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ABSTRACT
One of the key objectives of viral marketing is to identify a
small set of users in a social network, who when convinced to
adopt a product will influence others in the network leading
to a large number of adoptions in an expected sense. The
seminal work of Kempe et al. [13] approaches this as the
problem of influence maximization. This and other previous
papers tacitly assume that a user who is influenced (or, in-
formed) about a product necessarily adopts the product and
encourages her friends to adopt it. However, an influenced
user may not adopt the product herself, and yet form an
opinion based on the experiences of her friends, and share
this opinion with others. Furthermore, a user who adopts
the product may not like it and hence not encourage her
friends to adopt it to the same extent as another user who
adopted and liked the product. This is independent of the
extent to which those friends are influenced by her. Previous
works do not account for these phenomena.

We argue that it is important to distinguish product adop-
tion from influence. We propose a model that factors in a
user’s experience (or projected experience) with a product.
We adapt the classical Linear Threshold (LT) propagation
model by defining an objective function that explicitly cap-
tures product adoption, as opposed to influence. We show
that under our model, adoption maximization is NP-hard
and the objective function is monotone and submodular,
thus admitting an approximation algorithm. We perform
experiments on three real popular social networks and show
that our model is able to distinguish between influence and
adoption, and predict product adoption much more accu-
rately than the classical LT model.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining
General Terms: Algorithms, Theory, Experimentation.
Keywords: Product adoption, Influence, Viral marketing.

1. INTRODUCTION
One of the fundamental problems in viral marketing is to

identify a small set of individuals in a social network, who
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when convinced to adopt a product will influence others in
the network through a word-of-mouth effect, leading to a
large number of adoptions in an expected sense. Previous
works such as [13] approached this as the problem of influ-
ence maximization where, given a social network represented
by a directed graph with users as nodes, edges corresponding
to social ties, and edge weights capturing influence proba-
bilities, the goal is to find a seed set of k users such that by
targeting these, the expected influence spread (defined as the
expected number of influenced users) is maximized. Here,
the expected influence spread of a seed set depends on the
influence diffusion process which is captured by a model for
influence propagation. While several propagation models ex-
ist, two classical models, namely Linear Threshold (LT) and
Independent Cascade (IC), have been widely studied in the
literature. In this work, we focus on the LT model. In the
LT model, a user is either in an inactive or an active state.
An active user influences each of its inactive neighbors. The
activation of an inactive user depends on the influence prob-
abilities associated with its active neighbors. Each user v
picks an activation threshold θv uniformly at random from
[0, 1]. At any time step, if the sum of incoming weights from
its active neighbors exceeds the threshold, v becomes active.
The process continues until no more activations are possible.

In the bulk of the influence maximization literature in
data mining, it is assumed that once a user is active (i.e.,
is influenced), she will automatically and unconditionally
adopt the product. In this sense, influence spread is viewed
as equivalent to adoption spread (expected number of users
who adopt the product). Clearly, product (or technol-
ogy/innovation) adoption is the main goal in viral market-
ing, and influence spread is essentially used as a “proxy”
for adoption. We argue that it is important to distinguish
between influence and adoption, an idea well established
in other domains like Sociology and Marketing. Bohlen et
al. [2] in 1957 proposed five stages of product adoption in
which the adoption stage is considered different than the
awareness stage. Kalish [12] characterized the adoption of a
new product as consisting of two steps – awareness and adop-
tion – and argued that the awareness information spreads in
an epidemic-like manner while the actual adoption depends
on other factors such as price and individual’s valuation of
the product. Given these studies in other traditional do-
mains, the current influence maximization work in the data
mining community lags behind in modeling such phenom-
ena. Our work is a step towards building a more realistic
model of product adoption.

More concretely, previous literature (in data mining) on
influence maximization makes three assumptions. First,
once a user is influenced, she will immediately adopt the



product. Second, it is assumed that once a user adopts a
product, she encourages her friends to adopt it as well, ir-
respective of whether or how much she likes the product.
In other words, adoption of a product implies that the user
likes it regardless of her experience with it. Third, only af-
ter a user adopts a product, she shares her opinion on the
product and attempts to influence her neighbors. That is,
non-adopters either don’t have any opinions on the product
or such opinions are not visible to others. These assump-
tions may not hold in general as illustrated by the following
examples.

Example 1. Bob buys an Amazon Kindle and dislikes the
product. He posts his experience on his blog and describes
the missing features. Kali, a friend of Bob, takes Bob’s opin-
ions on technology products seriously. She learns about the
Kindle from the post and decides not to buy it. Further-
more, she blogs about the product not meeting her expecta-
tions and in turn influences the decisions of her friends.

Example 2. Bob watches the movie“The Ring”and likes it.
He tells his friend Kali that the movie is great. Kali doesn’t
get a chance to watch the movie, but tells her friend Charles
about the movie. Charles gets influenced and watches it.

In Example 1, Bob doesn’t like the product and shares his
opinion with his friends. Thus, opinions can emerge from a
user experience with a product and can propagate from an
adopter. Specifically, if a user does not like the product,
their endorsement of the product is unlikely to be strong, a
fact that may be noticed by their neighbors. Even when a
user is strongly influenced by her neighbor, if the endorse-
ment is weak, the user is less likely to adopt the product.
The propagation of information to a user does not always
lead to product adoption. There may be many factors that
affect a user’s adoption decision, including the user’s inter-
ests, budget and time. Indeed, opinions can propagate from
a non-adopter who is active (e.g., Kali in Example 2) and
can promote adoption by others. In this example Kali acts
as an “information bridge” or a tattler, who talks about the
product without actually adopting it. How does the pres-
ence of such non-adopters who act as information bridges
affect the overall adoption? Does the product adoption de-
pend on the opinions, in addition to social influence? These
are some of the questions this paper addresses.

In particular, we argue that the classical propagation
models that make the three assumptions above may pre-
dict a product adoption quite different from reality, a point
we will establish empirically using three real data sets. This
motivates re-examining these assumptions and allowing for
the following facts: (i) adopters’ opinions may strongly affect
the degree to which they influence their neighbors’ adoption
and (ii) non-adopters acting as an information bridge can
contribute their own opinions, which too can affect influ-
ence propagation as well as adoption. We use user ratings
of products as an abstraction of their opinions. Ratings are
either provided by the user or can be predicted using collab-
orative filtering [14]. Therefore, the extent to which a user is
influenced by her neighbors (to become active) is a function,
not only of the influence probabilities but of the ratings of
the neighbors as well. In this paper, we study an interest-
ing variation of the classical influence maximization problem
with an aim to maximize the number of product adoptions
and make the following contributions.

• We study the novel problem of maximizing product

adoption, a more natural goal of applications like viral
marketing. We present an intuitive model called LT-C,
for LT with Colors, that captures these intuitions. We
show that the problem of product adoption maximiza-
tion is NP-hard but the objective function, i.e., the
expected number of product adoptions, is monotone
and submodular; thus the greedy algorithm provides
a (1− 1/e− ε)-approximation to the optimal solution.
We also propose methods to learn parameters of our
model (Section 3).

• We study two types of networks – movies networks
(Section 4.1) and music networks (Section 4.2) using
three real world datasets. We found that in almost
all instances, the classical LT model significantly over-
predicts the spread. Moreover, it predicts the same
spread for all the products. We demonstrate that our
LT-C model, by incorporating ratings, significantly im-
proves the accuracy of these predictions.

• In all the three datasets, we found that there is a posi-
tive correlation between the number of initiators (users
who first express opinions among their friend circles)
and the final spread, suggesting that the network struc-
ture plays a significant role in the spread. We demon-
strate that the choice of seed nodes is critical and can
make a significant difference to the spread achieved.
We also found that largely, the seed sets are different
for different products, though some influential users
are picked up consistently as seeds irrespective of the
product being marketed (Section 4).

We review related work in Section 2 and present conclusions
in Section 5.

2. BACKGROUND AND RELATED WORK
Background. In 2001, Domingos et al. [6] introduced the
the problem of identifying influential users to the data min-
ing community. Kempe et al. [13] formalized it as the prob-
lem of influence maximization as described above. In partic-
ular, their work focuses on two propagation models – Lin-
ear Threshold (LT) Model and Independent Cascade (IC)
Model. The influence maximization problem is NP-hard
under both the LT and IC models [13], and the expected
influence spread function is monotone and submodular. For-
mally, a set function f is submodular iff f(S+{x})−f(S) ≥
f(T+{x})−f(T ) whenever S ⊆ T ⊂ V and x ∈ V \T , where
V is the set of all users. Exploiting these properties, Kempe
et al. [13] showed that a simple greedy algorithm, which iter-
atively adds a user with the maximum marginal gain to the
current seed set, guarantees a (1 − 1/e − ε)-approximation
to the optimal solution, for any ε > 0. Our work adapts
the framework of the LT model for product adoption in the
presence of non-adopters who may promote or inhibit the
adoption by sharing their opinions.

Related Work. One related problem is that of revenue
maximization, studied by Hartline et al. [10]. They of-
fer a family of strategies based on an influence and exploit
paradigm that work as follows. In the first step, called the
influence step, the seller gives the item to a chosen set of
customers for free. Then in the exploit step, the seller vis-
its the remaining buyers in a random sequence and offers
each buyer a price that is expected to maximize her rev-
enue. Their model allows the seller to bypass the network



structure and visit arbitrary buyers at any time. While rev-
enue maximization, in principle, is closely related to adop-
tion maximization, and arguably should subsume the latter,
there are the following key differences with our work. We
explicitly model the following phenomena observed in real
data sets: first, users may be activated but not necessarily
adopt/buy a product and instead may tattle about it; sec-
ond, opinions shared by tattlers may promote adoption by
other users; third, sometimes, tattlers may choose to inhibit
adoption by other users by sharing the poor ratings they
gave for the product.

Another closely related problem is that influence max-
imization in the presence of negative opinions (see Chen
et al. [3]). Their model, called IC-N, builds on the clas-
sical IC model by subdividing the active state into two sub-
states, positive and negative, while preserving the properties
of monotonicity and submodularity. They incorporate the
spread of negative opinions with a parameter q that models
the quality of the product. The model assumes that the pa-
rameter q is the same across all users, an assumption that
is not always realistic. Unfortunately, this assumption is
essential to their framework, since if the parameter q is al-
lowed to be different for different users (indicating users like
the product to differing degrees), their objective function is
no longer monotone and submodular, thus, the greedy algo-
rithm fails to provide any approximation guarantee. In our
work, we argue that influence propagation depends on the
extent to which a user likes the product, in addition to the
influence weights among users. Furthermore, we claim that
in a network, there exist information bridges, or tattlers who
propagate the influence without adopting the product them-
selves. We show that these tattlers are indeed present in real
data sets and their presence makes a significant difference
to product adoption. A key feature of our model is that
not only do we allow the probability of liking a product to
be different for different users, we do so while retaining the
monotonicity and submodularity of the objective function.

Tang et al. [18] recognize that influence varies with the
domain/topic of an item. They present a scalable approach
based on MapReduce for learning topic-specific social influ-
ence weights from a given social graph and topic distribu-
tion. By contrast, in our work, we recognize the reality that
user tastes and opinions can be not just topic specific but
even item specific and take that into account in our model.

In addition to social influence, homophily (or selection)
has been shown to be a possible cause of users’ actions.
While some (e.g., [1]) focus on distinguishing the effects
of influence and homophily, others (e.g., [5], [15]) showed
the feedback effects that both factors have on each other.
In particular, Crandall et al. [5] argued that both influ-
ence and homophily can be useful in predicting users’ fu-
ture behavior. In our work, we are interested in building a
model that predicts the users’ actions, in particular, users’
adoption of products, without necessarily distinguishing the
causes, and use it to develop algorithms that maximize the
number of adoptions. Following [12], we argue that while
information (or influence) spreads in an epidemic-like man-
ner, actual adoption depends on various other factors. We
separate the state of adoption from the state of being influ-
enced (or active) in the LT model. Clearly, for the model to
work, it is important that the underlying network structure
represent the flow of information, irrespective of whether
it corresponds to an explicit social graph (where the links
are formed explicitly by users, e.g., friendship links in Face-
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Figure 1: LT-C model with colored end states:
adopt–green, promote–blue, inhibit–red

book), an implicit social graph (where the information flows
among users indirectly, e.g., as in recommendation engines
like Movielens, Amazon etc.), or a combination of the two.

A recent work by Goyal et al. [8] also focuses on predicting
the users’ actions, while offering an alternative “data-based”
approach that bypasses the propagation models to estimate
the spread. The same authors [7] study the problem of learn-
ing influence probabilities based on the past propagation
traces, paying special attention to the temporal nature of
influence probabilities. In other work, Chen et al. [4] have
proposed an efficient heuristic for influence maximization
under the LT model, which is recently improved by [9].

3. PROPOSED FRAMEWORK
Let G = (V,E,W ) be a weighted, directed graph with

nodes (users) V and edges (social ties) E, where the influ-
ence weights are captured by the function W : E → [0, 1].
The weight wu,v associated with an edge (u, v) ∈ E repre-
sents the probability of user u influencing user v, such that
the sum of incoming edge weights at any node is no greater
than 1. That is,

∑
u∈Nin(v) wu,v ≤ 1, where N in(v) is the

set of in-neighbors of user v. In addition, we assume that
a matrix R of Users× Products is given where each entry
ru,i denotes the rating given by user u to the product i. We
assume whenever ratings are missing, they are predicted us-
ing collaborative filtering. The higher the rating, the more
positive the opinion.

Intuitively, a user’s decision to adopt a product should not
only depend on the influence of neighbors, but also on what
they think about the product, as captured by the ratings.
Next, we describe our model that we call LT-C model, for
Linear Threshold with Colors.

3.1 LT-C Model
Figure 1 gives an overview of our model in the form of a

state diagram. An Inactive node v has not yet formed an
opinion of the new product and is open to being influenced
by neighbors. A node is Active if it is influenced by its
neighbors. Let A be the set of Active in-neighbors of node
v and fv(A) denote the activation function of v, that is, the
total influence on v from nodes in A s.t. 0 ≤ fv(A) ≤ 1.
Values of fv(A) close to 1 can be thought of as a collective
“recommendation” of Active neighbors of u strongly favor-
ing the product. On the hand, values of fv(A) that are close
to 0 represent that neighbors of u collectively disapprove the
product. As with the LT model, an Inactive node v picks
an activation threshold θv uniformly at random from [0, 1]
and if fv(A) ≥ θv then v becomes Active, else v remains
Inactive. We instantiate the activation function as follows,

fv(A) =

∑
u∈A wu,v(ru,i − rmin)

rmax − rmin
(1)

where rmax and rmin represent the maximum and mini-



mum ratings in the system, respectively. Intuitively, this
definition corresponds to treating, for each edge (u, v) in
the graph, the effective influence weight of u on v as
wu,v(ru,i−rmin)/(rmax−rmin), where i is the product being
marketed.

Once a node is in the Active state, it has enough informa-
tion about the product and has formed an opinion. At this
stage, the node can choose to adopt the product and rate it,
or decide to share its opinion without adopting the product
i.e., tattle. With some probability λv, an activated node v
enters the Adopt state (or adopts) and is colored green, and
with probability 1− λv, node v enters the Tattle state (or
tattles). Intuitively, the parameter λv models the likelihood
of a node adopting the product after it has been activated
by its neighbors. There are several real world factors that
can be modeled into λv, such as a user’s budget, interests
and purchase history. Note that the parameter λv is specific
to each node v. If the node decides to Adopt, it provides a
rating rv,i for the product i being marketed. In Section 3.4,
we propose methods to learn these parameters.

The Tattle state is an interesting one. It represents a
typical gossipmonger who has not experienced the product
but is expressing an acquired opinion. Such a node is likely
to be biased one way or the other. We say a tattler (node
in the Tattle state) can either enter the Promote state
(color blue) or the Inhibit state (color red) depending on
its disposition parameterized by µv, specific to v. In other
words, v enters the Promote state with probability µv and
Inhibit stat with probability 1− µv. For instance, consider
a user who loves (or hates) the iPhone and owns one already.
When the latest model is launched, even though the user is
not ready to buy it, the user has some strongly biased opin-
ion of the product which the user shares with his friends. We
model this bias in opinion by representing it with a constant
rating of rmax for a user in the Promote state and rmin for
a user in the Inhibit state. A node in the Promote or
Inhibit state propagates information but does not directly
contribute to the revenue. The node’s actions however may
stimulate or inhibit adoption by its neighbors, thus proving
to be an important information bridge in the network. Fi-
nally, we should mention that of the states in Figure 1, only
the Inactive, Adopt, Promote and Inhibit states may
be observable in a real data set. The intermediate states are
used for modeling purposes only.

The dynamics followed by the process of opinion propa-
gation at discrete time steps are as follows. At time t = 0,
a set S of k nodes is chosen as the seed set and are said to
be active, and each seed node can choose any of the three
states Adopt, Promote or Inhibit. At t > 0, each node
u that activated (Adopt, Promote or Inhibit state) at
time t, contributes to the activation of its neighbors v where
(u, v) ∈ E. Let At denote the neighbors of v that are Ac-
tive at time t, then the total influence on node v at time
t is fv(At). If the Active neighbors push fv(At) over the
threshold θv, then v becomes Active, else it remains In-
active. Once in Active state, the node follows the path
to enter one of Adopt, Promote or Inhibit states and
stays in that state with corresponding probabilities. Also,
each Active node provides a rating of the product that is
factored into the activation function. Thus, once a node be-
comes active, it enters one of these states. At+1 is the set
of all nodes that become active as a result of the influence
from their neighbors in At. The process of node activation
stops if at some time step no new nodes can be activated.

3.2 Maximizing Product Adoption
We define the expected spread (or spread for short) of the

seed set S as the expected number of Adopt nodes in the
network at the end of the propagation and denote it σ(S).
We sometimes refer to σ(S) as the coverage of set S.

Problem 1 (Maximizing Product Adoption). Given a so-
cial graph G = (V,E,B), a parameter k, and a ratings ma-
trix R and parameters λv, µv,∀v ∈ V , the problem of max-
imizing product adoption is to find a seed set S of k nodes
such that by activating these nodes, the expected spread un-
der LT-C model is maximized.

Not surprisingly, the problem is NP-hard. However, as we
will show, the spread function is monotone and submodu-
lar, so a simple greedy algorithm leads to a (1 − 1/e − ε)-
approximation to the optimum, for any ε > 0.

Theorem 1. Problem 1 is NP-hard.

Proof. Consider the restricted class of instances of the
problem where ∀v ∈ V, λv = 1 and rv,i = rmax. The prob-
lem of maximizing product adoption over this class of in-
stances is equivalent to the classical problem of influence
maximization under the LT model, which is known to be
NP-hard [13]. The theorem follows.

Theorem 2. The spread function σ(·) under LT-C model
is monotone and submodular.

Proof. It is straightforward to show that σ(·) is mono-
tone. To establish submodularity, our proof outline fol-
lows that in [13]. The challenge in our case is two-fold:
(1) There are four possible observable states of nodes – In-
active (gray), Adopt (green), Promote (blue), and In-
hibit (red) in place of just two; (2) The activation of a node
depends on the state of its in-neighbors. The reason is that
the influence of a node u on its neighbor v is a combination
of the weight wu,v and the rating of u. This rating depends
on u’s state: it’s rmin in the red state, rmax in the blue state,
and a value ru,i obtained from R in the green state. Thus,
u’s state affects the extent of u’s influence on its neighbors.

Borrowing the idea of a live edge model from [13], we de-
fine a timed version of the live edge selection process for the
purpose of this proof. Start by activating the seed nodes S
in G and color them as follows: for any u ∈ S, color u green
w.p. λu, blue w.p. (1−λu)µu, and red w.p. (1−λu)(1−µu).
At any time t > 0, allow each uncolored out-neighbor v of
a colored node to choose at most one of its in-neighbors z
w.p. pz,v and no in-neighbor w.p.

∑
y∈Nin(v) wy,v = 1. If

the chosen in-neighbor is colored, then color v green w.p.
λv, blue w.p. (1 − λv)µv, and red w.p. (1 − λv)(1 − µv).
Otherwise, don’t record the choice. That is, if the chosen
in-neighbor is not colored, we don’t record the choice of the
in-neighbor, but constrain future choices of in-neighbors by
v, if any, to be outside the set of nodes colored by time
t − 1. Term each chosen edge i.e., edge to the chosen col-
ored neighbor as a live edge. Other edges are blocked/dead.
A live path is a path made of only live edges. Stop the
process when there is no change. This process produces a
distribution over possible worlds. Let X be one such pos-
sible world. We will show that σ(S) =

∑
X Pr[X]σX(S),

where σX(S) is the number of green nodes reachable from
the seed nodes S via live paths in the possible world X. It
is easy to see that σX(.) is monotone and submodular, from
which the theorem follows, since a non-negative linear com-
bination of submodular functions is submodular. To show



that σ(S) =
∑

X Pr[X]σX(S), we will show that the proba-
bility distributions of sets of green/blue/red nodes obtained
by running the LT-C model are identical to those obtained
from the above process.

We step through the diffusion process according to the
LT-C model and determine the probability with which any
node v turns green, blue or red. Let each node v pick its
threshold θv uniformly at random from [0, 1]. Let St be the
set of Active (colored) nodes at time t = 0, 1, 2, . . ., with
S0 = S. The probability with which an uncolored node v
will be colored at time t+1 is the likelihood that a neighbor
u that got colored at time t pushes the total influence on
v over the threshold θv. We denote this probability of v
getting colored at time t+ 1 as ψt+1

v . Therefore,

Pr[v got colored at time t+ 1] = ψt+1
v =

∑
u∈St\St−1

pu,v

1−
∑

u∈St−1
pu,v

Once a node v is Active, its color depends solely on the
parameters λv and µv and so we have:

Pr[v turns green at t+ 1] = λv · ψt+1
v

Pr[v turns blue at t+ 1] = (1− λv) · µv · ψt+1
v

Pr[v turns red at t+ 1] = (1− λv) · (1− µv) · ψt+1
v

Next, we consider the timed version of the live edge selection
process defined above and iterate through the corresponding
process. Let S′

0 = S be the seed set. Let S′
t, t ≥ 0, denote

the set of nodes that is colored at time t according to this
process. Let v 6∈ S be any node. The probability that it got
colored at time t+1, denoted by φt+1

v , is the probability with
which its chosen in-neighbor u got colored at time t, given
that v was not colored before time t+ 1. More precisely,

Pr[v got colored at time t+ 1] = φt+1
v =

∑
u∈S′t\S

′
t−1

pu,v

1−
∑

u∈S′t−1
pu,v

Applying induction on time, it is easy to see that the distri-
butions of Active (i.e., colored) sets of nodes obtained from
running the LT-C model, St, t ≥ 0, and the sets of nodes
reachable from the seed nodes S by live paths, S′

t, t ≥ 0, are
identical. Given the equivalence between the distributions
over St and S′

t, it follows that φt+1
v = ψt+1

v . Since the color
acquired by an Active node solely depends on the param-
eters λv, µv, the distributions of nodes colored green, blue,
and red under the LT-C model and under the timed live edge
selection process are identical. This was to be shown.

3.3 Choosing Optimal Seed Set
While product adption maximization is NP-hard, as

shown by Theorem 2, the spread function σ(S) under the
LT-C model is monotone and submodular. Thus, we can
employ a simple greedy algorithm which repeatedly picks
a node with the maximum marginal gain and adds it to
the seed set, until the budget k is reached. Furthermore,
since the LT model is a special case of the LT-C model (cor-
responding to λv = 1, ∀v and rv,i = rmax, ∀v), the #P-
hardness [4] of computing the spread of a given seed set
carries over to our setting. To mitigate this, we employ
Monte Carlo simulation for estimating the spread. Finally,
we adapt the CELF algorithm of Leskovec et al. [16]. The
idea behind CELF is that the marginal gain of a node can-
not increase in subsequent iterations (due to submodular-
ity) and thus the spread of seed sets is computed in a lazy

forward manner, speeding up the greedy algorithm consid-
erably. Our implementation is based on these ideas. The
adaptation of CELF to LT-C model is trivial and we omit
the details. It is well known that this approach yields a
(1− 1/e− ε)-approximation to the optimum, for any ε > 0.

3.4 Learning Model Parameters
Edge Weights. As in [7], we learn influence weights from
the past behavior of users. For example, consider a log of
ratings in which each tuple is of the form 〈u, i, t, r〉, saying
user u rated an item i at time t with rating r. There are
several cases where such information is readily available in
the real world. For example, consider a movie recommender
system (see Section 4 for the complete case study), then an
action can be considered as “user rating a movie”. Seeing
friends’ ratings, one may be influenced to watch the movie
and in turn, rate the movie at a later timestamp. Hence, the
influence weight on an edge (u, v) is learnt as the fraction of
times user v rated an item after u had done so, and normal-
ized over all neighbors x of v such that

∑
x∈Nin(v) wx,v = 1.

Ratings Matrix. We compute the ratings matrix R using
collaborative filtering. Several sophisticated collaborative
filtering methods have been proposed by the recommender
systems community for predicting the rating of a user for a
given item or product. Matrix factorization [14] is one such
popular method. The input to matrix factorization is a very
large sparse matrix of user ratings with a large number of
missing values corresponding to users who have not rated
a product. The main task is to predict these missing rat-
ings. An assumption made is that some small number of
ratings are available for each product. In the context of our
problem, we maintain the assumption that the new prod-
uct which we want to push in the market has been adopted
by some small number of early adopters, who have assigned
ratings to the product. This is commonly seen when new
products are launched, for instance, technology bloggers get
a sneak-peak of new products at tech-media events and they
blog about those products. Often, linux operating system
and even Google services are first released as beta versions
to selected users for product analysis and to get initial feed-
back before launching to the public. In this paper, we make
use of product ratings by users (either provided by users or
predicted by recommender algorithms) as a way of modeling
the user opinion of a product.

Node Parameters λ and µ. Recall that an active user v
enters the Adopt state with probability λv and it enters the
Tattle state with probability 1−λv. Typically, companies
such as Netflix and Amazon have user logs which can be
used to determine if a user reviewed the product without
adopting it. Next to each review on Amazon, where the
user bought the product being reviewed, there is a label that
states“Amazon Verified Purchase”representing an adoption.
The reviews without this label can be attributed to tattle
nodes (states promote or inhibit). Given the user rating log,
we learn λv as maximum likelihood estimate (MLE) which
is the fraction of times a user provided an explicit rating
for a product over the times the user provided any opinion
including a comment, review and numeric rating.

The parameter µv models the inherent bias of user v. As
with λv, we can rely on the rating log to compute this pa-
rameter. As an example, in the movie rating social network
Flixster, there are special non-numeric ratings “want to see



it” and “not interested” that map closely to the Promote
and Inhibit states in our model respectively. Again, we use
maximum likelihood estimate (MLE) to compute µv, that is,
the fraction of times a user gave the rating “want to see it”
over the number of times any such special rating was given
by that user. We show the effectiveness of this choice by the
means of extensive experiments in Section 4.

4. MODEL EVALUATION
We perform empirical analysis to study the adoption of

two types of “products” – movies and artists. We analyze
influence spread and actual adoption (viewing) of movies on
two datasets, one from a social network for movies, Flixster1,
and the other from a movie recommender system, Movie-
lens2, presented in Section 4.1. Further, we analyze a music
social network, Last.fm3, and study the adoption (listening)
of songs and artists, presented in Section 4.2. The table in
Figure 2(a) presents the basic statistics of all these datasets.

We compare the following models in our evaluation.
Classical LT. Linear Threshold model proposed in [13].
LT-C. Our proposed model.
LT Ratings. Our proposed model without Tattle

nodes. That is, all the nodes who are influenced adopt the
product, and λv = 1, ∀v ∈ V . This is equivalent to mod-
ifying the activation function of the classical LT model to
include ratings as defined in Eq. (1).

LT Tattle. Our proposed model without any ratings.
That is, all the nodes in Adopt state are assumed to rate
the item as rmax, as do those in Promote state, while users
in Inhibit state rate rmin.

We tested these variations of LT-C in order to understand
the relative contribution of the different components to the
overall accuracy of predicting the expected adoption spread.
In all the experiments, we run 10K Monte Carlo simulations
to estimate the coverage for k = 50 seeds. The data was
divided into test and training sets randomly such that all
the ratings of a movie fall in exactly one of training or test
sets. All validation experiments are run on the test set.

4.1 Adoption of Movies
Datasets. Flixster is a social network for movies which
enables users to share their opinion on movies with friends
by rating and reviewing movies. This dataset, collected by
Jamali et al. [11], in its raw form has 1M users, 14M (undi-
rected) friendship relations among users, and 8.2M ratings
that range from half a star (rating 0.5) to five stars (rating
5). Since running Monte Carlo (MC) simulations is very
expensive (may take several hours even for 10K nodes), a
graph of that size is difficult to handle, given the extensive
set of experiments we perform in our study. We use the Gr-
aclus4 software to extract a subgraph which contains 13K
users and 192.4K (directed) edges among them. There are
4.14M ratings by these users of which 1.84M are numeric
ratings and 2.3M are special ratings.

Our second dataset on movies is from the Movielens rec-
ommender system released by Grouplens5 research group.
The dataset consists of 6K users and 1M ratings (on scale of

1www.flixster.com
2www.movielens.org
3www.last.fm
4www.cs.utexas.edu/users/dml/Software/graclus.html
5www.grouplens.org/node/73

1-5) on 3.7K movies. The dataset does not have an explicit
social graph, so we construct an implicit one representing the
flow of influence. In Movielens, influence flows indirectly via
the recommendation engine that is based on collaborative
filtering [14]. For instance, if a movie is recommended to
Bob, it is likely that the “nearest neighbors” of Bob (as seen
by the recommendation engine) must have given high ratings
to the movie. We deduce these implicit relationships among
users by computing similarity among users. Precisely, an
edge is created between users u and v if the Jaccard index6

w.r.t. the movies they rated is greater than a threshold (0.25
in experiments). The process resulted in a graph with 6K
nodes and 209K edges.

The size of the training set is 19.9K for Flixster, and 2.9K
for Movielens; and test set is 5.1K for Flixster, and 741
for Movielens. Our experiments were run on 650 movies
randomly picked from the test set for Flixster, and the entire
test set of 741 movies for Movielens.

Model Parameters from Data. For both the datasets,
edge weights are learned as described in Section 3.4. Fig-
ures 2(b) and 2(c) show the distribution of edge weights for
Flixster and Movielens respectively. Flixster allows ratings
from 0.5 to 5 in steps of 0.5, while Movielens allows integer
ratings from 1 to 5. Figures 2(d) and 2(e) show the distribu-
tion of ratings for Flixster and Movielens respectively. The
complete ratings matrix R is computed using the matrix
factorization method described in [14] for both the datasets.

Flixster allows two types of special ratings – “want to see
it” and “not interested” – in addition to the numeric ratings.
There are 2.3M special ratings in our dataset, of which 730K
ratings are “want to see it” and 1.6M are “not interested”.
We map the “want to see it” and “not interested” ratings
to the Promote and Inhibit states in our model and fix
their numeric values to 0.5 and 5 respectively. For any user
v ∈ V , the adoption probability λv is computed as the frac-
tion of times v gave a numeric rating over the number of
all (numeric and special) ratings given by v. Similarly, µv

is computed as a fraction of times v gives a “want to see
it” rating over the number of special ratings given by v.
Figures 2(f) and 2(g) show the distribution of the λ and µ
parameters learned using the special ratings. In both the
distributions, a large majority of the users have λ and µ val-
ues close to the ends of the spectrum i.e., 0 and 1. A value
of one (zero) for λ for a user indicates that she adopts (tat-
tles about) each product which she learns about. Similarly,
a value of one (zero) for µ indicates if the user decides to
tattle, she promotes (inhibits) the product. The distribu-
tions in Figures 2(f) and 2(g) show these strong preferences
of users. Over 1200 users gave only numeric ratings and
have λ = 1. Considering the special ratings, 1400 users gave
“want to watch” ratings only (µ = 1) and 1500 users gave
“not interested” ratings only (µ = 0). The fact that over
half of all ratings are special and represent opinions shared
by users who have not watched the given movie emphasizes
the need to study the effect of Tattle nodes on adoption.

Movielens also features special ratings, such as, “want to
see it” that corresponds to movies in a user’s wishlist, and
“hide this” that corresponds to “not interested”. However,
the actual dataset obtained from the Grouplens website did
not include these ratings. In order to mitigate this, we use
the distribution of λ and µ learned from Flixster for com-

6Jaccard index for sets X,Y is J(X,Y ) = |X ∩ Y |/|X ∪ Y |.



Flixster Movielens Last.fm
#Nodes 13K 6040 1892
#Edges 192.4K 209K 25.4K

Avg. degree 14.8 34.6 13.4
#Movies or #Artists 25K 3706 17.6K

#Ratings 1.84M 1M 259K
#Edges with

75.7K 154K 157K
non-zero weight

(a) Dataset statistics
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(e) Distribution of ratings in
Movielens
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Figure 2: Summary of datasets and distributions of model parameters

puting the values and for users in the Movielens dataset.
Though not ideal, we believe this is a reasonable approxima-
tion since both data sets represent users’ opinions on movies.
The shape of the distributions in Figures 2(f) and 2(g) sug-
gests a Beta probability distribution as a natural choice
for modeling both λ and µ. We learn the parameters for
the Beta distribution by fitting a curve to the data from
Flixster, and obtain the distributions λu ∼ Beta(0.3, 0.1)
µu ∼ Beta(0.001, 0.001), for any user u ∈ V .

Coverage with different models. We first analyze the
effect of ratings on product adoption. Figures 3(a) and 3(b)
show the coverage obtained for a seed set size k = 50 using
the classical LT model, LT Ratings, LT Tattle and the LT-C
model for maximizing product adoption. The figures show
this comparison for a particular movie, and the results were
similar for a set of 30 and 20 movies picked randomly from
Flixster and Movielens, respectively. As can be seen, there
is a huge gap between the prediction of classical LT and of
LT-C model. For instance, on Flixster, LT model predicts
a coverage of 4200 with a budget of 50, and LT-C predicts
a coverage of only 701 for that budget. Which model is
correct? Is LT-C too pessimistic or is the classical LT model
too optimistic? Coverage is an important statistic used in
estimating the revenue (and thus profit) and hence, it is
important to have an accurate estimate of it. As shown
next, gauging models based on the absolute coverage they
predict can often lead to models that perform poorly.

Accuracy of estimated coverage. We evaluate the cover-
age obtained by different models against the actual adoption
of a product. We define the actual adoption coverage (ac-
tual coverage, for short) as the number of users who adopted
the product, in this case, gave a numeric rating for a given
movie. Since the coverage estimated by a model depends on
the size of the seed set, we fix the seed set for each movie
and compute the coverage by each model given the seed set.
The seed set for each movie is the set of initiators which
includes all users who watched a given movie before any of
their friends did. Figures 3(c) and 3(e) validate that the LT-
C model estimates actual adoption coverage accurately on

Table 1: Average RMSE for different models
Model Flixster Movielens
LT 1594.8 826.8
LT Ratings 269.3 301.8
LT Tattle 183 420.7
LT-C 144.6 301.7

both datasets. Each point in the figures represents a movie
and its coordinates correspond to the actual coverage vs.
that estimated by a model, for the set of initiators as the
seeds. The set of initiators and hence the size of the seed set
may be different for each movie. Figure 3(d) shows that the
actual coverage is positively correlated with the number of
initiators in both the datasets (shown are all movies in the
datasets). Moreover, the final coverage is much larger than
the number of initiators, suggesting that the network struc-
ture plays a significant role in the final spread of adoption.

Figure 3(c) shows 650 movies and 3(e) shows 741 movies
of the test set for Flixster and Movielens, respectively. The
x = y line is the ideal scenario where the model estimate is
identical to the actual coverage. As seen from the figures,
the classical LT model over-estimates the coverage by large
amounts. Both including tattle nodes and including ratings
are useful in providing better estimates, while estimates of
adoption using LT-C model are closest to reality. To quan-
tify this error in estimating the coverage, we compute the
average root mean square value (RMSE7) over the test set,
for the coverage predicted by the different models w.r.t. ac-
tual coverage. We observe that the RMSE obtained using
the classical LT model is over 10 times that by our model
(on Flixster), as shown in Table 1. On Movielens, the LT-
C and LT Ratings models have similar RMSE. This might
be because we do not have data to learn values of λ and
µ for various users, instead we draw their values from the
Beta distribution whose parameters are taken from Flixster
dataset (see above).

Another interesting trend observed in Figure 3(d) is that
the choice of seeds is critical. For instance, we picked the
109 movies from Flixster where the number of the initiators

7For vectors x, y of size n, RMSE(x, y) =
√∑n

1 (xi − yi)2/n.
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(a) Coverage obtained with different
models on Flixster
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for k = 50 on Flixster and Movielens
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(g) Consistency of chosen seeds across
actions on Flixster
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(h) Consistency of chosen seeds across
actions on Movielens
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Figure 3: Coverage and seed set analysis on Flixster and Movielens datasets

is 50. The average final coverage on these movies is 58.2,
which is quite close to the number of initiators. On the
other hand, if the initial seed set is picked carefully using
the LT-C model, it is possible to achieve the coverage of
even more than 500, as seen in Figure 3(a).

Product and seed set analysis. In Figure 3(f) we study
the effect of ratings on the overall coverage given a budget
of 50 seeds. Figure 3(f) shows the coverage for a set of 30
and 20 movies picked at random for the Flixster and Movie-
lens datasets respectively. By taking ratings into account,
the LT-C model predicts that good movies (rated high) are
likely to have larger viewership compared with bad movies
(rated low). By contrast, the coverage estimated using the
LT model is the same across all movies, and is approximately
4200 nodes for movies in Flixster and 2300 for the Movie-
lens dataset, significantly higher than the actual coverage in
both cases.

A natural question to ask is whether there are some nodes
that are influential across actions (movies) and are consis-
tently selected as seeds. Figures 3(g) and 3(h) show a his-
togram of the percentage of times a node was selected as

a seed for the same set of movies in Figure 3(f). For the
Flixster dataset, there are 7 seeds among the 144 unique
seeds that are consistently selected for 90% of the movies
analyzed. The consistency decays exponentially where only
a few seeds have high consistency and most seeds have low
consistency. A similar trend was observed for the Movielens
dataset, where 10 out of 104 unique seeds were consistently
selected 90% of the times. Interestingly, these nodes are not
the top high degree nodes in the graph. This observation is
consistent with a recent study [17] on influence in Twitter.

Evaluating model parameters. During our study, we re-
alized that sometimes we may not have access to the data
required for computing λ and µ for each user in the net-
work, instead, we may be able to infer the distribution of
both these parameters. We evaluate the coverage obtained
by drawing each model parameter from appropriate distri-
butions and comparing it with that obtained when all pa-
rameters are computed from the data. The results are shown
in Figure 3(i). We analyze the coverage when the ratings are
drawn from a normal distributionN (µd, νd) where the distri-
bution mean µd = 3.59 and variance νd = 1.01, as computed



from the given numeric ratings. The obtained coverage is al-
most the same as that obtained when ratings are computed
using matrix factorization from the available ratings. Next,
we analyze the coverage when λ and µ are drawn from Beta
distributions as λu ∼ Beta(0.3, 0.1) µu ∼ Beta(0.001, 0.001),
for each user u ∈ V . These distributions are learned by fit-
ting a Beta probability distribution to the λ, µ values com-
puted from the Flixster data. The obtained coverage comes
close to that obtained from data. In conclusion, it is encour-
aging to observe that drawing the model parameters from
a distribution that approximates the data may well give a
good estimate of the coverage if access to user logs is limited.

4.2 Adoption of Music
Datasets. We study the adoption of music on a dataset
from the popular music service Last.fm. The dataset we
used was released for the Workshop on Information Het-
erogeneity and Fusion in Recommender Systems (HetRec
2011)8. The details of the dataset are presented in the ta-
ble in Figure 2(a). It has 1892 users with 25.4K friendship
relationships among them. The dataset includes the users’
listening history in the form of number of times a user lis-
tened to songs by an artist, and users’ tagging history for
tagging artists.

Model Parameters from Data. We use both tagging
and listening history as actions for computing edge weights.
Since the listening history is only available as playcounts, it
does not come with timestamps. We assume these are most
recent actions and assign the current timestamp to all lis-
tening actions. Now, edge weights can be learned as before.
The distribution of edge weights is shown in Figure 4(a).
The data was divided into test and training sets, with the
test set consisting of 3067 randomly picked artists.

A user’s opinion of an artist is implicitly present in the
form of playcounts, i.e., the number of times the user has
listened to songs by that artist. To infer ratings on a scale
of 0 to 5 for each user, we partition the artists into 5 buck-
ets, where the top bucket represents artists in the top 20-
percentile playcounts, the second bucket in the next 20-
percentile and so on. Each artist in the top bucket is as-
signed a rating of 5, next bucket corresponds to rating 4
and so on. It is well known that listening history follows
a power-law distribution where a few artists (or songs) are
heard many times and many artists (songs) are heard very
few times. This pattern is observed in the obtained ratings
as shown in Figure 4(b).

Last.fm allows users to indicate their preference on songs
by marking them as “loved” or “banned”. For a given song,
we regard the users who loved that song as being in the
Adopt state and those who banned that song as being in the
Inhibit state. Given this mapping, we can use the “loved”
and “banned” songs for inferring a distribution of λ. How-
ever, the dataset for the HetRec workshop did not contain
the information on loved and banned songs. We used the
API from Last.fm to crawl this information for an arbitrary
set of 10K users, and computed λu for a crawled user u as
the fraction of loved songs over the number of loved and
banned songs. Figure 4(c) shows the distribution of λ for
the crawled users. A trend similar to that in Flixster is
observed for values of λ in Last.fm, although with a larger
skew towards adopting the product (in this case, an artist).

8http://ir.ii.uam.es/hetrec2011

We fit a Beta probability distribution to the values of λ and
the best fit was obtained with Beta(0.5, 0.001). Since the
consumption of songs from an online music service does not
cost much, it is not natural for users to want to listen to a
song but not actually listen to it. Therefore, for this domain,
µu = 0, for every user u.

Accuracy of estimated coverage. Figure 5(a) compares
the coverage obtained using classical LT, LT Tattle, LT Rat-
ings and LT-C models with the actual coverage obtained by
the initiators. Since the distribution of λ as obtained from
the data is highly skewed towards 1, including the Tattle
state does not make the coverage estimate much better than
the classical LT model. On the other hand, most ratings
are low and hence their inclusion into the LT model has a
greater impact for this dataset. The estimated coverage of
LT Ratings and LT-C are similar, and provide a far better
estimate compared with the classical LT model. The RMSE
values averaged over 3067 artists for the four models were as
follows, classical LT:97.5, LT Tattle:93.6, LT Ratings:31.7
and LT-C:31.7. These errors in coverage estimation show
that for the music domain as well (where adoption may not
cost money), incorporating users’ ratings in the propagation
model provides better estimates of adoption, compared with
accounting for tattling but not ratings. In Figure 4(d), we
present the actual coverage against the number of initiators,
for all the artists. Again, it can be seen that the two are
positively correlated.

Product and seed set analysis. Figure 5(b) shows that
the coverage varies for artists that have different popular-
ity (or rating). The coverage estimated by the classical LT
model is the 1230, regardless of the artist, again way off
from reality. The trend in consistency of seeds observed for
music domain is similar to that seen for movies. Figure 5(c)
shows that few (i.e., 12) seeds are picked over 90% of the
times and 62 out of 149 unique seeds are picked in less than
10% of the 20 artists analyzed. These two experiments show
that using LT-C, it is not only the coverage that is different
for different products, even the target seeds are different. In
contrast, the classical model disregards these nuances. This
suggests taking such nuances into account may lead to a
more accurate and effective model for viral marketing.

5. CONCLUSIONS AND FUTURE WORK
Classical diffusion models such as IC and LT do not distin-

guish between influence and product adoption. Thus, they
implicitly assume that once influenced, a node necessarily
adopts a product and that adopters always influence other
users to adopt the product. Our observations on real data
show that sometimes influenced users, once they become
active, may choose to not adopt but instead tattle about
the product; by doing so, they may either promote or in-
hibit adoption by other users. Furthermore, adopters may
endorse a product to varying degrees based on their experi-
ence with the product, as often reflected by the ratings they
provide in several real data sets.

In this paper, we proposed a propagation model called LT-
C model that accounts for these observations. We formalized
the problem of adoption maximization as distinguished from
influence maximization and showed that it is NP-hard. We
also showed the expected adoption spread function under
the LT-C model is monotone and submodular and thus, the
classic greedy algorithm can be used to get an approximate
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Figure 4: Summary of dataset and distributions of model parameters for Last.fm
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for k = 50
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(c) Consistency of chosen seeds across
actions

Figure 5: Coverage and seed set analysis on Last.fm dataset

solution. We conducted extensive experiments on two do-
mains – two data sets from movies and one from the music
domain. Our results show that w.r.t. the accuracy of spread
prediction, the LT-C model is consistently the best and the
classical LT model is consistently the worst.

There is still a long way to go to develop a truly realis-
tic product adoption model. It may be possible that the
users are passive and may not express any opinion even af-
ter adopting a product [17]. One way to incorporate this
is to split the Adopt state into two sub-states, viz., “adopt
and rate” and “adopt and not rate”. However, it is not clear
how we can identify the latter state (for learning the model
parameters) in the datasets we can access. Similarly, users
may not find tattlers’ ratings as trustworthy as adopters’
ratings. Marginalizing tattlers’ ratings may improve the
predictions. Extending the model by incorporating the five
stages of product adoption [2] can be useful. Inclusion of
negative opinions in the spirit of [3] within the framework
of our model is interesting and may lead to an even more
expressive model for product adoption. Next, it is impor-
tant to validate the LT-C model against many more real
data sets from diverse domains. Last but not the least, scal-
able heuristic algorithms need to be developed for the LT-C
model in order to handle very large networks and seed sets.
Our ongoing work addresses some of these questions.
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