as being affected by an
advice. The answer we chose was to list those methods for which
executing the body of the method might run the advice. In the
subset of AspectJ we are considering (execution join points,
execution pointcuts, after returning advice) this is clear enough.
But once we allow call, get and set join points the issue becomes
less clear. Should a method be listed as affected because it
includes a call join point that is advised? Should a method be
listed as affected because calls to it are advised? This is clearly an
area for future work. One initial answer is to list any method for
which the body lexically includes the shadow of an advised join
point.5
Rather than marking each affected method, we could have marked
just the enclosing classes with all the aspects that affect any of its

4 In a system like AspectWerkz [4], where advice declarations

associate a pointcut with a named method rather than an
anonymous code block, the name of the method might also be
included.

5 The shadow of a dynamic join point is a code structure
(expression, statement or block) that statically corresponds to
execution of the dynamic join point. The shadow of a method
execution join point is a method body; the shadow of a method
call is a call expression etc.

Table 1. Analysis of modularity for non-AOP and AOP implementations of shape package.

 localized interface abstraction enforced composable

display updating no n/a n/a n/a n/a
non AOP

Point, Line medium(1) medium(2) medium(2) yes yes

UpdateSignaling high high(3) high yes(5) yes
AOP

Point, Line high(4) high(3)(4) high yes(5) yes

(1) Point and Line classes are contaminated with scattered and tangled display updating behavior.
(2) Except that the tangled display updating behavior is not a documented part of the interface.
(3) Using aspect-aware interfaces.
(4) Enhanced because display updating behavior is no longer tangled.
(5) Standard Java type checking extended to advice and advice parameters. In addition, assurance that advice is called

when it should be and at no other times

methods. This would be a lower-granularity version of the
interfaces we have here. Given this coarse-grained back link to
the aspects, expanded modular reasoning could then be used to
construct the more complete information in the interfaces we
describe.
We chose not do this because it connotes the aspect applies to the
whole class, which is often not the case. It is also less useful,
because programmers will almost always have to go to the aspect
implementation to find out exactly what methods are affected.
And it fails to capture the crosscutting structure that is such an
important part of AOP code.

5. MODULARITY ANALYSIS
We now analyze the AOP and non-AOP implementations. First
we address the modularity criteria from Section 2; this is
summarized in Table 1. Then we use a simple change scenario to
analyze modular reasoning.

5.1 The Non-AOP Implementation
In the non-AOP code, the implementation of the display updating
behavior fails to satisfy our modularity criteria. First, it is not
localized. Since the additional modularity criteria build on
locality and each other, they also fail: because there is no
localized unit, there is nothing for there to be an interface to, and
without an interface, we cannot ask whether it is an abstraction of
the implementation. Similarly, the implementation cannot be
composed independently; there is no automatic mechanism for
producing a version of the shape classes without change signaling
behavior.
The Point and Line classes meet our modularity criteria, but in
a somewhat compromised form:
- They are textually local, but that boundary also includes the

code for signaling the display to update.
- They have clearly defined interfaces, but those interfaces fail to

say anything about the included display update signaling
behavior.

- The interface is an abstraction of the implementation. The
internal details of the classes could change in meaningful ways
without changing the interface. The coordinates of a Point
could be stored differently for example.

- The interfaces are enforced in that the Java type checker, loader
and virtual machine ensure type safety.

- They can be composed automatically. The Java loader can load
these with other classes in different configurations.

5.2 The AOP Implementation
In the AOP code, the UpdateSignaling aspect meets our
criteria for a modular implementation of the display updating
behavior: The Point and Line classes also meet our criteria,
somewhat better than in the non-AOP implementation.
- Each is textually local. Locality is improved over the non-AOP

implementation because the update signaling behavior is not
tangled into the Point and Line classes.

- Each has a clear interface as shown in Figure 2. The interfaces
are now a more accurate reflection of their behavior – update
signaling is reflected in the interfaces as arising from the
interaction between the aspects and the classes.

- In each case the interface is an abstraction of the
implementation, in that there is room for material variation in
how each is implemented. For example, a helper method could
be called to do the signaling, or the signaling could be logged.

- The interfaces are enforced. Type checking works in the usual
way, and the advice is called when it should be and at no other
times. The advice calling enforcement is somewhat trivial – as
with polymorphic dispatch a single advice declaration both
declares the interface and defines the implementation.

- Each can be composed automatically with other modules – this
is what the AspectJ weaver does.6 For example, we can

6 Since release 1.2, weaving can happen at compile-time, post

compile-time on jar files, or at load time.

automatically produce a configuration that includes the shape
classes but not the UpdateSignaling aspect.

5.3 Informal Reasoning about Change
In this section we consider a simple change scenario, and compare
reasoning with traditional interfaces about the non-AOP code
against reasoning with aspect-aware interfaces about the AOP
code.
The example presented in Section 3 has a deliberately introduced
weakness – the x and y fields of the Point class are public, not
private. We now consider the scenario where a programmer
decides to change the fields to being private. When doing this
they must ensure the whole system continues to work as before.
We now walk through the reasoning and changes to the code that
would most likely ensue for both the non-AOP and AOP code.
The process starts out following the same path for both
implementations. We nonetheless discuss the whole process, both
to make the example realistic, and to stress the critical role
modular reasoning can play as a sub-part of a larger, not entirely
modular, reasoning process.
The programmer begins by asking what the implications of
changing the fields are. Making the x and y fields private entails
a change to the interface of the class. So reasoning shifts outside
the class (outside the module), to clients of the Point interface,
or more specifically clients of the x and y fields of the Point
interface.
Unfortunately, global reasoning, in the form of a simple global
search, is required to find all such clients. This is a typical
consequence of interface changes. In this case, the programmer’s
attention next focuses on the moveBy method of the Line class:7

Reasoning in the non-AOP implementation. In the non-AOP
implementation, the moveBy method of Line is originally:
 public void moveBy(int dx, int dy) {
 p1.x += dx; p1.y += dy;
 p2.x += dx; p2.y += dy;
 Display.update();
 }

To conform to the new interface of Point, this code must be
revised to call accessor methods rather than access the fields
directly. A straightforward revision of the code would be:
 public void moveBy(int dx, int dy) {
 p1.setX(p1.getX() + dx);
 p1.setY(p1.getY() + dy);
 p2.setX(p2.getX() + dx);
 p2.setY(p2.getY() + dy);
 Display.update();
 }

The programmer must now decide whether this change is
reasonable. The answer is that it is not – it violates an important,
but not explicit, invariant of the original code, which is that there
should be a single display update for each top-level change to the
state of a shape. In the revised code, a call to moveBy on a line

7 The programmer might feel that private fields should not be

accessed directly even within a class, and so focus first on the
moveBy method of Point, and then come to the moveBy method
of Line later.

object would produce 5 display updates. What we want to assess
is what reasoning is required to reach this conclusion.
To discover the problem with this potential change, the
programmer needs two pieces of information: a description of the
invariant and enough of the structure of update signaling to infer
that the invariant would be violated by the change.
Nothing in the implementation or interface of Line is likely to
describe the invariant. But because of the explicit call to
Display.update(), the programmer might choose to study the code
for the Display class. We assume, optimistically, that the
documentation for the update method includes a description of the
one update per top-level change invariant.
At this point expanded modular reasoning with one step has led
the programmer from a proposed change to the moveBy method
to the invariant.
But the programmer still does not have enough information to be
sure the proposed change is not problematic. They must also
discover that the setX and setY methods call update, or, more
generally, discover the existing structure of update signaling. This
requires at least further expanded modular reasoning – to just find
the calls from setX and setY; or global reasoning – to find all
calls to update and discover the complete structure of display
update signaling.
Once the programmer concludes, through expanded modular or
global reasoning that the change to moveBy is incorrect, they are
in a somewhat difficult situation. One solution is to add special
non update-signaling setter methods to Point, and call those
from moveBy. (This is when the programmer has the ‘aha’
realization of why they were package public in the first place, and
perhaps gives up and leaves them that way.)
Summarizing the reasoning process in the non-AOP
implementation, starting at the proposed changed to Line’s
moveBy method:

- One-step expanded modular reasoning may lead to
documentation of the key invariant.

- Global reasoning is required to discover the complete structure
of update signaling.

- Expanded modular reasoning discovers enough of the updates
to handle this specific case.

Reasoning in the AOP Implementation. In the AOP code the
change process proceeds along the same course as in the non-
AOP code up to the point of considering the possible change to
the moveBy method of Line. In the AOP code, the
straightforward revision of moveBy is:
 public void moveBy(int dx, int dy) {
 p1.setX(p1.getX() + dx);
 p1.setY(p1.getY() + dy);
 p2.setX(p2.getX() + dx);
 p2.setY(p2.getY() + dy);
 }

As in the non-AOP case, this code is incorrect. It violates the
update invariant in exactly the same way.
If we assume, with similar optimism, that the invariant is
documented in UpdateSignaling then one-step expanded modular
reasoning leads the programmer from the moveBy method to the
invariant. If we are less optimistic, and only assume that the

invariant is documented in Display, then two-step expanded
modular reasoning is required.
The interface of UpdateSignaling includes the complete
structure of what method executions will signal updates. So
modular reasoning alone provides the programmer with this
information.
Once the programmer understands that the simple change to
moveBy is invalid, the situation is much simpler in the AOP case.
In AspectJ and similar AOP languages, the proper fix is to use the
cflowbelow primitive pointcut. Using this, the advice would be
edited to be:
 after() returning: change()
 && !cflowbelow(change()) {
 Display.update();
 }

The revised pointcut means only top-level changes are advised,
and is read as “any join point matching change, unless that join
point is in the control flow below a join point matching change”.
Summarizing the reasoning process in the AOP implementation,
starting at the proposed change to Line's moveBy method:

- One- or two-step expanded modular reasoning may lead to
documentation of the key invariant.

- Modular reasoning leads to the complete structure of update
signaling.

- A simple local change to the UpdatingSignaling aspect
solves the problem, and results in the invariant being explicit.
enforced and clearly reflected in the interfaces.

Comparison. In the first step of the process the two
implementations perform similarly – global reasoning is required
to find all the references to the x and y fields. Neither AOP nor
traditional technologies prevent this.
With respect to documenting and allowing the programmer to
discover the invariant, the two original implementations fare
similarly. Under optimistic assumptions about the invariant being
documented, the non-AOP implementation requires one-step
expanded modular reasoning to discover the documentation. The
AOP implementation requires one- or two-step expanded modular
reasoning.
With respect to discovering the structure of update signaling the
two implementations perform significantly differently. The non-
AOP implementation requires expanded modular reasoning to
discover the minimal structure required to reason about the
change. It requires global reasoning to discover the complete
structure. The AOP implementation requires only modular
reasoning to discover the complete structure. In a more complex
example the difference would be more dramatic.
Fundamentally, display update signaling is a crosscutting concern.
With AOP, its interface cuts through the classes, and the structure
of that interface is captured declaratively, and the actual
implementation is modularized. Without AOP, the structure is
implicit and the actual implementation is not modular.
The main cost of AOP, with respect to classical modular
reasoning is that the interface of a module is context dependent.
We must know the set of modules with which a given module will
be deployed to know its interface. Without AOP, when reasoning
about a change to a module we must ask whether the interface

changes. With AOP, we must ask whether the interface for each
deployment configuration changes. (Section 6.4 outlines an idea
that can limit how many configurations are explicitly consulted.)
The main benefit of AOP is that once we accept the cost, we get
the traditional benefits of modularity and modular reasoning for
crosscutting concerns.
Without AOP, complete configuration information is not needed
to determine a module’s interface. But in such a world, modular
reasoning fails for crosscutting concerns like display update
signaling. A global search is required to discover the key
invariant.
Our conclusion is that for crosscutting concerns programmers
inherently have to pay the main cost of AOP – they have to know
something about the total deployment configuration in order to do
the global reasoning required to reason about crosscutting
concerns. But using AOP, they get modular reasoning benefits
back, whereas not using AOP they do not.

5.4 Automatic Reasoning
We have argued that AOP implies a new kind of interface, but
that once those interface are computed, the power of modular
reasoning is improved. In this section we point out three existence
proofs of this claim.
Since version 1.2 AspectJ has supported incremental compilation
and weaving for interactive development [19]. This works by
having the weaver maintain a list of the aspects and classes in a
deployment configuration, as well as a weaving plan data
structure similar to the interfaces we describe (the weaving plan
has more detailed information). When the weaver is called it first
checks whether the weaving plan has changed. If not, only the
code that has changed is re-compiled and re-woven. This is
limited modular reasoning in the face of unchanging interfaces.
In [25] Krishnamurthi et. al. describe a similar scheme for
incremental verification of AspectJ code.
The open modules work described in [1] provides a formal
justification for our modular reasoning claim. The theorem
developed in this work implies that once a module's aspect-aware
interface is computed, we can prove functional correctness
properties, and safely make changes to a module without affecting
the rest of the program.

6. OPEN ISSUES
The key property of aspect-aware interfaces is that knowledge of
the complete system configuration is required to compute how
interfaces are cut through the primary decomposition. But the
formulation and use of these interfaces can be extended in a
variety of ways.

6.1 Other forms of AOP
A first task is to expand our concept of aspect-aware interfaces
and the analysis here to full AspectJ, including the other kinds of
dynamic join points, as well as inter-type declarations (aka
introductions). A simpler task is to cover similar systems like
Caesar [33] and AspectWerkz [4]. We expect that the generalized
model of AOP presented in [32] will provide a basis for this.

A more interesting challenge is reconciling aspect-aware
interfaces with aspect-oriented systems like MDSOC [38]. At first
glance, our observation that aspect-aware interfaces show that in
AOP the interfaces, but not the implementations crosscut,
(Section 4.1) seems at odds with the conceptual account of
MDSOC, in which code is explicitly copied into different
modules (usually in different system configurations). But our
account of aspect interfaces might enable a re-characterization of
MDSOC that preserves the nice symmetrical properties, without
having the code copying semantics.

6.2 Other Interface Technologies
The interfaces we describe are the aspect-aware version of
standard Java interfaces. They support simple static value typing.
But more sophisticated interface technologies have been
developed for object-oriented and other languages. These include
higher-order value typing like generic types, [5] state typing [10],
behavioral specification [6, 27, 30] and others. One area of
research is to explore the aspect-aware equivalent of these other
kinds of interfaces. Our belief is that the basic idea of aspect-
aware interfaces should carry-over to these interface styles.
Existing work adapting behavioral interfaces to AspectJ
reinforces this belief [39]. But an experiment is needed to be sure.
Part of this work would involve exploring what issues are better
specified as behavioral specifications what issues are better
addressed directly in pointcuts.

6.3 More expressive pointcuts
In Section 4.1 we said that the pointcuts represent the abstraction
or intensional specification of the interface. More work is needed
to increase the expressive power and abstraction of pointcuts.
The most common concern is that use of wildcarding risks
unintended matches as the program evolves. This concern is valid
concern, although the intentionally limited power of AspectJ
pattern matching, together with the tool support for editing
AspectJ code tends to mitigate this problem in practice.
Support for use of annotations as in C# [28] and Java JSR-175 [2]
may be of some help, although the use of annotations violates the
“obliviousness” property of AOP pointcuts, and requires
scattering the annotations, and so has potential scaling and
evolution problems.
Of more interest to us are mechanisms that allow the programmer
to directly express the true intended semantics of the pointcut.
The use of cflowbelow shows the power of making pointcuts
more expressive this way. It makes it possible to express the
structural invariant explicitly, and in a checked and enforced
form.
We expect that it will be possible to do better than this. In the
case of the change pointcut, what the programmer is thinking is
that these are the methods that change state that affects the
display. But what the programmer is doing in the pointcut is
identifying those methods by name or name pattern. We would
like to write a pointcut that directly says “the methods that change
the state that affects the display”. Computing the actual methods
(the extensional description) would involve some sort of
conservative control and data flow analysis. Several efforts are

already underway to develop more expressive pointcuts [7, 12,
17, 31].

6.4 Interface Constraints
A number of researchers have expressed concern that aspects can
advise classes without the class’s “consent”. They argue that
classes should be able to prevent advice from affecting their
methods. Most proposals allow classes to explicitly restrict
aspects, or require classes to publish pointcuts, or even require
that classes import explicitly import aspects [1, 8, 9]. All of
these inherently limit the “obliviousness” property of AOP.
The identification of aspect-aware interfaces suggests a new
possibility. Instead of associating aspect constraints directly with
classes or packages, they could be associated with system
configurations. System architects could define these constraints,
and any aspects included in the configuration would have to
respect them. This would make it possible to have different
constraints for different configurations, and would reflect that
reasoning about aspect interfaces requires prior knowledge of the
configuration. It would not place any inherent limits on the
obliviousness of classes with respect to aspects. A given
configuration could have no constraints.
An additional issue for enforcement we see is that the way in
which a join point is identified for advice is at least as important
as what join points are identified. Consider advice using these two
different pointcuts:
 get(int Point.x) || get(int Point.y)
 get(* Shape+.*)

With respect to the class Point, these two pointcuts match the
same join points. But with respect to evolution and modularity,
the two are quite different. The former hard codes exact names of
private fields of the class. The latter identifies all the fields,
regardless of their name. We believe that for many advice the
latter is more comfortable than the former; the latter will evolve
better. A means for enforcing aspect restrictions should be able to
account for differences in how join points are identified.
Several researchers have noted that the nature of the advice is
critical for enforcement [1, 8, 9]. The intuition is that advice that
simply “observes” is less problematic than advice that has effect.
Unfortunately, categorization of whether advice observes or
effects appears difficult. What it means to observe depends on
context – it is different on an application server than in real-time
control code for example. In [36] Rinard et. al. describe an initial
empirical analysis of advice behavior that we hope will prove
helpful in better understanding this issue.

7. SUMMARY
AOP enables modular implementation of crosscutting concerns,
and modular reasoning in the presence of crosscutting concerns.
But it requires a change in how module interfaces are specified.
With AOP interfaces are extended as aspects cut through the
primary module structure. So a module’s interface cannot be fully
determined without a complete system configuration.
But crosscutting concerns inherently require global knowledge to
support reasoning. Using AOP, programmers get modular
reasoning benefits for crosscutting concerns whereas without
AOP they do not.

ACKNOWLEDGEMENTS
We thank Jonathan Aldrich and Curtis Clifton for discussions
about these topics, and for comments on the paper itself. Klaus
Ostermann, Gail Murphy and Maria Tkatchenko also provided
comments on drafts of the paper.

REFERENCES
[1] Aldrich, J., Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming, Carnegie
Mellon Technical Report CMU-ISRI-04-108, 2004 (Earlier
version appeared in Workshop on Foundations of Aspect-
Oriented Languages.).

[2] Bloch, J. A Metadata Facility for the Java Programming
Language, 2002.

[3] Bockisch, C., Haupt, M., Mezini, M. and Ostermann, K.,
Virtual Machine Support for Dynamic Join Points.
International Conference on Aspect-oriented Software
Development (AOSD), 2004, ACM Press, 83-92.

[4] Boner, J., AspectWerkz http://aspectwerkz.codehaus.org/.
[5] Bracha, G., Odersky, M., Stoutamire, D. and Wadler, P.,

Making the Future Safe for the Past: Adding Genericity to
the Java Programming Language. Symposium on Object
Oriented Programming: Systems, Languages, and
Applications (OOPSLA), 1998, 183-200.

[6] Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J.,
Leavens, G.T., Rustan, K., Leino, M. and Poll, E., An
overview of JML tools and applications. Workshop on
Formal Methods for Industrial Critical Systems (FMICS),
2003.

[7] Chiba, S. and Nakagawa, K., Josh: An Open AspectJ-like
Language. International Conference on Aspect-oriented
Software Development (AOSD), 2004, ACM Press, 102-
111.

[8] Clifton, C. and Leavens, G., Obliviousness, Modular
Reasoning, and the Behavioral Subtyping Analogy, Iowa
State University Technical Report, TR 03-15,

[9] Clifton, C. and Leavens, G., Observers and assistants: A
proposal for modular aspect-oriented reasoning. Workshop
on Foundations of Aspect-Oriented Languages (FOAL),
2002.

[10] DeLine, R. and Fähndrich, M., Typestates for Objects.
European Conference on Object-Oriented Programming
(ECOOP), 2004.

[11] Deng, X., Dwyer, M., Hatcliff, J. and Mizuno, M., SyncGen:
An aspect-oriented framework for synchronization. Int'l
Conference Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2004, 158-162.

[12] Eichberg, M., Mezini, M. and Ostermann, K., First-Class
Pointcuts as Queries. Asian Symposium on Programming
Languages and Systems (APLAS), 2004, Springer Lecture
Notes on Computer Science, to appear.

[13] Fowler, M. and Beck, K. Refactoring: improving the design
of existing code. Addison-Wesley, Reading, MA, 1999.

[14] Furfaro, A., Nigro, L. and Pupo, F. Multimedia
synchronization based on aspect oriented programming.
Microprocessors and Microsystems, 8 (2). 47-56.

[15] Gradecki, J. and Lesiecki, N. Mastering AspectJ: Aspect-
oriented Programming in Java. Wiley, Indianapolis, Ind.,
2003.

[16] Grundy, J., Aspect-Oriented Requirements Engineering for
Component-based Software Systems. International
Symposium on Requirements Engineering, 1999, IEEE
Computer Society Press, 84-91.

[17] Gybels, K. and Brichau, J., Arranging Language Features for
More Robust Pattern--Based Crosscuts. International
Conference on Aspect-Oriented Software Development
(AOSD), 2003, ACM Press, 60-69.

[18] Hannemann, J. and Kiczales, G., Design pattern
implementation in Java and AspectJ. Symposium on Object
Oriented Programming: Systems, Languages, and
Applications (OOPSLA), 2002, 161-173.

[19] Hilsdale, E. and Hugunin, J., Advice Weaving in AspectJ.
International Conference on Aspect-Oriented Software
Development (AOSD), 2004, ACM Press, 26-35.

[20] Jacobson, I. and Ng, P.-W. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2003.

[21] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W.G., An Overview of AspectJ. European
Conference on Object-Oriented Programming (ECOOP),
2001, Springer, 327-355.

[22] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J., Aspect-oriented
programming. European Conference on Object-Oriented
Programming (ECOOP), 1997, 220-242.

[23] Kiselev, I. Aspect-oriented programming using AspectJ.
Sams, Indianapolis, Ind., 2003.

[24] Krakauer, D.C. Robustness in Biological Systems: a
provisional taxonomy. in Complex Systems Science in
Biomedicine, Kluwer, 2004.

[25] Krishnamurthi, S., Fisler, K. and Greenberg, M. Verifying
aspect advice modularly. Foundations of Software
Engineering (FSE). 137 - 146.

[26] Laddad, R. AspectJ in action: practical aspect-oriented
programming. Manning, Greenwich, CT, 2003.

[27] Leavens, G., Cheon, Y., Clifton, C., Ruby, C. and Cok, D.
How the design of JML accommodates both runtime
assertion checking and formal verification. FORMAL
METHODS FOR COMPONENTS AND OBJECTS, 2852.
262-284.

[28] Liberty, J. Programming C#. O'Reilly, Sebastopol, CA,
2003.

[29] Lippert, M. and Lopes, C.V., A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming. International Conference on Software
Engineering, 2002, ACM Press, 418-427.

[30] Liskov, B.H. and Wing, J.M. A Behavioral Notion of
Subtyping. Transactions on Programming Languages and
Systems (TOPLAS).

[31] Masuhara, H. and Kawauchi, K., Dataflow Pointcut in
Aspect-Oriented Programming. Asian Symposium on
Programming Languages and Systems (APLAS), 2003, 105-
-121.

[32] Masuhara, H. and Kiczales, G., Modeling crosscutting in
aspect-oriented mechanisms. European Conference on
Object-Oriented Programming (ECOOP), 2003, Springer, 2-
28.

[33] Mezini, A.M. and Ostermann, A.K., Conquering aspects
with Caesar. International Conference on Aspect-Oriented
Software Development (AOSD), 2003, ACM Press, 90-100.

[34] Rashid, A., Moreira, A. and Araujo, J. Modularisation and
composition of aspectual requirements International
Conference on Aspect-oriented Software Development
(AOSD), ACM Press, 2003, 11-20.

[35] Rashid, A., Sawyer, P., Moreira, A. and Araujo, J. Early
Aspects: A Model for Aspect-Oriented Requirements
Engineering International Conference on Requirements
Engineering, IEEE Computer Society Press, 2002, 199--202.

[36] Rinard, M., Salcianu, A. and Suhabe, B., A Classification
System and Analysis for Aspect-Oriented Programs.
Foundations of Software Engineering (FSE), 2004, ACM
Press, 147 - 158.

[37] Soares, S., Laureano, E. and Borba, P., Implementing
distribution and persistence aspects with AspectJ.
Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), 2002, 174-190.

[38] Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M., N
degrees of separation: multi-dimensional separation of
concerns. International Conference on Software Engineering
(ICSE), 1999, IEEE Computer Society Press, 107-119.

[39] Zhao, J. and Rinard, M., Pipa: A behavioral interface
specification language for AspectJ. Fundamental
Approaches to Software Engineering (FASE), 2003,
Springer, 150-165.

	INTRODUCTION
	DEFINITIONS
	A RUNNING EXAMPLE
	INTERFACES IN AOP SYSTEMS
	Interface Depends on Deployment
	Formulation of Aspect-Aware Interfaces

	MODULARITY ANALYSIS
	The Non-AOP Implementation
	The AOP Implementation
	Informal Reasoning about Change
	Automatic Reasoning

	OPEN ISSUES
	Other forms of AOP
	Other Interface Technologies
	More expressive pointcuts
	Interface Constraints

	SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES

