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Abstract In recent years, study of influence propagation

in social networks has gained tremendous attention. In this

context, we can identify three orthogonal dimensions—the

number of seed nodes activated at the beginning (known as

budget), the expected number of activated nodes at the end

of the propagation (known as expected spread or cover-

age), and the time taken for the propagation. We can

constrain one or two of these and try to optimize the third.

In their seminal paper, Kempe et al. constrained the bud-

get, left time unconstrained, and maximized the coverage:

this problem is known as Influence Maximization (or

MAXINF for short). In this paper, we study alternative

optimization problems which are naturally motivated by

resource and time constraints on viral marketing cam-

paigns. In the first problem, termed minimum target set

selection (or MINTSS for short), a coverage threshold g is

given and the task is to find the minimum size seed set such

that by activating it, at least g nodes are eventually acti-

vated in the expected sense. This naturally captures the

problem of deploying a viral campaign on a budget. In the

second problem, termed MINTIME, the goal is to mini-

mize the time in which a predefined coverage is achieved.

More precisely, in MINTIME, a coverage threshold g and a

budget threshold k are given, and the task is to find a seed

set of size at most k such that by activating it, at least g
nodes are activated in the expected sense, in the minimum

possible time. This problem addresses the issue of timing

when deploying viral campaigns. Both these problems are

NP-hard, which motivates our interest in their approxi-

mation. For MINTSS, we develop a simple greedy algo-

rithm and show that it provides a bicriteria approximation.

We also establish a generic hardness result suggesting that

improving this bicriteria approximation is likely to be hard.

For MINTIME, we show that even bicriteria and tricriteria

approximations are hard under several conditions. We

show, however, that if we allow the budget for number of

seeds k to be boosted by a logarithmic factor and allow the

coverage to fall short, then the problem can be solved

exactly in PTIME, i.e., we can achieve the required cov-

erage within the time achieved by the optimal solution to

MINTIME with budget k and coverage threshold g. Finally,

we establish the value of the approximation algorithms, by

conducting an experimental evaluation, comparing their

quality against that achieved by various heuristics.

Keywords Social networks � Social influence �
Influence propagation � Viral marketing �
Approximation analysis � MINTSS � MINTIME

1 Introduction

The study of how influence and information propagate in

social networks has recently received a great deal of

attention (Domingos and Richardson 2001; Richardson and

Domingos 2002; Kempe et al. 2003, 2005; Kimura and

Saito 2006; Goyal et al. 2008; Chen et al. 2009, 2010a, b;
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Goyal et al. 2010; Weng et al. 2010; Bross et al. 2011;

Bakshy et al. 2011; Agarwal et al. 2011; Cha et al. 2011).

One of the central problems in this domain is the problem

of influence maximization (Kempe et al. 2003). Consider a

social network in which we have accurate estimates of

influence among users. Suppose we want to launch a new

product in the market by targeting a set of influential users

(e.g., by offering them the product at a discounted price),

with the goal of starting a word-of-mouth viral propaga-

tion, exploiting the power of social connectivity. The idea

is that by observing its neighbors adopting the product, or

more generally, performing an action, a user may be

influenced to perform the same action, with some proba-

bility. Influence thus propagates in steps according to one

of the propagation models studied in the literature, e.g., the

independent cascade (IC) or the linear threshold (LT)

models (Kempe et al. 2003). The propagation stops when

no new user gets activated.

In this context, we can identify three main dimensions—

the number of seed nodes (or users) activated at the

beginning (known as the budget), the expected number of

nodes that eventually get activated (known as coverage or

expected spread)1, and the number of time steps required

for the propagation. In their seminal paper, Kempe et al.

(2003) introduced the problem of influence maximization

(MAXINF) that asks for a seed set with a budget threshold

k that maximizes the expected spread (time being left

unconstrained). They showed that under the standard

propagation models IC and LT, MAXINF is NP-hard, but

that a simple greedy algorithm that exploits properties of

the propagation function yields a (1 - 1/e - /) approxi-

mation, for any /[ 0 (as discussed in detail in Sect. 2).

In this paper, we explore the other dimensions of

influence propagation. The problem of minimum target set

selection (MINTSS) is motivated by the observation that in

a viral marketing campaign, we may be interested in the

smallest budget that will achieve a desired outcome. The

problem can therefore be defined as follows. We are given

a threshold g for the expected spread and the problem is to

find a seed set of minimum size such that activating the set

yields an expected spread of at least g.

In both MINTSS and MAXINF, the time for propaga-

tion is not considered. Indeed, with the exception of a few

papers (see e.g., Leskovec et al. 2007), the temporal

dimension of the social propagation phenomenon has been

largely overlooked. This is surprising as the timeliness of a

viral marketing campaign is a key ingredient for its suc-

cess. Beyond viral marketing, many other applications in

time-critical domains can exploit social networks as a

means of communication to spread information quickly.

This motivates the problem of minimum propagation time

(MINTIME), defined as follows: given a budget k and a

coverage threshold g, find a seed set that satisfies the given

budget and achieves the desired coverage in as little time as

possible. Thus, MINTIME tries to optimize the propagation

time required to achieve a desired coverage under a given

budget.

1.1 Our contributions

We now summarize the main results in this paper.

• First, we show (Sect. 4, Theorem 1) that for all

instances of MINTSS, where the coverage function is

submodular, a simple greedy algorithm yields a bicri-

teria approximation: given a coverage threshold g and a

shortfall parameter �[ 0; the greedy algorithm will

produce a solution S : rðSÞ� g� � and jSj � ð1þ
lnðg=�ÞÞOPT; where OPT is the optimal size of a seed

set whose coverage is at least g; that is, the greedy

solution exceeds the optimal solution in terms of size

(budget) by a logarithmic factor while achieving a

coverage that falls short of the required coverage by the

shortfall parameter. We prove a generic hardness result

(Sect. 4, Theorem 3) suggesting that improving this

approximation factor is likely to be hard.

• For MINTIME under IC and LT model (or any model

with monotone submodular coverage functions), we

show that when we allow the coverage achieved to fall

short of the threshold and the budget k for number of

seed nodes to be overrun by a logarithmic factor, then

we can achieve the required coverage in the minimum

possible propagation time, i.e., in the time achieved by

the optimal solution to MINTIME with budget thresh-

old k and coverage threshold g (Sect. 5, Theorem 6).

• On the other hand, for MINTIME under the IC model, we

show that even bicriteria and tricriteria approximations

are hard. More precisely, let ROPT be the optimal

propagation time required for achieving a coverage C g
within a budget of k. Then we show the following

(Sect. 5, Theorem 4): there is unlikely to be a PTIME

algorithm that finds a seed set with size under the budget,

which achieves a coverage better than (1 - 1/e)g.

Similarly, if we limit the budget overrun factor to less

than lnðgÞ; then it is unlikely that there is a PTIME

algorithm that finds a seed set of size within the overrun

budget which achieves a coverage better than (1 - 1/e)g.

In both cases, the result holds even when we permit any

amount of slack in the resulting propagation time.

• The above results are bicriteria bounds, in that they

allow slack in two of the three parameters governing

MINTIME problems. We also show a tricriteria

hardness result (Sect. 5, Theorem 5); namely, if we

1 We use the terms coverage and expected spread interchangeably

throughout the article.
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limit the budget overrun factor to be b\ lnðgÞ; then it is

unlikely that there is a PTIME algorithm that finds a

seed set with a size within a factor b of the budget that

achieves a coverage better than (1 - 1/eb)g. Similar

bounds hold if we place hard limits on the coverage

approximation and try to balance overrun in the other

parameters.

• Often, the coverage function can be hard to compute

exactly. This is the case for both IC and LT models

(Kempe et al. 2003). All our results are robust in that

they carry over even when only estimates of the

coverage function are available.

• We show the value of our approximation algorithms by

experimentally comparing their quality with that of

several heuristics proposed in other contexts, using two

real data sets. We discuss our findings in Sect. 6.

The necessary background is given in Sect. 2 while

related work is discussed in Sect. 3. Section 7 concludes

the paper and discusses interesting open problems.

2 Preliminaries

Suppose we are given a social network together with the

estimates of mutual influence between individuals in the

network, and suppose that we want to push a new product

in the market. The mining problem of influence maximi-

zation is the following: given such a network with influ-

ence estimates, how to select the set of initial users so that

they eventually influence the largest number of users in the

social network. This problem has received a good deal of

attention in the data mining and the theoretical computer

science communities in the last decade.

The first to consider the propagation of influence and the

problem of identification of influential users from a data

mining perspective are Domingos and Richardson (2001),

Richardson and Domingos (2002). The problem is modeled

by means of Markov random fields and heuristics are given

for choosing the users to target. In particular, the marketing

objective function to maximize is the global expected lift in

profit, that is, intuitively, the difference between the

expected profit obtained by employing a marketing strategy

and the expected profit obtained using no marketing at all.

A Markov random field, is an undirected graphical model

representing the joint distribution over a set of random

variables, where nodes are variables, and edges represent

dependencies between variables. It is adopted in the con-

text of influence propagation by modeling only the final

state of the network at convergence as one large global set

of interdependent random variables.

Kempe et al. (2003) tackle roughly the same problem

as a problem in discrete optimization. They obtain provable

approximation guarantees under various propagation models

studied in mathematical sociology, as we describe next.

A social network can be represented as a directed graph

G = (V, E). Every node is in one of two states—active or

inactive. Here, ‘‘active’’ may correspond to a user buying a

product or getting infected. In progressive models, it is

assumed once a node becomes active, it remains active.

Influence is assumed to propagate from nodes to their

neighbors according to a propagation model, and a node’s

tendency to become active increases monotonically as

more of its neighbors become active.

In the independent cascade (IC) model, each active

neighbor v of a node u has one shot at influencing u and

succeeds with probability pv,u, the probability with which v

influences u. In the linear threshold (LT) model, each node

u is influenced by each neighbor v according to a weight

bv,u, such that the sum of incoming weights to u is no larger

than 1. Each node u chooses a threshold hu uniformly at

random from the interval [0,1]. If at timestamp t, the total

weight from the active neighbors of u attains the threshold

hu, then u will become active at timestamp t ? 1. In both

the models, the process repeats until no new node becomes

active.

For any propagation model, the expected influence

spread of a seed set S is the expected number of nodes that

eventually get activated by initially activating the nodes S.

We denote this number by rm(S), where m stands for the

underlying propagation model. Then the influence maxi-

mization problem is defined as follows. Given a directed

and edge-weighted social graph G = (V, E), a propagation

model m, and a number k B |V|, find a set S � V; jSj ¼ k;

such that rm(S) is maximum.

Under both the IC and LT propagation models, this

problem is shown to be NP-hard (Kempe et al. 2003).

However, for both the propagation models described

above, the expected influence spread function rmð�Þ is

monotone and submodular. Monotonicity says as the set of

activated nodes grows, the likelihood of a node getting

activated should not decrease. More precisely, a A function

f from sets to reals is monotone if f(S) B f(T) whenever

S � T : A function f is submodular if f ðS [ fwgÞ �
f ðSÞ� f ðT [ fwgÞ � f ðTÞ whenever S � T : Submodulari-

ty intuitively says an active node’s probability of activating

some inactive node u does not increase if more nodes have

already attempted to activate u and u is hence more

‘‘marketing-saturated’’. It is also called the law of

‘‘diminishing returns’’.2

2 A variant of the linear threshold model, where a deterministic
threshold hu is chosen for each node, has also been studied (Chen

2008; Ben-Zwi et al. 2009). Coverage under this variant is not

submodular.
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Due to these two properties, we can have a simple

greedy algorithm (see Algorithm 1) for influence maximi-

zation which provides an approximation guarantee. In fact,

for any monotone submodular function f with f ð;Þ ¼ 0 the

problem of finding a set S of size k such that f(S) is max-

imum, can be approximated to within a factor of (1 - 1/e)

by the greedy algorithm Nemhauser et al. (1978). This

result carries over to the influence maximization problem

Kempe et al. (2003), meaning that the seed set we produce

using Algorithm 1 is guaranteed to have an expected spread

(1 - 1/e) i.e., [63 %, of the expected spread of the

optimal seed set.

The complex step of the greedy algorithm is in line 3,

where we select the node that provides the largest marginal

gain rm(S [ {v}) - rm(S) with respect to the expected

spread of the current seed set S. Computing the expected

spread given a seed set is #P-hard under both the IC model

(2010a) and the LT model (2010b). In their paper, Kempe

et al. run Monte Carlo (MC) simulations of the propagation

model for sufficiently many times (the authors report

10,000 trials) to obtain an accurate estimate of the expected

spread, resulting in a very long computation time. In par-

ticular, they show that for any /[ 0, there is a d[ 0 such

that using (1 ? d)-approximate values of the expected

spread, we can obtain a (1 - 1/e - /)-approximation for

the influence maximization problem.

We now define the problems we study in this paper. Let

m stand for any propagation model with a submodular

coverage function rmð�Þ:

Problem 1 (MINTSS) Let G = (V, E) be a social graph.

Given a real number g B |V|, find a set S � V of the

smallest size |S|, such that the expected spread, denoted

rm(S), is no less than g.

Problem 2 (MINTIME) Let G = (V, E) be a social

graph. Given an integer k, and a real number g B |V|, find a

set S � V ; jSj � k; and the smallest t 2 N; such that the

expected spread at time t, denoted rm
t (S), is no less than g.

The MINTSS problem is closely related to the real-

valued submodular set cover (RSSC) problem. In the

submodular set cover (SSC) problem we are given a

monotone submodular set function f over a ground set X

and a modular cost function c over X and are asked to find

a set S � X minimizing cðSÞ :¼
P

s2Sc sð Þ subject to the

constraint that f ðSÞ ¼ f ðXÞ: The RSSC problem, which

generalizes SSC, is defined as follows: given a submodular

function f : 2X ! R and a threshold g, find a set S � X of

the least size (or minimum cost, when elements of X are

weighted) such that f(S) C g. MINTSS under any propa-

gation model such as IC and LT, for which the coverage

function is submodular is clearly a special case of RSSC,

an observation we exploit in Sect. 4.

MINTIME is closely related to the robust asymmetric

k-center (RAKC) problem in directed graphs, defined as

follows: given a digraph G = (V, E), a (possibly empty) set

of forbidden nodes and thresholds k and g, find k or fewer

nodes S such that they cover at least g non-forbidden nodes

in the minimum possible radius, i.e., each of the g nodes

are reachable from some node in S in the minimum pos-

sible distance.

3 Related work

Although to the best of our knowledge, MINTIME has

never been studied before, some work has been devoted to

MINTSS (Chen 2008; Ben-Zwi et al. 2009). Both studies

focus on a variant of LT model (DLT model) where a

deterministic threshold hu is chosen for each node.

Although coverage under the LT model is submodular, it is

not submodular under the DLT model. There have been

some recent works that evaluate classical propagation

models like IC and LT against real world datasets (Goyal

et al. 2011; Bhagat et al. 2012). We are not aware of any

such studies on the DLT model. In this paper, we study

both MINTSS and MINTIME under the classic propaga-

tion models IC and LT, under which the coverage function

is submodular.

Chen (2008) shows that under the DLT propagation

model, MINTSS cannot be approximated within a factor of

Oð2log1�dnÞ unless NP � DTIMEðnOðlog log nÞÞ; and also gives

a polynomial time algorithm for MINTSS on trees. Ben-

Zwi et al. (2009) build upon Chen (2008) and develop a

O(nO(w)) algorithm for solving MINTSS exactly under the

DLT model, where w is the tree width of the graph. They

show the problem cannot be solved in nOð
ffiffiffi
w
p
Þ time unless

all problems in SNP can be solved in sub-exponential time.

A few classical cover problems are related to the

problems we study. One such problem is maximum cov-

erage (MC): given a collection of sets S over a ground set

U and budget k, find a subcollection C � S such that jCj � k

and j
S
Cj is maximized. The problem can be approximated

within a factor of (1 - 1/e) and it cannot be improved

(Feige 1998; Khuller et al. 1999). Similar results by

A. Goyal et al.
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Khuller et al. (1999) and Sviridenko (2004) exist for the

weighted case.

Another relevant problem is partial set cover (PSC):

given a collection of sets S over the ground set U and a

threshold g, the goal is to find a subcollection C � S
such that j

S
Cj� g and jCj is minimized. Although PSC

can be approximated within a factor of dln ge; Feige

(1998) showed that it cannot be approximated within a

factor of ð1� dÞ ln g; for any fixed d [ 0, unless

NP � DTIMEðnOðlog log nÞÞ:
Our results on MINTSS exploit its connection to the

real-valued submodular set cover (RSSC) problem. There

has been substantial work on submodular set cover (SSC)

in the presence of integer-valued submodular functions

(Fujito 1999, 2000; Feige 1998; Slavı́ k 1997; Bar-Ilan

et al. 2001). Relatively much less work has been done on

real-valued SSC. For non-decreasing real-valued sub-

modular functions, Wolsey (1982) has shown, among

other things, that a simple greedy algorithm yields a

solution to a special case of SSC where g ¼ f ðXÞ; that is

within a factor of ln½g=ðg� f ðSt�1ÞÞ� of the optimal

solution, where t is the number of iterations needed by the

greedy algorithm to achieve a coverage of g and Si

denotes the greedy solution after i iterations. Unfortu-

nately, this result by itself does not yield an approxima-

tion algorithm with any guaranteed bounds: in Appendix

B we give an example to show that the greedy solution

can be arbitrarily worse than the optimal one. Further-

more, Wolsey’s analysis is restricted to the case g ¼ f ðXÞ:
Along the way to establish our results on MINTSS, we

show the greedy algorithm yields a bicriteria approxi-

mation for real-valued SSC that extends to the general

case of partial cover with g� f ðXÞ; and where elements

are weighted.

Our results on MINTIME leverage its connection to the

robust asymmetric k-center problem (RAKC). It has been

shown that, while asymmetric k-center problem can be

approximated within a factor of O(log* n) (Panigrahy and

Vishwanathan 1998), RAKC cannot be approximated

within any factor unless P = NP (Li Gørtz and Wirth

2006).

4 Minimum target set selection

4.1 A bicriteria approximation

Our main result of this section is that a simple greedy

algorithm, Algorithm GREEDY-MINTSS, yields a bicriteria

approximation to (weighted) MINTSS, for any propagation

model whose coverage function is monotone and sub-

modular.

To prove the results in the most general setting, we

consider digraphs G = (V, E) which have non-negative

node weights: we are given a cost function c : V ! R
þ in

addition to the coverage threshold g, and need to find a

seed set S such that rm(S) C g and cðSÞ ¼
P

x2S cðxÞ is

minimum. Clearly, this generalizes the unweighted case.

Theorem 1 Let G = (V, E) be a social graph, with node

weights given by c : V ! R
þ: Let m be any propagation

model whose coverage function rmð�Þ is monotone and

submodular. Let S* be a seed set of minimum cost such that

rm(S*) C g. Let �[ 0 be any shortfall and let S be the

greedy solution with chosen threshold g� �: Then,

cðSÞ� cðS�Þ � ð1þ lnðg=�ÞÞ:

In the rest of this section, we prove this result. We first

observe that every instance of MINTSS where the coverage

function rmð�Þ is monotone and submodular is an instance

of RSSC. Thus, it suffices to prove Theorem 1 for RSSC,

for which we adapt a bicriterion approximation technique

by Slavı́ k (1997).

Let X ¼ fx1; x2; . . .; xmg be a ground set, c : X!R
þ be

a cost function, f : 2X!R a non-negative monotone sub-

modular function and g a given threshold. Apply the greedy

algorithm above to this instance of RSSC. Let Si be the

(partial) solution obtained by the greedy algorithm after i

iterations. Let t be the smallest number such that f(St) C g.

We define g(S) = min (f(S), g). Clearly, g is also monotone

and submodular. In each iteration, the greedy algorithm

picks an element which provides the maximum marginal

gain per unit cost (with respect to g), i.e., it picks an ele-

ment x for which
gðS[fxgÞ�gðSÞ

cðxÞ is positive and is maximum.

Let c(S*) = j and define gi = g - g(Si), i.e., the

shortfall in coverage after i iterations of the greedy

algorithm.

Lemma 1 At the end of iteration i, there is an element

x 2 X n Si : gðSi[fxgÞ�gðSiÞ
cðxÞ � gi

j :

Proof Let Si
* = S* - Si. Let S�i ¼ fy1; . . .; ytg and

c(Si
*) = ji. Suppose 8x 2 X n Si : gðSi[fxgÞ�gðSiÞ

cðxÞ \ gi

j : Con-

sider adding the elements in Si
* to Si one by one. Clearly, at

any step j B t, we have by submodularity that
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gðSi [ fy1; . . .; yjgÞ � gðSi [ fy1; . . .; yj�1gÞ� gðSi [ fyjgÞ
� gðSiÞ\cðyjÞ �

gi

j

Iterating over all j, this yields gðSi [ fy1; . . .; yjgÞ � gðSiÞ
\ gi

j � ðcðy1Þ þ � � � þ cðyjÞÞ resulting in gðSi [ fy1; . . .; ytgÞ
\gðSiÞ þ gi

j �
P

1� j� t cðyjÞ� g which is a contradic-

tion since the left hand side is no less than the optimal

coverage. h

Proof of Theorem 1 It follows from Lemma 1 that

gi B gi-1 (1 - ci/j) where ci is the cost of the element

added in iteration i. Using the well known inequality

(1 ? z) B ez, V z, we get gi� gi�1 � e�ci=k: Expanding,

gi� g � e�1
k�
P

i
ci : Let the algorithm take l iterations to

achieve coverage gðSlÞ� g� � such that gðSl�1Þ\g� �:
At any step, g(Si?1) - g(Si) B gi. Thus, ci B j, and in

particular, the cost of the last element picked can be at most

j. So, cðSlÞ� jþ cðSl�1Þ: gðSl�1Þ\g� � implies gl�1 [ �:

Hence, we have ge�
1
jcðSl�1Þ[ � which implies cðSl�1Þ\

j lnðg=�Þ: Thus, cðSlÞ� jð1þ lnðg=�ÞÞ: h

Using a similar analysis, it can be shown that when

the costs are uniform, the approximation factor can be

improved to dlnðg=�Þe:
For propagation models like IC and LT, computing the

coverage rm(S) exactly is #P-hard (Chen et al. 2010a, b)

and thus we must settle for estimates. To address this, we

‘‘lift’’ the above theorem to the case where only estimates

of the function f(.) are available. We can show

Theorem 2 For any /[ 0, there exists a d 2 ð0; 1Þ such

that using (1 - d)-approximate values for the coverage

function rmð�Þ; the greedy algorithm approximates MINTSS

under IC and LT models within a factor of ð1þ /Þ�
ð1þ lnðg=�ÞÞ:

Proof The proof involves a more careful analysis of how

error propagates in the greedy algorithm if, because of

errors, the greedy algorithm picks the wrong point.

Here, we give the proof for the unit cost version only.

Consider any monotone, submodular function f ð�Þ: Thus, in

the statement of theorem, rmð�Þ ¼ f ð�Þ: Let f 0ð�Þ be its

approximated value. In any iteration, the (standard) greedy

algorithm picks an element which provides maximum

marginal gain. Let Si be the set formed after iteration i.

As we did in Lemma 1, it is straightforward to show that

there must exists an element x 2 X n Si such that f(Si [
{x}) - f(Si) C gi/k where gi ¼ g� f 0ðSiÞ: Without the loss

of generality, let x be the element which provides the

maximum marginal gain. Suppose that due to the error in

computing f(.), some other element y is picked instead.

Then,

ð1� dÞf ðSi [ fxgÞ� f 0ðSi [ fxgÞ� f 0ðSi [ fygÞ

Moreover, f 0ðSiÞ� f ðSiÞ: Thus,

gi

k
� f ðSi [ fxgÞ � f ðSiÞ�

f 0ðSi [ fygÞ
1� d

� f 0ðSiÞ

) gi

k
� g� giþ1

1� d
� gþ gi

) giþ1� gi � ð1� dÞ � 1� 1

k

� �

þ d � g

) giþ1� g � ð1� dÞiþ1 � 1� 1

k

� �iþ1

þ d � g � 1� ð1� dÞiþ1ð1� 1=kÞiþ1

1� ð1� dÞð1� 1=kÞ

 !

Let d0 ¼ d=ð1� ð1� dÞð1� 1=kÞÞ: Let the greedy

algorithm takes l iterations. Then,

gl� g � ð1� dÞl � 1� 1

k

� �l

þ d0 � g � 1� ð1� dÞl � 1� 1

k

� �l
 !

¼ g � ð1� dÞl � 1� 1

k

� �l

ð1� d0Þ þ d0 � g

Using (1 - d)l B 1 and (1 - 1/k)l B e-l/k,

gl� ge�l=kð1� d0Þ þ d0 � g

The algorithm stops when gl� �: The maximum number of

iterations needed to ensure this are

l� k 1þ ln
gð1� d0Þ

�ð1� d0g=�Þ

� �

Let x ¼ g=�: To prove the lemma, we need to prove that for

any /[ 0, there exists d 2 ½0; 1Þ such that

x1þ/ ¼ x
1� d0

1� d0x
) d0 ¼ x/ � 1

x1þ/ � 1

Clearly, for any /� 0; d0 2 ½0; 1Þ: Hence,

0� d\1� ð1� dÞð1� 1=kÞ
() 0� d\1

This completes the proof for unit cost case. Using the slight

modification in the greedy algorithm (as we did in proving

Theorem 1), the same result can be obtained for weighted

version. h

4.2 An inapproximability result

Recall that every instance of MINTSS where the coverage

function is monotone and submodular is an instance of

RSSC. Consider the unweighted version of the RSSC
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problem. Let S* denote an optimal solution and let

OPT = |S*|.

Theorem 3 For any fixed d[ 0, there does not exist a

PTIME algorithm for RSSC that guarantees a solution S :
jSj �OPTð1� dÞ lnðg=�Þ; and f ðSÞ� g� � for any �[ 0

unless NP � DTIMEðnOðlog log nÞÞ:

Proof Case 1: �� 1: Suppose there exists an algorithm A
that finds a solution S of size �OPTð1� dÞ lnðg=�Þ such

that f ðSÞ� g� � for any �� 1: Consider an arbitrary

instance I ¼ hU;S; gi of PSC, which is a special case of

RSSC. Apply the algorithm A to I : It outputs a collection

of sets C1 : jC1j �OPTð1� dÞ lnðg=�Þ that covers � g� �
elements in U:

Create a new instance J ¼ hU0;S0; g0i of PSC as fol-

lows. Let T ¼
S
C1 be the set of elements of U covered by

C1: Define S0 ¼ fS n T j S 2 S n C1g;U0 ¼ U n T and g0 ¼
�: Set the new shortfall �0 ¼ 1: Apply the algorithmA to J :
It will output another collection of sets C2 : jC2j �OPT

ð1� dÞ ln � which covers � �� 1 elements in U0:3 Let C ¼
C1 [ C2: The number of elements covered by C is � g�
�þ �� 1 ¼ g� 1: Clearly, jCj ¼ jC1j þ jC2j �OPTð1� dÞ
lnðg=�Þ þ OPTð1� dÞ lnð�Þ ¼ OPTð1� dÞ lnðgÞ: Thus, we

have a solution for PSC with the approximation factor of

ð1� dÞ lnðgÞ; which is not possible unless NP �
DTIMEðnOðlog log nÞÞ (Feige 1998). This proves Case 1.

Case 2: �\1: Assume an arbitrary instance I of RSSC

with monotone submodular function f : 2X ! R: Let g0 be

the coverage threshold and �0 � 1 be any given shortfall.

We now construct another instance J of RSSC as follows:

Set the coverage function g (S) = f (S)/x, coverage

threshold g ¼ g0=x and shortfall � ¼ �0=x: Choose any

value of x [ 1 such that � ¼ �0=x\1: We now show that if

a solution is a ð1� dÞ lnðg=�Þ-approximation to the optimal

solution for J then it is a ð1� dÞ lnðg0=�0Þ-approximation

to the optimal solution for I : Clearly, the optimal solution

for both the instances are identical, so OPTI ¼ OPTJ :
4

Suppose there exists an algorithm for RSSC when the

shortfall is � 2 ð0; 1Þ; that guarantees a solution S :
jSj �OPTð1� dÞ lnðg=�Þ and f ðSÞ� g� �: Apply this

algorithm to instance J to obtain a solution SJ : We

have: gðSJ Þ� g� � ¼ ðg0 � �0Þ=x: It implies f ðSJ Þ ¼ x �
gðSJ Þ� g0 � �0: Moreover, jSJ j�OPTJ ð1� dÞ lnðg=�Þ;
implying jSJ j�OPTI ð1� dÞ lnðg0=�0Þ: Thus we have the

solution SJ for instance I whose size is �OPTI ð1� dÞ
lnðg0=�0Þ: The theorem follows. h

In view of this generic result, we conjecture that

improving the approximation factor for MINTSS to ð1� dÞ
lnðg=�Þ for IC and LT is likely to be hard.

5 MINTIME

In this section, we study MINTIME under the IC model.

Denote by rm
R(S) the expected number of nodes activated

under model m within time R, and let g be the desired

coverage and k be the desired budget. Let ROPT denote the

optimal propagation time under these budget and coverage

constraints. Our first result says that efficient approxima-

tion algorithms are unlikely to exist under two scenarios:

(1) when we allow a coverage shortfall of less than g/e and

(2) when we allow a budget overrun less than ln g: In the

former scenario, we have a strict budget threshold and in

the latter we have a strict coverage threshold. In both cases,

we allow any amount of slack in propagation time.

Theorem 4 Unless NP � DTIMEðnOðlog log nÞÞ; there does

not exist a PTIME algorithm for MINTIME that guarantees

(for any a C 1):

1. a (a, c)-approximation, such that jSj � k;R ¼ a � ROPT

and rR
mðSÞ� c � g where c = (1 - 1/e ? d) for any

fixed d[ 0; or

2. a (a, b)-approximation, such that jSj � b � k;R ¼ a �
ROPT and rm

R(S) C g where b ¼ ð1� dÞ ln g for any

fixed d[ 0.

Our second theorem says efficient approximation algo-

rithms are unlikely to exist under more liberal scenarios

than those given above: (1) when for a given budget

overrun factor b\ g, the fraction of the coverage we want

to achieve is more than 1 - 1/eb and (2) when for a given

fraction c 2 ð0; 1� 1=g� of the coverage we want to

achieve, the budget overrun factor we allow is less than

lnð1=ð1� cÞÞ: As before, we allow any amount of slack in

propagation time.

Theorem 5 Unless NP � DTIMEðnOðlog log nÞÞ there does

not exist a PTIME algorithm for MINTIME that guarantees

(a, b, c)-approximation factor (for any a C 1) such that

jSj � b � k;R ¼ a � ROPT and rR
mðSÞ� c � g where

1. b 2 ½1; ln gÞ and c = 1 - 1/eb ? d for any fixed

d[ 0; or

2. c 2 0; 1� 1
g

� i
and b ¼ ð1� dÞ ln 1

1�c

� �
for any fixed

d[ 0.

Finally, on the positive side, we show that when a

coverage shortfall of �[ 0 is allowed and a budget boost of

ð1þ lnðg=�ÞÞ is allowed, we can in PTIME find a solution

which achieves the relaxed coverage under the relaxed

3 If � ¼ 1;A outputs an empty collection.
4 Here, OPTI and OPTJ represent the size of the optimal solution for

instances I and J respectively.
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budget in optimal propagation time. More precisely, we

have:

Theorem 6 Let the chosen coverage threshold be g� �;
for �[ 0 and chosen budget threshold be kð1þ lnðg=�ÞÞ: If

the coverage function rR
mð�Þ can be computed exactly, then

there is a greedy algorithm that approximates the MIN-

TIME problem within a (a, b, c) factor where a ¼ 1; b ¼
1þ lnðg=�Þ and c ¼ 1� �=g for any �[ 0: Furthermore,

for every /[ 0, there is a d[ 0 such that using a (1 - d)-

approximate values for the coverage function rR
mð�Þ; the

greedy algorithm approximates the MINTIME problem

within a (a, b, c) factor where a ¼ 1; b ¼ ð1þ /Þð1þ
lnðg=�ÞÞ and c ¼ 1� �=g:

5.1 Inapproximability proofs

We next prove Theorems 4 and 5. We first show that

MINTIME under the IC model generalizes the RAKC

problem. In a digraph G = (V, E) and sets of nodes S; T 	
V ; say that R-covers T if for every y 2 T ; there is a x 2 S

such that there is a path of length B R from x to y. Given

an instance of RAKC, create an instance of MINTIME by

labeling each arc in the digraph with a probability 1. Now,

it is easy to see that for any set of nodes S and any

0 B R B n - 1, SR-covers a set of nodes T iff activating

the seed nodes S will result in the set of nodes T being

activated within R time steps. Notice that since all the arcs

are labeled with probability 1, all influence attempts are

successful by construction. It follows that RAKC is a

special case of MINTIME under the IC model.

The tricriteria inapproximability results of Theorem 5

subsume the bicriteria inapproximability results of Theo-

rem 4. Still, in our presentation, we find it convenient to

develop the proofs first for bicriteria. Since we showed that

MINTIME under IC generalizes RAKC, it suffices to prove

the theorems in the context of RAKC. It is worth pointing

out Li Gørtz and Wirth (2006) proved that it is hard

to approximate RAKC within any factor unless P = NP.

Their proof only applies to (the standard) unicriterion

approximation.

For a set of nodes S in a digraph we denote by fR(S) the

number of nodes that are R-covered by S. Recall the

problems MC and PSC (see Sect. 3).

Proof of Theorem 4 It suffices to prove the theorem for

RAKC. For claim 1, we reduce Maximum Coverage (MC)

to RAKC and for claim 2, we reduce PSC to RAKC. The

reduction is similar and is as follows: Consider an instance

of the decision version of MC (equivalently PSC) I ¼
hU;S; k; gi; where we ask whether there exists a subcol-

lection C � S of size B k such that [S2SSj j � g Construct

an instance J ¼ hG; k0; g0i of RAKC as follows: the graph

G consists of two classes of nodes – A and B. For each

S 2 S; create a class A node vS and for each u 2 U; create a

class B node vu. There is a directed edge (vS, vu) of unit

length iff u 2 S: Notice, a set of nodes S in GR-covers

another non-empty set of nodes iff S1-covers the latter set.

Moreover, x sets in S cover y elements in U iff G has a set

of x nodes which 1-covers y ? x nodes. The only-if

direction is trivial. For the if direction, the only way x

nodes can 1-covers y ? x nodes in G is when the x nodes

are from class A.

Next, we prove the first claim. Set k0 ¼ k and g0 ¼
gþ k: Assume there exists a PTIME (a, c)-approximation

algorithm A for RAKC such that f RðSÞ� ð1� 1=eþ dÞ �
ðg0Þ for any fixed d[ 0, for some R B a ROPT. Apply

algorithm A to the instance J : Notice, for our instance,

ROPT = 1. The coverage by the output seed set S will be

f RðSÞ� ð1� 1=eþ dÞ � ðgþ kÞ nodes, for some R� a � 1;
implying that the number of class B nodes covered is

�ð1� 1=eþ dÞ � ðgþ kÞ � k ¼ ð1� 1=eþ d� ð1=e� dÞ
k=gÞg: Thus the algorithm approximates MC within a

factor of 1� 1
e þ d� 1

e � d
� �

k
g

� �
: Let d0 ¼ d� 1

e � d
� �

k
g :

If we show d0[ 0; we are done, since MC cannot be

approximated within a factor of ð1� 1=eþ d0Þ for any

d0[ 0 unless NP � DTIMEðnOðlog log nÞÞ (Feige 1998;

Khuller et al. 1999). Clearly, d0 is not always positive.

However, for a given d and k; d0 is an increasing function

of g and reaches d in the limit. Hence there is a value

g0 : 8g� g0; d
0[ 0: That is, there are infinitely many

instances of PSC for which A is a ð1� 1=eþ d0Þ-
approximation algorithm, where d0[ 0; which proves the

first claim.

Next, we prove the second claim. Set k0 ¼ k and g0 ¼
gþ x: The value of x will be decided later. Assume there

exists a PTIME (a, b)-approximation algorithm A for

RAKC where b ¼ ð1� dÞ lnðg0Þ for any fixed d[ 0.

Apply the algorithm to J : It gives a solution S such that

jSj � k � ð1� dÞ lnðgþ xÞ that covers C g ? x nodes. A

difficulty arises here since d can be arbitrarily close to 1

making k � ð1� dÞ lnðgþ xÞ arbitrarily small, for any given

g and k. However, as we argued in the proof of claim 1, for

sufficiently large g, we can always find an x : k� x� k �
ð1� dÞ lnðgþ xÞ: That is, on infinitely many instances of

PSC, algorithm A finds a set of |S| class A nodes which R-

covers g ? x nodes, for some R� a � 1: Without loss of

generality, we can assume x B g. Choose the smallest

value of x such that the solution S covers C g class B

nodes. This implies the number of class A nodes covered

is B x and so |S| B x. Thus, on all such instances, algo-

rithm A gives a solution S of size � x : k� x� k � ð1�
dÞ lnðgþ xÞ that covers C g nodes. If we show that the

upper bound is equal to k � ð1� d0Þ ln g for some d0[ 0; we

are done, since PSC cannot be approximated within a
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factor of ð1� d0Þ ln g unless NP � DTIMEðnOðlog log nÞÞ
(Feige 1998).

Let ð1� d0Þ ln g ¼ ð1� dÞ lnðgþ xÞ; which yields d0 ¼
1� ð1� dÞ lnðgþxÞ

ln g : It is easy to see that by choosing suf-

ficiently large g, we can make the gap between d and d0

arbitrarily small and thus can always ensure d0[ 0 on

infinitely many instances of PSC, on each of which algo-

rithm A will serve as an ð1� d0Þ ln g-approximation algo-

rithm proving claim 2. h

Note, in the proofs of both claims 1 and 2 in the above

theorem, by choosing g sufficiently large, we can always

ensure for any given k and d[ 0, the corresponding d0 is

always greater than 0. To prove the tricriteria hardness

results, we need the following lemma.

Lemma 2 In the MC (or PSC) problem, let k be the

minimum number of sets needed to cover C g elements.

Then, unless NP � DTIMEðnOðlog log nÞÞ; there does not

exist a PTIME algorithm that is guaranteed to select b k

sets covering C c g elements where

1. b 2 ½1; ln gÞ and c[ 1 - 1/eb; or

2. c 2 0; 1� 1
g

� i
and b ¼ ð1� dÞ ln 1

1�c

� �
for any fixed

d[ 0.

Lemma 2 is proved in Appendix A. We are ready to

prove Theorem 5.

Proof of Theorem 5 Again, it suffices to prove the theo-

rem for RAKC. For claim 1, we reduce MC to RAKC and

for claim 2, we reduce PSC to RAKC. The reduction is the

same as in the proof of Theorem 4 and we skip the details

here. Below, we refer to instances I and J as in that proof.

We first prove claim 1. Given any b, set k0 ¼ k and

g0 ¼ gþ bk: Assume there exists a PTIME (a, b, c)-

approximation algorithm A for RAKC which approximates

the problem within the factors as mentioned in claim 1.

Apply algorithm A to the instance J : The coverage by the

output seed set S will be f RðSÞ� ð1� 1=eb þ dÞ � ðgþ bkÞ
nodes, implying the number of class B nodes covered

is �ð1� 1=eb þ dÞ � ðgþ bkÞ � bk ¼ ð1� 1=eb þ d�
ð1=eb � dÞbk=gÞg: Thus the algorithm approximates MC

within a factor of 1� 1
eb þ d� 1

eb � d
� � bk

g

� �
:

If we show d� 1
eb � d
� � bk

g [ 0; then the claim follows,

since MC cannot be approximated within a factor of ð1�
1=eb þ d0Þ for any d0[ 0 unless NP � DTIMEðnOðlog log nÞÞ;
by Lemma 2. Let d0 ¼ d� 1

eb � d
� � bk

g : For any b 2
½1; ln gÞ; d0 is an increasing function of g which approaches

d in the limit. Thus, given any fixed d[ 0, there must exist

some go such that for any g� go; d
0[ 0: This proves the

first claim (by an argument similar to that in Theorem 4).

Next, we prove the second claim. Set k0 ¼ k and g0 ¼
gþ x: The value of x will be decided later. Assume that

there exists a PTIME (a, b, c)-approximation algorithm A
for RAKC where the factors a, b and c satisfy the condi-

tions as mentioned in claim 2. Apply the algorithm to

instance J : For any cj 2 ð0; 1� 1=ðgþ xÞ�; it gives a

solution of size � k � ð1� dÞ lnð1=ð1� cjÞÞ that covers cj �
ðgþ xÞ nodes. There can be jSj possible choices of x. Pick

the smallest x such that number of nodes covered in class B

is at least cj g, implying that the number of nodes picked

from class A is cj x. Thus, cjx� k � ð1� dÞ lnð1=ð1� cjÞÞ:
The existence of x satisfying this inequality can be estab-

lished as done for claim 2 in Theorem 4.

Thus, algorithm A gives the solution instance I of size

� k � ð1� dÞ lnð1=ð1� cjÞÞ that covers cj g elements in U
where cj 2 ð0; 1� 1=ðgþ xÞ�: If we show that for any

given d[ 0 and cj in the range, there exists some d0[ 0

and ci 2 ð0; 1� 1=g� such that cig C cj(g ? x) and

ð1� d0Þ lnð1=ð1� ciÞÞ ¼ ð1� dÞ lnð1=ð1� cjÞÞ; then the

claim follows. Let Z ¼ ln 1
1�cj

� �
= ln 1

1�ci

� �
; then d0 ¼

1� ð1� dÞZ:
Whenever cj B 1 - 1/g, we can always choose ci C cj

such that d0[ 0: The non-trivial case is when cj 2 ð1�
1=g; 1� 1=ðgþ xÞ�: In this case, by choosing a large

enough g, we can make Z arbitrarily close to 1 and make

d0[ 0: In other words, there exists some g0: for all

g� g0; d
0[ 0; and by an argument similar to that for claim

2 in Theorem 4, the claim follows. h

5.2 A tri-criteria approximation

We now consider upper bounds for MINTIME. It is

interesting to ask what happens when either the budget

overrun or the coverage shortfall is increased. We show

that under these conditions, a greedy strategy combined

with linear search yields a solution with optimal propaga-

tion time. This proves Theorem 6.

Algorithm GREEDY-MINTSS computes a small seed set S

that achieves coverage rmðSÞ ¼ g� �: Recall that rm
R(S)

denotes the coverage of S under propagation model m

within R time steps. It is easy to see that GREEDY-MINTSS

can be adapted to instead compute a seed set that yields

coverage g� � within R time steps: we call this algorithm

GREEDY-MINTSS
R.

Given such an algorithm, a simple linear search over R ¼
0. . .n� 1 yields the bounds specified in Theorem 6, after

setting coverage threshold as g� � and the chosen budget

threshold as budg ¼ kð1þ lnðg=�ÞÞ: The approximation
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factors in the theorem follow from Theorem 1 and Lemma 2.

These bounds continue to hold if we can only provide esti-

mates for the coverage function (rather than computing it

exactly) and also extend to weighted nodes.

We conclude this section by noting that the algorithm

above can be naturally adapted to the RAKC problem. The

bounds in Theorem 6 apply to RAKC as well, since

MINTIME under IC generalizes RAKC.

6 Empirical assessment

We conducted several experiments to assess the value of

the approximation algorithms by comparing their quality

against that achieved by several well-known heuristics, as

well as against the state-of-the-art methods developed for

MAXINF that we adapt in order to deal with MINTSS and

MINTIME. In particular, the goals of experimental evalu-

ation are twofold. First, we have previously established

from theoretical analysis that the Greedy algorithm

(GREEDY-MINTSS for MINTSS and GREEDY-MINTSS
R for

MINTIME) provides the best possible solution that can be

obtained in PTIME, which we would like to validate

empirically. Second, we study the gap between the solu-

tions obtained from various heuristics against the Greedy

algorithm, the upper bound, in terms of quality.

In what follows we assume the IC propagation model.

Datasets, probabilities and methods used. We use two

real-world networks, whose statistics are reported in

Table 1.

The first network, called NetHEPT, is the same used in

Chen et al. (2009, 2010a, b). It is an academic collabora-

tion network extracted from ‘‘High Energy Physics—

Theory’’ section of arXiv5, with nodes representing authors

and edges representing coauthorship. This is clearly an

undirected graph, but we consider it directed by taking for

each edge the arcs in both the directions. Following Kempe

et al. (2003), Chen et al. (2009, 2010a), we assign proba-

bilities to the arcs in two different ways: uniform, where

each arc has probability 0.1 (or probability 0.01) and

weighted cascade (WC), i.e, the probability of an arc (v, u)

is pv,u = 1/din(u), where dinð�Þ indicates in-degree (Kempe

et al. 2003). Note that WC is a special case of IC where

probabilities on arcs are not necessarily uniform.

The second one, called Meme, is a sample of the social

network underlying the Yahoo! Meme6 microblogging

platform. Nodes are users, and directed arcs from a node

u to a node v indicate that v ‘‘follows’’ u. For this dataset,

we also have the log of posts propagations during 2009. We

sampled a connected sub-graph of the social network

containing the users that participated in the most re-posted

items. The availability of posts propagations is significant

since it allows us to directly estimate actual influence.

In particular, here a propagation is defined based on

reposts: a user posts a meme, and if other users like it, they

repost it, thus creating cascades. For each meme m and for

each user u, we know exactly from which other user she

reposted, that is we have a relation repost(u, v, m, t) where

t is the time at which the repost occurs, and v is the user

from which the information flowed to user u. The maxi-

mum likelihood estimator of the probability of influence

corresponding to an arc is pv,u = Mv2u / Mvu where Mvu

denotes the number of memes that v posted before u, and

Mv2u denotes the number of memes m such that repost

(u, v, m, t).

For the sake of comparison, we adapt the state-of-the-art

methods developed for MAXINF (also see Sect. 3) to deal

with MINTSS and MINTIME. For most of the techniques

the adaptation is straightforward. The methods that we use

in the experimentation are succinctly summarized in

Table 2. It is noteworthy that PMIA is one of the state-of-

the-art heuristic algorithms proposed for MAXINF under

the IC model by Chen et al. (2010a). In all our experi-

ments, we run 10,000 Monte Carlo simulations for esti-

mating coverage.

MINTSS—Our experimental results on the MINTSS

problem are reported in Fig. 1. In each of the three plots,

we report, for a given coverage threshold (x-axis), the

minimum size of a seed-set (budget, reported on y-axis)

achieving such coverage. As GREEDY provides the upper

bound on the quality that can be achieved in PTIME, in all

the experiments it outperforms the other methods, with

Random and HighDegree consistently performing the

worst.

We analyzed the probability distributions of the various

data sets we experimented with. At one extreme is the

model with uniformly low probabilities (0.01). In Meme,

about 80 % of the probabilities are B0.05. In NetHEPT

WC, on the other hand, approximately 83 % of the

Table 1 Networks statistics: number of nodes and directed arcs with

non-null probability, average degree, number of (strongly) connected

components, size of the largest one, and clustering coefficient

NetHEPT Meme

Number of nodes 15,233 7,418

Number of Arcs 62,794 39,170

Average degree 4.12 5.28

Number of CC (strong) 1,781 4,552

max CC (strong) 6,794 (44.601 %) 2,851 (38.434 %)

Clustering coefficient 0.31372 0.06763

5 http://www.arXiv.org
6 http://www.meme.yahoo.com/
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probabilities are C0.05 and about 66 % of the probabilities

are C0.1. However, the combination of a power law dis-

tribution of node degrees in NetHEPT together with

assignment of low probabilities for high degree nodes

(since it’s the reciprocal of in-degree) has the effect of

rendering central nodes act as poor influence spreaders.

And the arcs with high influence probability are precisely

those that are incident to nodes with a very low degree.

This makes for a low influence graph overall, i.e., propa-

gation of influence is limited. Finally, at the other extreme

is the model with uniformly high probabilities (0.1) which

corresponds to a high influence graph.

We tested uniformly low probabilities (0.01), and we

observed that with such low probabilities, there is limited

propagation happening: for instance, in order to achieve a

coverage of 150, even the best method requires more than

100 seeds. This forces the quality of all algorithms to look

similar.

On data sets where there is a non-uniform mix of low

and high probabilities, but the probabilities being pre-

dominantly low, as well as on data sets corresponding to

low influence graphs, the PMIA method of Chen et al.

(2010a, b) and the SP method of Kimura and Saito (2006),

originally developed as efficient heuristics for the MAXI-

NF problem, when adapted to the MINTSS problem,

continue to provide a good approximation of the results

achieved by the GREEDY algorithm (Fig. 1a, c). In these

situations, the Random and HighDegree heuristics provide

seed sets much larger than GREEDY. In NetHEPT WC

(Fig. 1a), PageRank has a performance that is close to the

Greedy solution, while in Meme (Fig. 1c), the seed set

generated by PageRank is much larger than Greedy. In data

sets with uniformly high probabilities (0.1), the gap

between between GREEDY and other heuristics is substantial

(Fig. 1b). GREEDY can achieve a target coverage g = 750,

with just 5 seeds, while PMIA and SP need 35 and 21 seeds

respectively; similarly GREEDY can achieve a target cov-

erage g = 1,000, with just 58 seeds, while PMIA and SP

need 117 and 90 seeds respectively. It is worth noting that

Random, HighDegree, and the PageRank heuristic all

generate seed sets much larger than Greedy on this data set.

To sum, the gap between the sizes of the seed sets obtained

by the heuristics one the one hand and the Greedy algo-

rithm on the other, varies depending on the influence

probabilities on the edges. In general, on graphs with high

influence, the gap can be substantial.

MINTIME—Our experimental results on the MIN-

TIME problem are reported in Figs. 2 and 3. In Fig. 2, we

report, for a coverage threshold given on the x-axis, and a

fixed budget (75 for NetHEPT, 150 for Meme), the mini-

mum time steps needed to achieve such coverage with the

given budget (y-axis). As expected, GREEDY outperforms all

the heuristics. All the plots show that after a certain time,

there is no further gain in the coverage, indicating the

influence decays over time. Figure 2a compares the various

heuristics with the GREEDY on the NetHEPT dataset under
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Fig. 1 Experimental results on MINTSS

Table 2 The methods used in our experiments

Random Simply add nodes at random to the seed set, until the stopping condition is met

HighDegree Greedily add the highest degree node to the, seed set, until the stopping condition is met

PageRank The popular index of nodes’ importance

We run it with the same setting used in Chen et al. (2010a)

SP The shortest-path based heuristic for the greedy algorithm introduced in Kimura and Saito (2006)

PMIA The maximum influence arborescence method of Chen et al. (2010a) with parameter h = 1/320.

GREEDY Algorithm Greedy-Mintss for MINTSS and Algorithm Greedy-MintssR for MINTIME
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WC model. On this data set, PMIA, SP and GREEDY exhibit

comparable performance. The PageRank heuristic comes

close to them.

Figure 2b shows the results for the NetHEPT dataset

under IC model with uniform probability 0.1. Here, GREEDY

outperforms all the other heuristics. For instance, when

coverage threshold g is 900 and budget is 75, GREEDY

achieves the coverage in 5 time steps, and SP in 6 time

steps, PMIA in 14 time steps. Random, HighDegree and

PageRank fail to find a solution. Similarly, when coverage

threshold is 1,000 and budget is 75, GREEDY achieves the

coverage in 6 steps whereas all other heuristics fail to find a

solution with this coverage.

Finally, Fig. 2c shows the results on Meme dataset. As

we increase the target coverage, the other heuristics fail to

give a solution, one by one. Beyond g = 1,600, all but SP,

and PMIA fail and beyond g = 2,000, all but PMIA fail. On

this data set, PMIA provides a good approximation to the

performance of GREEDY.

In Fig. 3, we fix the coverage threshold (g = 1,000 for

all the plots). The plots show the minimum time steps

needed to achieve the coverage with respect to different

seed set sizes (budget). In all the cases, Random fails to

find a solution and hence is not shown in the plots. The

performance of the HighDegree algorithm is poor as well

and it fails to find a solution in case of NetHEPT with

uniform probabilities 0.1. As expected, GREEDY outper-

forms all the heuristics and provides us the lower bound on

time needed to achieve the required coverage with a given

budget.

Overall, we notice that the performance quality of all

other heuristics compared to GREEDY follows a similar

pattern to that observed in case of MINTSS: as the graph

changes from a low influence graph to a high influence

graph, the heuristics’ performance drops substantially

compared GREEDY.

Another key takeaway from the MINTIME plots is the

following. For a given budget, as observed above, the

choice of the seed set plays a key role in determining

whether a given coverage threshold can be reached or not,

no matter how much time we allow for the influence to

propagate. Even if the given coverage threshold is

achieved, the choice of the seed set can make a big dif-

ference to the number of time steps in which the coverage

threshold is reached. Often, for a given budget, relaxing

the coverage threshold can dramatically change the prop-

agation time. Example in Fig. 2a (budget fixed to 75),

while GREEDY takes eight time steps to achieve a coverage
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Fig. 2 Experimental results on MINTIME with fixed budget
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Fig. 3 Experimental results on MINTIME with fixed coverage threshold
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of 1,200, when we relax the threshold to 1,100, the prop-

agation time decreases by 50 %, that is, to just four time

steps. A similar phenomenon is observed when the budget

is boosted with respect to a fixed coverage threshold. For

instance, in Fig. 3c, while using 15 seeds, GREEDY takes six

time steps to achieve a coverage of 1,000, it achieves the

same coverage by 30 seeds in 33 % of the time, that is, in

two time steps. These findings further highlight the

importance of the MINTIME problem.

7 Conclusions

In this paper, we study two optimization problems in social

influence propagation: MINTSS and MINTIME. We

present a bicriteria approximation for MINTSS which

delivers a seed set larger than the optimal seed set by a

logarithmic factor ð1þ lnðg=�ÞÞ; that achieves a coverage

of g� �; which falls short of the coverage threshold by �:

We also show a generic tightness result that indicates

improving the above approximation factor is likely to be

hard.

Turning to MINTIME, we give a greedy algorithm that

provides a tricriteria approximation when allowed a budget

overrun by a factor of ð1þ lnðg=�ÞÞ and a coverage

shortfall by �; and achieves the optimal propagation time

under these conditions. We also provide hardness results

for this problem. We conduct experiments on two real-

world networks to compare the quality of various popular

heuristics proposed in a different context (with necessary

adaptations) with that the greedy approximation algo-

rithms. Our results show that the greedy algorithms out-

perform the other methods in all the settings (as expected),

but depending on the characteristics of the data, some of

the heuristics perform competitively. These include the

recently proposed heuristics PMIA Chen et al. (2010a, b)

and SP Kimura and Saito (2006) which we adapted to

MINTSS and MINTIME.

Several questions remain open, including proving opti-

mal approximation bounds for MINTSS and MINTIME, as

well as complexity results for these problems under other

propagation models.

Appendix

A Proof of Lemma 2

Suppose there exists an algorithm A that selects b k sets

which covers c g elements. Apply A to an arbitrary

instance hU;S; gi of PSC. The output is a collection of sets

C1 such that jC1j � bk and [s2c1
Sj j � cg Next, discard the

sets that have been selected and the elements they cover,

and apply again the algorithm A on the remaining universe.

Repeat this process until 1 or fewer elements are left

uncovered.7

Let gi denote the number of elements uncovered after

iteration i. In iteration i, the algorithm picks b k sets and

covers at least c gi-1 elements. Hence, gi� gi�1 � ð1� cÞ:
Expanding, gi� g � ð1� cÞi: Suppose after l iterations,

gl = 1. The total number of sets picked is lbk:g � ð1�
cÞl ¼ 1 implies l ¼ ln g

ln 1
1�c
:

We now prove the first claim. Let c[ 1 - 1/eb, then

ln 1
1�c

� �
[ b: This yields a PTIME algorithm for PSC

which outputs a solution of size lbk ¼ bk � ln g= ln 1
1�c � c �

k ln g (for some c \ 1) This yields an c � ln g-approxima-

tion for PSC for some c \ 1, which is not possible unless

NP � DTIMEðnOðlog log nÞÞ (Feige 1998).

To prove the second claim, assume b�ð1� dÞ ln 1
1�c

� �
:

This gives a PTIME algorithm for PSC which outputs a

solution of size lbk ¼ bk � ln g= ln 1
1�c �ð1� dÞk � ln g

which is not possible unless NP � DTIMEðnOðlog log nÞÞ: h

B Example illustrating performance of Wolsey’s

solution

Wolsey (1982) studied the RSSC problem and showed,

among many things, that the greedy algorithm provides a

solution that is within a factor of 1þ lnðg=ðg� f ðSt�1ÞÞ of

the optimal solution. Unfortunately, this does not yield an

approximation algorithm with any guaranteed bounds. The

following example shows the greedy solution with

threshold g can be arbitrarily worse than the optimum.

Example (Illustrated also in Fig. 4). Consider a ground

set X ¼ fw1;w2; v1; v2; . . .; vlg with elements having unit

costs. Figure 4 geometrically depicts the definition of a

Fig. 4 Example. Rectangles represent the elements in the universe.

The shaded area within a rectangle represents the coverage function

f for the element. e.g., f(v1) = 1/2 ? 1/2 = 1

7 Instead of 1, we could be left with a constant number of elements.

Asymptotically, it does not make a difference.
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function f : 2X! R; where for any set S 	 X ; f ðSÞ is

defined to be the area (shown shaded) covered by the

elements of S. Specifically, f(w1) = f(w2) = 1 - 1/2l?1

and f(vi) = 1/2i-1, 1 B i B l. Notice, f ðfv1; . . .; vlgÞ ¼
Rl

i¼11=2i�1 ¼ 2� 1=2l�1\2� 1=2l ¼ f ðfw1;w2gÞ: The

greedy algorithm will first pick v1. Suppose it picks S ¼
fv1; . . .; vig in i rounds. Then f(S[{vi?1}) - f(S) = 1/

2i [ 1 - 1/2l?1 - 1 ? 1/2i = 1 - 1/2l?1 - 1/2(2 - 1/

2i-1) = f(S [ {w1}) - f(S). Thus, greedy will never pick

w1 or w2 before it picks v1; . . .; vl: Suppose g = 2 - 1/2l.

Clearly, the greedy solution is X whereas the optimal

solution is {w1, w2}. Here l can be arbitrarily large.
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