
CELF++: Optimizing the Greedy Algorithm for
Influence Maximization in Social Networks

Amit Goyal
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada

goyal@cs.ubc.ca

Wei Lu
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada

welu@cs.ubc.ca

Laks V.S. Lakshmanan
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada

laks@cs.ubc.ca

ABSTRACT
Kempe et al. [4] (KKT) showed the problem of influence
maximization is NP-hard and a simple greedy algorithm
guarantees the best possible approximation factor in PTIME.
However, it has two major sources of inefficiency. First, find-
ing the expected spread of a node set is #P-hard. Second,
the basic greedy algorithm is quadratic in the number of
nodes. The first source is tackled by estimating the spread
using Monte Carlo simulation or by using heuristics [4, 6, 2,
5, 1, 3]. Leskovec et al. [6] proposed the CELF algorithm for
tackling the second. In this work, we propose CELF++ and
empirically show that it is 35-55% faster than CELF.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms, Performance
Keywords: Social networks, Influence Propagation, Viral
marketing, Greedy Algorithm, Submodularity, CELF.

1. INTRODUCTION
In influence maximization, we are given a network G with

pairwise user influence probabilities (as edge labels) and a
number k, and want to find a set S of k users (nodes) such
that the expected spread of influence (spread for short) is
maximized. In their seminal work [4], Kempe et al. (KKT)
studied this problem, focusing on two fundamental prop-
agation models – Linear Threshold Model (LT) and In-

dependent Cascade Model (IC). They showed, under both
models, the problem is NP-hard and a simple greedy al-
gorithm successively selecting the node with the maximum
marginal influence spread approximates the optimum so-
lution within a factor of (1 − 1/e). This is due to the
nice properties of monotonocity and submodularity that the
spread function exhibits under these models. In terms of
spread, monotonocity says as more neighbors of some arbi-
trary node u gets active, the probability of u getting active
increases. Submodularity says the marginal gain of a new
node shrinks as the set grows. Function f is submodular iff
f(S ∪ {w})− f(S) ≥ f(T ∪ {w})− f(T) whenever S ⊆ T .
A major limitation of the simple greedy algorithm is two-

fold: (i) The algorithm requires repeated computes of the
spread function for various seed sets. The problem of com-
puting the spread under both IC and LT models is #P-hard
[1, 3]. As a result, Monte-Carlo simulations are run by KKT

Copyright is held by the author/owner(s).
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

for sufficiently many times to obtain an accurate estimate,
resulting in very long computation time. (ii) In each itera-
tion, the simple greedy algorithm searches all the nodes in
the graph as a potential candidate for next seed node. As a
result, this algorithm entails a quadratic number of steps in
terms of the number of nodes.

Considerable work has been done on tackling the first is-
sue, by using efficient heuristics for estimating the spread
[2, 5, 1, 3] to register huge gains on this front. Relatively
little work has been done on improving the quadratic na-
ture of the greedy algorithm. The most notable work is
[6], where submodularity is exploited to develop an efficient
algorithm called CELF, based on a “lazy-forward” optimiza-
tion in selecting seeds. The idea is that the marginal gain
of a node in the current iteration cannot be better than its
marginal gain in the previous iterations. CELF maintains a
table 〈u,∆u(S)〉 sorted on ∆u(S) in decreasing order, where
S is the current seed set and ∆u(S) is the marginal gain of
u w.r.t S. ∆u(S) is re-evaluated only for the top node at a
time and if needed, the table is resorted. If a node remains
at the top, it is picked as the next seed. Leskovec et al.
[6] empirically shows that CELF dramatically improves the
efficiency of the greedy algorithm.

In this work, we introduce CELF++ that further optimizes
CELF by exploiting submodularity. Our experiments show
that it improves the efficiency of CELF by 35-55%. Since
the optimization introduced in CELF++ is orthogonal to
the method used for estimating the spread, our idea can be
combined with the heuristic approaches that are based on
the greedy algorithm to obtain highly scalable algorithms
for influence maximization.

2. CELF++
Algorithm 1 describes the CELF++ algorithm. We use

σ(S) to denote the spread of seed set S. We maintain a
heap Q with nodes corresponding to users in the network
G. The node of Q corresponding to user u stores a tuple of
the form 〈u.mg1, u.prev best, u.mg2, u.flag〉. Here u.mg1 =
∆u(S), the marginal gain of u w.r.t. the current seed set
S; u.prev best is the node that has the maximum marginal
gain among all the users examined in the current iteration,
before user u; u.mg2 = ∆u(S ∪ {prev best}), and u.flag is
the iteration number when u.mg1 was last updated. The
idea is that if the node u.prev best is picked as a seed in the
current iteration, we don’t need to recompute the marginal
gain of u w.r.t (S ∪ {prev best}) in the next iteration.

It is important to note that in addition to computing
∆u(S), it is not necessary to compute ∆u(S ∪ {prev best})

from scratch. More precisely, the algorithm can be imple-
mented in an efficient manner such that both ∆u(S) and
∆u(S ∪ {prev best}) are evaluated simultaneously in a sin-
gle iteration of Monte Carlo simulation (which typically con-
tains 10,000 runs). In that sense, the extra overhead is rel-
atively insignificant compared to the huge runtime gains we
can achieve, as we will show from our experiments.

Algorithm 1 Greedy CELF++

Require: G, k
Ensure: seed set S
1: S ← ∅; Q← ∅; last seed = null; cur best = null.
2: for each u ∈ V do

3: u.mg1 = σ({u}); u.prev best = cur best; u.mg2 =
σ({u, cur best}); u.flag = 0.

4: Add u to Q. Update cur best based on mg1.
5: while |S| < k do

6: u = top (root) element in Q.
7: if u.flag == |S| then
8: S ← S ∪ {u};Q← Q− {u}; last seed = u.
9: continue;
10: else if u.prev best == last seed then

11: u.mg1 = u.mg2.
12: else

13: u.mg1 = ∆u(S); u.prev best = cur best; u.mg2 =
∆u(S ∪ {cur best}).

14: u.flag = |S|; Update cur best.
15: Reinsert u into Q and heapify.

In addition to the data structure Q, the algorithm uses
the variables S to denote the current seed set, last seed to
track the id of last seed user picked by the algorithm, and
cur best to track the user having the maximum marginal
gain w.r.t. S over all users examined in the current iteration.
The algorithm starts by building the heap Q initially (lines
2-4). Then, it continues to select seeds until the budget k is
exhausted. As in CELF, we look at the root element u of Q
and if u.flag is equal to the size of the seed set, we pick u as
the seed as this indicates that u.mg1 is actually ∆u(S) (lines
6-9). The optimization of CELF++ comes from lines 10-11
where we update u.mg1 without recomputing the marginal
gain. Clearly, this can be done since u.mg2 has already been
computed efficiently w.r.t. the last seed node picked. If none
of the above cases applies, we recompute the marginal gain
of u (line 12-13).

3. EXPERIMENTS
We use two real world data sets consisting of academic

collaboration networks: NetHEPT and NetPHY, both ex-
tracted from arXiv1. NetHEPT is taken from the “High En-
ergy Physics – Theory” section and has 15K nodes and 32K
unique edges. NetPHY is taken from the full “Physics” sec-
tion and has 37K nodes and 174K unique edges. The graphs
are undirected, however we make them directed by taking
for each edge the arcs in both the directions. We consider
the IC model and assign the influence probability to arcs
using two different settings, following previous works (e.g.,
see [4, 2, 1]). In the first setting, for an arc (v, u) we set
the influence probability as pv,u = 1/din(u), where din is
the in-degree of the node u. In the second setting, we assign
a uniform probability of 0.1 to all arcs. In all the experi-
ments, we run 10,000 Monte Carlo simulations to estimate
the spread.

1http://www.arXiv.org

Dataset
Running time (min) Avg. # node lookups

CELF CELF++ Gain CELF CELF++ Gain
Hept WC 245 159 35% 18.7 13.4 28.3%
Hept IC 5269 2439 53.7% 190.5 101.5 46.7%
Phy WC 1241.6 667.7 46.2% 18.6 15.2 18.3%

Table 1: Comparison between CELF and CELF++.

Number of seeds = 100.

The results are shown in Table 1. We use WC (weighted
cascade) to refer to the case when the probabilities are
non-uniform and IC for the uniform probability 0.1 setting.
We only show the results corresponding to NetHEPT WC,
NetHEPT IC, and NetPHY WC for brevity. The results for
NetPHY IC are similar. In these settings, we found that
computing u.mg2 for all nodes in the first iteration results in
large overhead. So, we apply CELF++ starting from the sec-
ond iteration. Notice that the optimization behind CELF++

can be applied starting from any iteration. As can be seen,
CELF++ is significantly faster than CELF. This is due to
the fact that the average number of “spread computations”
per iteration is significantly lower. Since we apply the op-
timization starting from the second iteration, we report the
average number of nodes examined starting from the third
iteration.

Memory Consumption: Although CELF++ maintains
a larger data structure to store the look-ahead marginal
gains (u.mg2) of each node, the increase of the memory con-
sumption is insignificant. For instance, CELF consumes 21.9
MB for NetHEPT and 39.7 MB for NetPHY, while CELF++

uses 22.4 MB and 41.2 MB respectively.

4. CONCLUSIONS
In this work, we presented CELF++, a highly optimized

approach based on the CELF algorithm [6] in order to further
improve the naive greedy algorithm for influence maximiza-
tion in social networks [4]. CELF++ exploits the property
of submodularity of the spread function for influence prop-
agation models (e.g., Linear Threshold Model and Indepen-
dent Cascade Model) to avoid unnecessary re-computations
of marginal gains incurred by CELF. Our empirical studies
on real world social network datasets show that CELF++

works effectively and efficiently, resulting in significant im-
provements in terms of both running time and the average
number of node look-ups.

5. REFERENCES
[1] W. Chen, C. Wang, and Y. Wang. Scalable influence

maximization for prevalent viral marketing in large-scale
social networks. In KDD 2010.

[2] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD 2009.

[3] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear threshold
model. In ICDM 2010.

[4] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD 2003.

[5] M. Kimura and K. Saito. Tractable models for information
diffusion in social networks. In PKDD 2006.

[6] J. Leskovec et al. Cost-effective outbreak detection in
networks. In KDD 2007.

