
Using AspectC to Improve the Modularity of
Path-Specific Customization in Operating System Code

Yvonne Coady, Gregor Kiczales, Mike Feeley and Greg Smolyn
University of British Columbia

Abstract
Layered architecture in operating system code is often com-
promised by execution path-specific customizations such as
prefetching, page replacement and scheduling strategies. Path-
specific customizations are difficult to modularize in a lay-
ered architecture because they involve dynamic context pass-
ing and layer violations. Effectively they are vertically inte-
grated slices through the layers.

An initial experiment using an aspect-oriented programming
language to refactor prefetching in the FreeBSD operating sys-
tem kernel shows significant benefits, including easy (un)plug-
gability of prefetching modes, independent development of pre-
fetching modes, and overall improved comprehensibility.

Keywords
aspect-oriented programming, software modularity, operating
system design

1. INTRODUCTION
Almost 35 years ago, Dijkstra proposed a layered architec-
ture for operating systems, primarily for the purpose of hid-
ing complexity and supporting the development process [2].
But in practice, OS code does not have a clean layered struc-
ture. A study of OS/360 done in the early 70s showed that the
average number of modules involved in a given change rose
from 14.6% in releases 2–6, to 31.9% in releases 12–16 due to
“unintentional interaction” among components [12]. Windows
NT requires third party file system designers to be intimately
familiar with “patterns of interaction” that exist between the
file system, cache manager and virtual memory manager [25].
Recently, Engler et al. captured popular sentiment with an ob-
servation that disparate parts of operating system kernel code
are linked together in a “fragile and intricate mess” [3].

One significant source of modularity problems is that OS ker-
nels involve a number ofpath-specific customizations critical
to delivering required performance and functionality. Path-
specific customizations involve tailoring a service based on
the context in which it is invoked. For example, prefetching
on page faults to a randomly accessed file must be different
than for a sequentially accessed file.

Two critical properties of path-specific customizations make
them difficult to modularize in a layered architecture: (1) They
depend ondynamic context information (e.g. what is being
done with the data that caused the page fault). (2) They involve
layering violations (e.g. both high-level information about
predicted access patterns and low-level information about con-
tiguity on disk) [23].

The lack of support for implementing path-specific custom-
izations in a comprehensible fashion is a known disadvantage
of layered architectures [5]. Problems arise because passing
dynamic context is inherently messy, and leads to coupling as
higher-level context passes through lower-levels. Layering vi-
olations also lead to coupling in fragments of code that operate
on abstractions from multiple levels. In essence, path-specific
customizations cut a vertical slice through the layers.

Recently, the aspect-oriented programming (AOP) [11] com-
munity has focused attention on the concept ofcrosscutting
concerns, which are elements of a system that cut through
the primary system modularity. They have proposed linguistic
mechanisms intended to allow implementation of crosscutting
concerns as first class modules calledaspects [8, 16, 14, 1].

The goal of our work is to determine if the mechanisms of
AOP can be used to improve the modularity of OS code. Specif-
ically, we want to determine whether path-specific customiza-
tions can be considered to be crosscutting concerns, and wheth-
er they can be modularized using the mechanisms of AOP.

Most AOP language research is in Java. To enable a range
of experiments for operating systems written in C, we devel-
oped a paper design forAspectC. Conceptually and in syntax,
AspectC is a simple subset of AspectJ [8, 10]. As an initial ex-
periment, we used AspectC to modularize the implementation
of prefetching within page fault handling in the FreeBSD OS
kernel.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE 2001, Vienna, Austria
© ACM 2001 1-58113-390-1/01/09…$5.00

88

Our methodology was to start by refactoring existing code us-
ing AspectC, and hand-compiling the code to C. We are com-
fortable with the code we have developed for two reasons.
First, our design for AspectC is based on AspectJ, so we are
confident that it can be implemented. Second, hand compila-
tion is straightforward (albeit boring) which makes us confi-
dent that our refactored code is correct.

We begin with a description of the type of crosscutting con-
cerns we are focusing on, path-specific customizations, and
specifically consider prefetching in page fault handling as a
concrete example. Section 3 shows how we have used As-
pectC to modularize two path-specific prefetching customiza-
tions. Section 4 presents an analysis of the implementation.
Section 5 presents future work and discusses open issues. Sec-
tion 6 reviews related approaches, and Section 7 summarizes
our results and future work.

2. A REPRESENTATIVE EXAMPLE –
PREFETCHING IN FREEBSD

Prefetching is a critical element of all operating systems. It is
a performance optimization that aims to amortize the cost of
fetching data from the disk by retrieving additional data with
each disk request. Prefetching is based on combining predic-
tions about what additional data is likely to be needed in the
future with a analysis of what additional data would be most
cost-effective to fetch at any given time.

Prefetching is a classic path-specific optimization. Dynamic
context information is required because the lower levels of the
page fault mechanism need to know where the fault came from
in order to predict future demands. Layering violations are
inherent in the combining of predictions and cost analysis.

This paper focuses on two particular aspects of prefetching
in the FreeBSD 3.3 operating system. Both have to do with
prefetching during a page fault to mapped files. The first han-
dles the case where the declared access pattern is normal, the
second is for declared sequential access.

The next section describes the relevant mapped file function-
ality as it would be with no prefetching. This is followed by
a general description of prefetching, and a description of the
two specific prefetching modes.

Sections 2.1 and 2.2 discuss the required prefetching function-
ality independent of any particular code that implements it.
Discussion of the original implementation is deferred to Sec-
tion 2.3.

2.1 The virtual memory abstraction
FreeBSD and other Unix operating systems allow the pro-
grammer to map any file into virtual memory. Such a mapped
file is called a VM object, and can be accessed as ordinary
virtual memory. When a file is mapped, it is not entirely trans-
fered from disk at that time. Instead it is brought into memory
as needed, one page at a time.

A page fault occurs when a process references a virtual ad-
dress that is not in physical memory. A page fault is basically

an exception raised each time a non-resident virtual page is
accessed. Over time, pages accessed in the mapped file are
demand-paged into memory.

In the absence of prefetching, handling a page fault is fairly
straightforward. It is well supported by a layered architecture
in which the virtual memory system is a client of the file sys-
tem, which is in turn a client of the disk system.

A page fault starts in the virtual memory (VM) system as a re-
quest for a page associated with a VM object; it moves through
to the local file system, FFS in our case, and is translated into
a block-based request associated with a file; it finally passes
to the disk system where it is expressed in terms of a cylinder,
head, and sectors. The division of responsibilities between
these three layers is centered around the management of their
respective representations of data. That is, the functionality
within each layer primarily deals with controlling resources in
terms of its own set of abstractions.

2.2 Prefetching
This paper is focused on two path-specific prefetching cus-
tomizations, both having to do with virtual memory mapped
files. But it is important to note that prefetching in the OS
kernel is more extensive. Essentially all execution paths that
lead to the disk or the network have some form of path-specific
prefetching associated with them. (We have already refactored
two more prefetching aspects and have identified three more
which we intend to implement once we have a running As-
pectC compiler.)

Prefetching involves four key activities: prediction, cost anal-
ysis, planning and actually fetching the pages. (Note that this
discussion of prefetching is intended to enable the non-OS ex-
pert reader to understand the results of this refactoring exper-
iment, not to serve as a detailed survey of prefetching litera-
ture.)

At a high-level, context at the origin of the request is used to
predict future requests. The virtual memory system, the local
file system, and the remote file system all use different criteria
to make this prediction. For example, the file system might
determine that a file is being accessed sequentially, and predict
future requests on that basis.

Cost analysis involves lower level factors such as the cost of
disk access, contiguity of data on disk, and the destination of
the data. These are used to determine which disk blocks can
be prefetched in the most cost-effective way.

Planning involves combining prediction and cost analysis in-
formation to determine which data should actually be fetched
from disk, and whether that should happen as a synchronous
part of the current read, or asynchronously.

Fetching the data normally just involves executing the plans,
but there are cases where disk or other system state may change
between planning and fetching, which can cause plans to be
changed or cancelled.

Figure 1 provides a simplified overview of the primary func-

89

read request

check_valid

ufs_bmap

calc_range

Remote Disk
Remote Disk

ffs_getpages

vm_pager_getpages

vnode_pager_getpages

vm_fault

nfs_getpages

swap_pager...

device_pager...

default_pager...

 wait_for_read

(other callers)

 block_read

(other callers)

ffs_read

 Virtual Memory

...

...

...

Local Disk

nfs_read

vn_read

Normal access
page fault path

File systemLayer

Local and
Remote

File System
Layer:

Disk Layer

Local Disk

Sequential access
page fault path2

1

Figure 1: The layered kernel architecture and the structure of two path-specific optimizations. The ovals represent functions
in the primary code for the virtual memory system, file system and disk system layers. The path-specific optimizations are
numbered: (1) normal access mode page fault and (2) sequential access mode page fault.

tionality of the kernel layers involved in execution paths going
to disk: the virtual memory system, the local and remote file
systems, and the disk system. The execution paths discussed
in the paper are shown as numbered lines: (1) is for normally
accessed files, and (2) is for sequentially accessed files.

2.2.1 Prefetching for normal access (path 1)
VM objects have a declared access behaviour, which can be
set torandom, normal or sequential using themadvise system
call.

For VM objects with normal behavior, prediction follows a
simple locality heuristic that addresses close to the faulted ad-
dress (+/- a specific window) are more likely to be used next.
Cost analysis looks at both available memory and contiguity
on disk.

In planning normal mode prefetching the cost analysis factors
are given more weight than the prediction factors. Prefetch-
ing is synchronous and pages that are not contiguous are not
prefetched even if they appear within the predicted window.1

As part of planning, physical pages are allocated to hold the
pages to be prefetched. Because this allocation requires lock-
ing the page map associated with the VM object, and because
that page map is already locked in the VM layer as part of
preparing to fetch the faulted page, it is advantageous to do
planning while execution is still in the VM layer.

Cost analysis inherently involves dynamic context passing and

1Intuitively this is because the prediction in normal mode access is not
strong enough to warrant the risk of additional disk waits.

layer violations, since it looks at both VM layer information
(available memory) and disk layer information (contiguity).
Combining cost analysis with prediction is another source of
layer violations.

By the time the normal mode execution path reaches the file
system layer, important system state may have changed in a
way that invalidates the prefetching plan. There are three con-
ditions under which the file system layer will choose not to
prefetch planned pages for normal objects: the faulted page
has become valid, the faulted page is no longer on disk, or the
planned pages are no longer contiguous.

The file system layer must de-allocate memory for virtual pages
it decides not to fetch. This is an additional source of context
passing and layer violations, since the file system layer must
access the VM page map.

2.2.2 Prefetching for sequential access (path 2)
For VM objects with sequential behavior, prediction simply
says that future accesses will directly follow the current access.

In sequential mode prefetching, planning allows prediction in-
formation to dominate cost analysis – predicted pages are pre-
fetched even if they are not contiguous on disk. Some of the
prefetching is done asynchronously.

This aggressive sequential prefetching is handled by redirect-
ing control flow throughffs read instead offfs getpages. This
path triggers yet another prefetching mechanism specific to the
file system read service2, which asynchronously prefetches ac-

2We have implemented this as a separate aspect, not included here.

90

cording to a sequential access pattern.

The path-specific customization required in this case involves
the final destination of the read from disk to be associated with
the pages allocated to the VM object. A page-aligned transfer
from the file buffer cache to the VM allocated pages is not part
of a typical file system read operation. This ‘page flipping’
avoids an expensive copy operation and is associated only with
this particular execution path.

2.3 The original implementation
In the original implementation, code for prefetching for map-
ped files isscattered over approximately 265 lines, grouped
into 10 contiguous blocks, in 5 functions from three layers. In
other words, it is poorly modularized.

Dynamic context passing makes the codetangled as parame-
ters from high level functions are passed down through lower
ones. Layering violations further tangles the code in places
where one segment of code uses both VM and FS layer ab-
stractions.

The net effect is that it is extremely difficult to understand the
structure and behavior of prefetching in the original imple-
mentation. Even just identifying all the prefetching code takes
a significant amount of work. Understanding how the code
works is difficult because it is poorly localized, and its relation
to the execution flow of the main code is hard to follow. In
fact, in our study of the original implementation a significant
amount of work was required before we were able to concep-
tually separate normal mode prefetching from sequential mode
prefetching.3

Based on our analysis, it appears that the natural modular-
ity of prefetching modes is that of a single execution path,
rather than of the layers in the system. But these execution
paths crosscut the layers, as shown in Figure 1. This cross-
cutting property of the prefetching modes appears to be the
reason they are difficult to modularize using traditional tech-
niques, and is the basis of our decision to explore whether
aspect-oriented programming can improve the modularity of
this code.

3. ASPECTC IMPLEMENTATION
The aspect-oriented implementation of prefetching presented
here uses AspectC – a simple AOP extension to C. These ex-
tensions support modular implementation of crosscutting con-
cerns by allowing fragments of code that would otherwise be
spread across several functions to be co-located and to share
context.

Our implementation should be considered as a refactoring us-
ing AspectC [4]. Overall, only a small portion of our imple-
mentation of prefetching relies on the AspectC extensions, the
rest is ordinary C code from the original implementation.

3Our inspiration to explore an AOP approach to prefetching is largely
due to observing an experienced systems programmer in our lab de-
vote several days to tracking down all the sources of page allocation
and de-allocation in the code.

AspectC is a simple subset of AspectJ [8]. Aspect code, known
as advice, interacts with primary functionality at function call
boundaries and can run before, after or around the call. The
central elements of the language are a means for designat-
ing particular function calls, for accessing parameters of those
calls, and for attaching advice to those calls. Key to structuring
the crosscutting implementation of prefetching is the ability to
capture dynamic execution context with the control flow, or
cflow, language extension.

In this experiment, our primary goal was to evaluate whether
AOP had the potential to improve the modularity of OS kernel
code. To do this as quickly as possible, we initially deferred
building an AspectC compiler. Instead, we wrote code in As-
pectC and hand-compiled it to native C. Since these results
have proven to be quite promising we are now working on an
AspectC compiler that will enable us to take the work farther.

The remainder of this section presents our AspectC implemen-
tation of normal and sequential mode prefetching. AspectC
itself is presented on an as-needed basis.4

3.1 Normal prefetching in AspectC
Figure 2 illustrates the structure of prefetching for objects with
normal access patterns. The corresponding aspect-oriented
implementation is shown in Figure 3. The first two decla-
rations have to do with making values from higher-levels of
the page fault handling path available to prefetching code in
lower-levels. The next four declarations correspond directly to
the small circles in Figure 2.

The first declaration in Figure 3 allows advice in the aspect
to access the page map in which prefetching pages must be
allocated. This map is the first argument tovm fault. Reading
the declaration, it declares apointcut namedvm fault cflow,
with one parameter,map. A pointcut identifies a collection of
function calls and arguments to those calls. The second line of
this declaration provides the details. This pointcut refers to all
function calls within the control flow of calls tovm fault, and
picks outvm fault’s first argument. The ‘..’ in this parameter
list means that although there are more parameters in this list,
they are not picked out by this pointcut.

The second declarationis another pointcut, this time named
ffs getpages cflow, which allows advice in the aspect to access
the parameter list offfs getpages for de-allocation of planned
pages.

The third declaration defines before advice that examines
the object’s declared behaviour, plans what virtual pages to
prefetch, and allocates physical pages accordingly. In plain
English, the header says to execute the body of this advice
before calls tovnode pager getpages, and to give the body ac-
cess to themap parameter of the surrounding call tovm fault.

Reading the header in more detail, the first line says that this
advice will runbefore function calls designated following the
4For a more detailed understanding of AspectC consult [8, 9]. As-
pectC can be understood as a subset of AspectJ in which C functions
are analogous to static methods in Java, all aspects are singletons, there
are only method call join points, and there is no introduction.

91

(other file systems)

check_valid ufs_bmap

- pages are noncontiguous

after - faulted_page found in memory

- faulted_page not on disk

vm_fault

vm_pager_getpages

vnode_pager_getpages

ffs_getpages

before

calc_range

(other callers)

after

after

FFS

VM

cancel prefetching if:

and de-allocate cancelled pages

plan prefetching
and allocate pagesLayer

Layer

(other pagers)

Figure 2: The structure of the AspectC implementation of normal mode prefetching. Only the top two layers, VM and FFS,
are shown. The ovals represent functions comprising the primary page fault handling structure, the small circles and text
in italics represent the structure of the prefetching aspect.

aspect normal_mapped_file_prefetching {

pointcut vm_fault_cflow(vm_map_t map):
cflow(calls(int vm_fault(map, ..)));

pointcut ffs_getpages_cflow(vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page):
cflow(calls(int ffs_getpages(object, pagelist, length, faulted_page)));

/* plan the prefetching and allocate the pages */
before(vm_map_t map, vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page):

calls(int vnode_pager_getpages(object, pagelist, length, faulted_page)) &&
vm_fault_cflow(map)

{
if (object->declared_behaviour == NORMAL) {

vm_map_lock(map);
plan_and_alloc_normal_prefetch_pages(object, pagelist, length, faulted_page);
vm_map_unlock(map);

}
}

/* three cases in which prefetching might be cancelled for normal objects */

after(vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page, int valid):
calls(valid check_valid(..)) &&
ffs_getpages_cflow(object, pagelist, length, faulted_page)

{
if (valid)

dealloc_all_prefetch_pages(object, pagelist, length, faulted_page);
}

after(vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page, int error, int* reqblkno):
calls(error ufs_bmap(struct vnode*, reqblkno, ..)) &&
ffs_getpages_cflow(object, pagelist, length, faulted_page)

{
if (error || (*reqblkno == -1))

dealloc_all_prefetch_pages(object, pagelist, length, faulted_page);
}

after(vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page, struct trans_args* t_args):
calls(int calc_range(t_args)) &&
ffs_getpages_cflow(object, pagelist, length, faulted_page)

{
dealloc_noncontig_prefetch_pages(object, pagelist, length, faulted_page, t_args);

}
}

Figure 3: AspectC code for prefetching pages for objects of normal behaviour.

92

‘ :’ , and lists five parameters available in the body of the advice.
The second line specifies calls to the function vnode pager get-
pages, and picks up the four arguments to that function. The
third line uses the previously declared pointcut vm fault cflow,
to provide the value for map that is associated with the particu-
lar fault currently being serviced (i.e., from a few frames back
on the stack).

The body is ordinary C code. The helper function plan and-
alloc normal prefetch pages further determines how many and

which pages to allocate, depending on the availability of mem-
ory and layout of the pages on disk.

The next three declarationsimplement the three conditions
under which the FFS layer can choose not to prefetch. In each
case, the implementation of the decision not to prefetch results
in de-allocation.

The first after advice de-allocates all pages to be prefetched
if the faulted page is now valid. This executes after calls to
check valid, which occur when the normal page fault path is
checking to see whether the page has become valid. When
check valid returns non-zero, it is telling the normal paging
code that the page is now present in memory. In this case,
prefetching advice cancels all the prefetching.

The second after advicede-allocates all prefetching pages if
the faulted page is not found on disk. This may happen for
one of two reasons – either an error has occurred in which
case error is non-zero, or the fault will instead be satisfied
by a zero-filled page, in which case the parameter reqblkno
from ufs bmap is -1. It is important to note that the use of
ffs getpages cflow not only makes parameters available to ad-
vice that executes after calls to ufs bmap, but also ensures that
this advice only executes within this control flow. That is, calls
to ufs bmap in other paths do not execute this advice.

The third after advice de-allocates some or all prefetching
pages if the contiguity of the pages on disk has changed since
being checked by plan and alloc normal prefetch pages in the
VM-layer. The helper function takes all the parameters from
ffs getpages cflow and calc range, and de-allocates any pages
that were originally requested but not within the actual range
that will be fetched.

3.2 Sequential prefetching in AspectC
Figure 4 illustrates the structure of prefetching for objects with
sequential access patterns. The corresponding implementation
is shown in Figure 5. The careful reader will notice a small
amount of code duplication with the previous aspect. In par-
ticular, the vm fault cflow pointcut is in both aspects. This is
deliberate for clarity. AspectC includes features that would al-
low us to eliminate this duplication, and thereby clearly reflect
the common functionality of the two aspects. Specifically, a
shared aspect can be used to define common elements.

Similar to normal mode prefetching, the two pointcuts use
cflow to make values from higher-levels of the page fault han-
dling path available to prefetching code in lower-levels. Note
that this before advice operates independently of the before
advice in the aspect for normal mode prefetching, even though

they both advise the same function.

This aspect uses around advice to divert the execution path to
ffs read when access is sequential, or to proceed with ffs get-
pages otherwise. Around advice differs from before and after
advice in that it has control over whether or not the advised
function call proceeds as planned.

Looking closely at the parameters to the call to ffs read in this
advice, the constant MAXBSIZE is used to dictate the size of
the synchronous read request. This indicates that the amount
of data to be synchronously fetched will be the maximum buffer
size, regardless of the layout on disk. Consequently, unlike
normal mode prefetching, prediction in this case dominates
cost analysis.

The after advice executes under the control flow of the point-
cuts ffs read cflow and vm fault cflow. That is, it executes
only when control flow has been diverted along this special
path.

This after advice is responsible for ensuring that additional
costs are not incurred when transferring the data from the buffer
cache to the allocated VM pages. Since this is a special case
page-aligned transfer, copying can be avoided by simply reas-
signing or ‘fl ipping’ allocated VM pages with the appropriate
file buffer cache pages.

4. ANALYSIS
This section analyzes the AspectC implementation in terms
of the benefits traditionally associated with modular program-
ming [19, 24]. Where appropriate we also compare the new
and original implementations.

4.1 Pluggable functionality
In the AspectC implementation, the code for each prefetching
mode is textually localized in a single aspect. This enables
plug and play prefetching modes. We can place each aspect in
a single file, and use standard makefile techniques to include
or exclude specific combinations of prefetching modes.

We have verified this by compiling and running the kernel in
four configurations: no prefetching, normal mode prefetching
only, sequential mode prefetching only, and both prefetching
modes. (Not surprisingly, things ran much more slowly with-
out prefetching.)

With the simple implementation of AspectC we are currently
using, our ability to do prefetching aspect (un)plugging is lim-
ited to compile-time selection. Even so, this is significantly
more plug and play control over such a deeply crosscutting
concern than has previously been possible in operating sys-
tems. As suggested in [6], it also appears this control could
be sufficient to support certain product-line architectures, but
more work is required to confirm this.

In the non-aspect implementation the work required to put
each prefetching mode on a switch would be extensive – 10
clusters of prefetching code from 5 files would have to be
edited to use use compiler directives (#ifdef).

93

vm_fault

divert control flow

vm_pager_getpages

vnode_pager_getpages

ffs_getpages

ffs_readaround

block_read

after

before plan prefetching and allocate pages

flip buffer pages

Figure 4: The structure of the AspectC implementation of sequential mode prefetching.

aspect sequential_mapped_file_prefetching {

pointcut vm_fault_cflow(vm_map_t map):
cflow(calls(int vm_fault(map, ..)));

pointcut ffs_read_cflow(struct vnode* vp, struct uio* io_info, int size, struct buff** bpp):
cflow(calls(int ffs_read(vp, io_info, size, bpp)));

/* plan the prefetching and allocate the pages */
before(vm_map_t map, vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page):

calls(int vnode_pager_getpages(object, pagelist, length, faulted_page)) &&
vm_fault_cflow(map)

{
if (object->declared_behaviour == SEQUENTIAL) {

vm_map_lock(map);
plan_and_alloc_sequential_prefetch_pages(object, pagelist, length, faulted_page);
vm_map_unlock(map);

}
}

/* divert to ffs_read */
around(vm_object_t object, vm_page_t* pagelist, int* length, int faulted_page):

calls(int ffs_getpages(object, pagelist, length, faulted_page))

{
if (object->behaviour == SEQUENTIAL) {

struct vnode* vp = object->handle;
struct uio* io_info = io_prep(pagelist[faulted_page]->pindex, MAXBSIZE, curproc);
int error = ffs_read(vp, io_info, MAXBSIZE, curproc->p_ucred);
return cleanup_after_read(error, object, pagelist, length, faulted_page);

} else
proceed;

}

/* page flip buffer pages */
after(struct uio* io_info, int size, struct buf** bpp):

calls(int block_read(..)) &&
vm_fault_cflow(..) &&
ffs_read_cflow(struct vnode*, io_info, size, bpp)

{
flip_buffer_pages_to_allocated_vm_pages((char *)bpp->b_data, size, io_info);

}
}

Figure 5: AspectC code for prefetching on behalf of sequentially accessed memory mapped files.

94

4.2 Independent development
The interface between the prefetching aspects is clear. We can
easily tell what functions in the main page fault handling code
the prefetching aspect knows about, and what arguments to
those functions it sees.

When working with the aspect, the interface is apparent from a
quick reading of the code. When working with the main code,
simple editor extensions, such as discussed in [10], can flag
functions that are the targets of advice with links back to the
aspect.

The interface is also relatively abstract, representing an ab-
straction of the internal structure of page fault handling rather
than true details of the page fault handling code. The inter-
face is similar in nature to those presented by object-oriented
frameworks [7].

Because the interface is clear and abstract, it is possible to de-
velop the main code and each of the aspects quite indepen-
dently. Of course, as with any abstract interface, there are
some kinds of changes that will require changing the interface,
and all of the code that depends on it.

In the original implementation, the code for these two prefetch-
ing modes is so scattered and tangled through the main page
fault handling code that the question of doing independent de-
velopment hardly even makes sense to ask. In the best case
scenario the developer would know from prior experience ex-
actly which functions contained this code and be able to start
there. But even so there are roughly 265 lines of prefetch-
ing code distributed over 5 functions that contain a total 1950
lines. (125 out of 825 lines in the VM layer, 120/250 in the
FFS layer, and the 20/875 in the disk layer.)

4.3 Comprehensibility
Decomposing page fault handling into the main page fault han-
dling functionality and prefetching aspects allows us to reason
about the different parts and their respective interaction sepa-
rately.

The behavior of page fault handling with several different pre-
fetching modes is still complex. But the ability to reason about
it as a combination of different modules materially increases
comprehensibility relative to the original implementation.

4.3.1 Aspect interaction with rest of code
The interaction between prefetching and rest of code is declar-
ative. Advice declarations and pointcuts tell us when advice
runs, what values it sees, and what effect it can have on the
execution of the rest of the code.

For example, we know that the first after advice in Figure 3,
runs after check valid, ignores the parameters, depends on the
return value but cannot change it, and has access to arguments
to the surrounding call to ffs getpages. We also know that
the before advice from the two aspects operate independently,
even though they advise the same function.

Making the interaction declarative means that we can reason

about it at an abstract level. Understanding that vm fault cflow
makes the first argument to vm fault available to other advice
within the aspect is easier than understanding traditional code
that passes dynamic context down through layers of function
calls.

Declarative aspect interaction also gives us guarantees about
value flow and execution that are not available in the original
code, i.e. it is easy to find every piece of code that has access
to the map, whereas in the traditional context passing approach
that is harder to be sure of.

4.3.2 Aspect internal structure
Because each prefetching mode is localized, it is easier to un-
derstand its internal structure. Within the aspect and it helper
functions, we can see interactions such as the planning and al-
location of prefetched pages and the subsequent checking and
de-allocation of those pages.

This localization makes it easier to reason about and change
the aspect’s internal behavior. In the original code, this is more
complex. For example, in order to see the coordination be-
tween allocation and de-allocation for normal mode prefetch-
ing, we would have to trace the execution path through 5 files,
2 levels of function tables handled by macros, and 4 changes
in variable names.

5. FUTURE WORK AND DISCUSSION
Our work targets the understanding and modularization of path-
specific customizations. Other examples of this kind of cross-
cutting we plan to explore in kernel code involve page replace-
ment and scheduling strategies.

Page replacement is the process of evicting pages that are cur-
rently resident in memory in order to make room for new pages.
A page replacement strategy is invoked any time the system
is low on available memory. In the general case, the criteria
for page eviction is based on a least-recently used policy. Of
course, this is exactly the wrong policy to apply in the case of
sequential access, where the most recently used page is actu-
ally the best candidate for eviction.

As with prefetching, high-level context important for page re-
placement can be explicitly set using madvise. This allows
eviction to use the pattern of access as part of the selection
criteria for removal. Low-level context associated with writ-
ing pages out to disk hinge on the ability to cluster writes in
a way that will support contiguity for subsequent reads. Simi-
lar to prefetching, layer violations occur because the decision
of which pages to evict are typically made at a low level but
require interacting with higher level abstractions.

Scheduling involves sharing the processor between all active
processes. A scheduling policy tries to ensure that all currently
executing processes make progress. Time slicing, priority lev-
els, and points in the execution where a process is naturally
blocked waiting for disk I/O, are all used to determine which
process will get the processor next.

The path-specific customizations we are exploring with regard
to scheduling are related to high-level process state and low-

95

level blocking I/O requests. Layer violations in this case stem
from the need to reconcile cross-layer information such as ac-
cess patterns, process priority, and disk requests in order to
make good scheduling decisions.

5.1 Open issues
Essential open questions regarding path-specific customiza-
tion, AspectC and aspect-oriented programming in general in-
clude issues of efficiency, scalability, and development tools.
In terms of efficiency, improving modularity of OS kernel code
is not helpful if it adversely impacts performance. Specifically,
we need to know what overheads AspectC adds to code in
terms relative to a tangled implementation. We are now imple-
menting an AspectC compiler as a simple pre-processor. Ex-
perience with AspectJ, as well as our own hand-compiling of
the code indicates that this kind of implementation can evolve
to produce the performance characteristics we need.

Another issue, currently under investigation in the AOP com-
munity in general, is scalability. With respect to our work,
a possible criticism is that as we introduce more aspects to
the kernel, we introduce more interfaces, more interaction and
more complexity. Without principled application, the possibil-
ity of degrading comprehensibility exists. Although we need
more experience to comment concretely on heuristics for cre-
ating and managing sophisticated, multi-aspect structures, we
are optimistic that our future work will provide insight into
this issue. Since our technique makes code for two prefetch-
ing modes more comprehensible, it would be surprising if it
made code for a large number of aspects in the kernel more
complex. But this is something we will have to explore, in
particular with respect to understanding interaction between
aspects.

Tools are another area under investigation by several groups
in the AOP community. The impact aspect-oriented program-
ming will have on the development process, the support re-
quired to facilitate its use, and the metrics used to determine
degrees of crosscutting, scattering and tangling are all issues
that require attention. Once we have more experience with the
use of AspectC in kernel code, we expect to develop additional
tool support, including debugging support, following the same
basic path as AspectJ.

6. RELATED WORK
Work on modularizing path-specific customization touches on
work from systems, separation of concerns, and programming
language communities.

6.1 Operating system structure
The advantages of a layered architecture has been recognized
as key since the THE multiprogramming system [2] in the late
60s. End-to-end arguments [22, 21] provide a set of princi-
ples for determining the placement of functions within layered
designs. These principles advocate an organization where a
function or service belongs in a layer only if it can be com-
pletely implemented in that layer and is needed by all clients.

An aspect-oriented approach to structure in an operating sys-
tem is compatible with, and incrementally applicable to, a lay-

ered architecture. Separating the implementation of these cus-
tomizations from the primary functionality may better support
end-to-end arguments by allowing principled vertical aspects
to capture customizations in a layered system.

The Synthetix project [20] uses specialization to optimize com-
monly used paths in the system. Specialization uses incre-
mental partial evaluation, largely consisting of constant fold-
ing and macro expansion, to generate multiple path-optimized
implementations for the same interface. Other related Syn-
thetix projects use specialization for survivability, end-to-end
quality, and adaptability.

Customization of a specific execution path is central to both
our application of aspect-oriented programming and special-
ization. Our approach advocates the separation of path-specific
customization by the programmer in the original source code
to better achieve comprehensibility. Specialization aims to au-
tomatically specialize the original source code.

An issue of great importance within operating systems is the
untangling or streamlining of data flow in order to improve
performance. Scout [15] is an operating system designed to
optimize communication by specifying a fast data path to move
priority data (such as video streams) through the system with
as little overhead as possible.

Although the nature of this optimization in Scout may lend it-
self to some form of path-specific customization, our intuition
is that mechanisms to support data flow will be different from
those we have used for control flow. The role AspectC can
play in data flow is an area of crosscutting we plan to explore.

6.2 Separation of concerns
Our work stems directly from the approach to separation of
concerns (SOC) supported by the language extensions devel-
oped by the AspectJ project [8]. Specifically, we are currently
applying this linguistic support to one kind of crosscutting
concern: path-specific customization.

Separation of concerns requires some criteria for decomposi-
tion. Parnas suggested decomposition should begin with a list
of either difficult design decisions or design decisions that are
likely to change, and those decisions should be hidden into
modules first [19]. Stevens et al. later suggested that func-
tional binding, or cohesion based upon the execution of a sin-
gle task, produces less complex interaction between modules
relative to weaker bindings such as temporal execution or the
referencing of common data [24].

In our work we are advocating a modularity where primary
functionality can be implemented by a traditional means, and
the crosscutting path-specific customizations are implemented
as aspects. We believe this separation achieves the qualities
associated with good modularity better than the scattered and
tangled implementation operating systems are currently faced
with.

A number of general approaches to separation of concerns in
complex systems have emerged in the last few years. Work
on subject-oriented programming [17] and hyperspaces [16]

96

is aimed at composing hierarchies of concerns and focuses on
multiple dimensions of concerns. Composition filters [1] sep-
arate objects into internal parts and interfaces to which filters
can be applied.

Although all of these approaches involve explicit separation at
the source code level in order to increase comprehensibility,
our work hinges directly on the ability to specify dynamic ex-
ecution context in order to modularize crosscutting concerns.

6.3 Programming language support
Several programming languages provide access to dynamic
context. Perl [27] and Tcl [18] allow access to the call stack at
run-time. Explicit support for access in the form of dynamic
scoping is provided by languages such as Lisp which allow
variable names to be bound according to the state of the call
stack.

Access to dynamic context for path-specific customization re-
quires specific linguistic support for principled call stack ac-
cess. Perl and Tcl do not have a general mechanism for access-
ing specific parameters in a principled way. Dynamic scoping
may be important to support, but at this stage in development
it is not part of AspectC. Further experimentation is required
to know the pros and cons of supporting this feature in systems
code.

6.4 Other work
Implicit context [26] targets the removal of extraneous em-
bedded knowledge (EEK) to improve separation of concerns
and support software evolution and reuse. This approach pro-
vides reflective access to the call history of the system. An-
other research project, Implicit parameters [13], allows a set
of intervening functions to be excluded from the parameter
passing between two endpoints. A new parameter can thus be
passed directly from a sender to a receiver without changing
the source code for functions that execute between them.

Our current experience with path-specific customization has
more modest needs with regard to dynamic context than the
complete call history provided by implicit context. The per-
formance considerations of the kernel may preclude attempts
to maintain quite this much history, but it may be useful to
write aspects that gather some subset of call history informa-
tion beyond what we are currently using. Implicit parameters
have some of the power of using cflow to pass dynamic con-
text. The difference is that the source must be written to ex-
plicitly use the implicit parameter mechanism. This does not
support separation concerns to the degree we can achieve with
AspectC.

7. CONCLUSION
Operating systems have a problem with modularity. Part of the
problem is that general low-level services are commonly tai-
lored to different high-level contexts within which it they are
invoked. We refer to this tailoring as path-specific customiza-
tion, and identify dynamic context information and layering
violations as the properties that make it hard to modularize.

In this paper, we show preliminary results of how an aspect-

oriented refactoring of two path-specific customizations asso-
ciated with prefetching for mapped files improves modular-
ity. Our results show that the AspectC implementation pre-
sented here supports unpluggability, independent development
and comprehensibility better than the tangled implementation.

Our work to date has focussed on evaluating the potential for
AspectC to improve the modularity of OS kernel code. We
are currently working to implement AspectC and plan to use
it to explore other kinds of crosscutting concerns common to
operating system implementations.

Acknowledgments: Many thanks to Stephan Gudmundson,
Jan Hannemann, Gail Murphy and Andrew Warfield for their
insightful comments on drafts of this paper. Many thanks also
to Ida Chan, whose tenacious approach to kernel code ensured
that our perfetching aspects were sound, and to Christopher
Dutchyn for his invaluable contributions to the AspectC pro-
totype.

8. REFERENCES
[1] M. Aksit and B. Tekinerdogan. Solving the modeling

problems of object-oriented languages by composing
multiple aspects using composition filters. In OOPSLA
AOP’98 workshop position paper, 1998.

[2] E.W. Dijkstra. The structure of THE-multiprogramming
system. Communications of the ACM, 11(5), 1968.

[3] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI), 2000.

[4] Martin Fowler. Addison-Wesley Object Technology
Series, 1999.

[5] David Garlan and Mary Shaw. An introduction to
software architecture. Technical report, CMU, 1994.
CS-94-166.

[6] Martin Griss. Implementing product-line features by
composing component aspects. In Proceedings of First
International Software Product Line Conference,
August 2000.

[7] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1, June 1998.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold.
AspectJ home page. www.aspectj.org.

[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold.
AspectJ primer.
www.aspectj.org/doc/primer/index.html.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An

97

overview of AspectJ. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), June 2001.

[11] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented
programming. In European Conference on
Object-Oriented Programming (ECOOP), 1997.

[12] L.L. Lehman and L.A. Belady. Program evolution.
APIC Studies in Data Processing, (27), 1985.

[13] J. Lewis, M. Shields, E. Meijer, and J. Launchbury.
Implicit parameters: Dynamic scoping with static types.
In Symposium on Principles of Programming
Languages, January 2000.

[14] K.J. Lieberherr. Adaptive Object-Oriented Software: the
Demeter Method with Propagation Patterns. Boston:
PWS Publishing Company, 1996.

[15] Allen B Montz, David Mosberger, Sean W. O’Malley,
Larry L. Peterson, Todd A. Proebstign, and John H.
Hartman. Scout: A communications-oriented operating
system. Technical report, University of Arizona, 1994.
TR 94-20.

[16] H. Ossher and P. Tarr. Multi-dimensional separation of
concerns and the Hyperspace approach. In Proceedings
of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software
Development, 2000.

[17] Harold Ossher, William Harrison, Frank Budinsky, and
Ian Simmonds. Subject-oriented programming:
Supporting decentralized development of objects. In
Proceedings of the 7th IBM Conference on
Object-Oriented Technology, 1994.

[18] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[19] D.L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12), 1972.

[20] Calton Pu, Tito Autrey, Andrew Black, Charles Consel,
Crispin Cowan, Jon Inouye, Lakshmi Kethana, Jonathan
Walpole, and Ke Zhang. Optimistic incremental
specialization: Streamlining a commercial operating
system. In Proceedings of the 15th ACM Symposium on
Operating System Principles (SOSP), 1995.

[21] D.P. Reed, J.H. Saltzer, and D.D. Clark. Active
networking and end-to-end arguments. In IEEE
Network, June 1998.

[22] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end
arguments in system design. In ACM Transactions on
Computer Systems (TOCS), November 1984.

[23] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[24] W.P. Stevens, G.J. Meyers, and L.L. Constantine.
Structured design. IBM Systems Journal, 13, 1974.

[25] Werner Vogels. File system usage in Windows NT 4.0.
In Proceedings of the 17th ACM Symposium on
Operating System Principles (SOSP), 1999.

[26] Rob Walker and Gail Murphy. Implicit context: Easing
software evolution and reuse. In Proceedings of the
Proceedings of the ACM SIGSOFT Eighth International
Symposium on the Foundations of Software Engineering
(FSE-8), November 2000.

[27] L. Wall, T. Christiansen, and R. Schwartz. Programming
Perl. O’Reilly and Associates, 2nd edition, 1996.

98

