

13/07/10 1

Review

� Sets

� Collections without duplicates

� HashSet

� Overriding hashCode() and equals()

� TreeSet

� Keeps things sorted

� Implementing Comparable or Comparator

13/07/10 2

The Set interface
<<interface>>

Iterable

<<interface>>
Collection

<<interface>>
List

HashSet

<<interface>>
Set

TreeSet

<<interface>>
SortedSet

13/07/10 3

Methods of the Set interface

� Note that the Set interface extends the Collection interface. An
implementation of Set therefore supports the methods defined in the
Collection interface:

� add(o) � add a specified element to the set (if not already a

member)

� remove(o) � remove the specified element from the set

� contains(o) � is the specified element in the set?

� etc.

� Note that the add method:
 public boolean add(E item);
adds the item only if it isn't already in the set. The method returns true if the
item is added and false if it's already in the set.

� Similarly the addAll method does not add duplicates.
13/07/10 4

Methods of the Set interface

� We can use these methods to define known set
operations:

� c1.containsAll(c2) - true if c2 is a subset of c1

� c1.addAll(c2) - c1 becomes union of c1 and c2

� c1.retainAll(c2) - c1 becomes intersection of c1 and c2

� c1.removeAll(c2) - c1 becomes set difference of c1 and c2

13/07/10 5

Using Sets

� Since Set is specified as an interface, to use it we
have to pick a particular implementation (e.g.,
HashSet, or TreeSet)

� Example:
public class PlayList

{

private Set<Song> songs;

public PlayList()

{

 songs= new HashSet< Song >();

}

13/07/10 6

The HashSet implementation

� The HashSet implementation provides an efficient

implementation of the Set interface that allows us to add or

remove an item or check if the set contains an item in O(1)
time provided certain conditions are met (more later).

� That is, if

Set<�> s = new HashSet<�>();

� s.add(o) is O(1)

� s.remove(o) is O(1)

� s.contains(o) is O(1)

13/07/10 7

The HashSet implementation

� As mentioned, certain conditions must be met if we are to
add, remove or determine if the set contains an item in O(1)
time.

� To understand these conditions, we must have a basic
understanding of how the hash set works.

� A hash set uses a hash table as the underlying structure in
which data is stored.

� A hash table is an array of linked lists�

13/07/10 8

The HashSet implementation

� We add elements to the table using a hash code, an integer
that represents the object

� A hash set maintains a list of groups.

� All members of the group at position i have a hashCode of i.

� We'll talk more in a moment about where these hashCodes
come from

13/07/10 9

The HashSet implementation

� In a HashSet the operations are performed as
following:

add(o)

� compute the hashcode of o, say i

� add o in the ith group

remove(o)

� compute the hashcode of o, say i

� search the ith group and remove o

contains(o)

� compute the hashcode of o, say i

� search the ith group to find o

� If each group is small (and of constant size) each of the
above operations is O(1).

13/07/10 10

The HashSet Implementation
� What makes these operations so efficient?

� Take add() for example

� Rather than iterating over a collection and checking
at each step whether the object already exists, we
just compute the hashCode and check that index in
the array

� We then check whether the object exists in that
bucket

� If we have a good hashCode and hash table, there
will be few collisions, meaning few items to search
through in the bucket

� If we can get close to 1 item per bucket, these
operations will be 0(1) � constant time

13/07/10 11

Where do hash codes come from?
�

Each Java class inherits a hashCode() method from the Java class Object

�
when invoked, hashCode() returns an integer that represents the object

�
a class� hashCode() is usually defined in terms of the hash codes of its attributes

�
if two objects are equal according to equals(), they must have the same hash code

�
objects with the same hash code are not necessarily equal

�
It would be nice to rely upon the Java Object�s class definition of hashCode() but you
can�t if you override equals() because two instances of an object that are equal
according to equals() may not return the same hashCode() unless you ensure they
do!

�
The rule is then:
�If you override equals() you should always override hashCode()�

�
See page 36 of http://java.sun.com/developer/Books/effectivejava/Chapter3.pdf for
a complete description

13/07/10 12

Default hashCode() and equals()

� If you rely on the default inherited equals() and
hashCode(), you are okay in the sense that
they both rely on the memory location of the
object and are therefore consistent with one
another

� But then you are left with a very restrictive
definition of equals() which might not be what
you want

13/07/10 13

How do you write a good
hashCode()

� Writing a fantastic hashCode() method for a class is hard
�The kind of thing people write PhD theses about

� Writing a decent hashCode() method for a class is straightforward

� Page 38 of http://java.sun.com/developer/Books/effectivejava/Chapter3.pdf provides a
recipe.

� Start with a non-zero value (preferably a prime number, like 11, 17, etc.) in the result value

� Pick another prime number, say 37, as a multiplier

� For each attribute that is taken into account in the equals() method

� if attribute is of a primitive type (i.e. an integer, float, etc.) ,
result = 37 * result + attribute�s value casted to an integer

� if attribute is an object,
result = 37 * result + attribute.hashCode()

� and so on�

13/07/10 14

� Allows the user to retrieve objects from the set in sorted
order

� To sort a collection, the objects within the collection
must be comparable:

� the corresponding class must implement either the
Comparable interface or the Comparator

interface.

The SortedSet Interface

13/07/10 15

� The Comparable interface is declared as follows:

public interface Comparable<T> {

 int compareTo(T other)

}

� the integer returned by a.compareTo(b) must adhere to the

following convention:

� negative if a < b

� zero if a.equals(b)

� positive if a > b

� compareTo defines the natural ordering for the class

The Comparable Interface

13/07/10 16

compareTo()

� If a already exists in a set, and you try to add

b, and a.compareTo(b) == 0, b will not be

added

� These are considered duplicates

13/07/10 17

Implementing compareTo

� Rules to follow when you implement this method in a class
C:

� C must implement Comparable<C>

� must be asymmetric

� a.compareTo(b) and b.compareTo(a) must both

equal 0 or have opposite signs

� must be transitive

� if a.compareTo(b) < 0 and b.compareTo(c) < 0

then a.compareTo(c) < 0

� must be consistent with equals()

� a.equals(b) is true iff a.compareTo(b) is zero and

 b.compareTo(a) is zero
13/07/10 18

The Comparator Interface

� Some classes may not have a single natural ordering

� employees may be ordered by name or by salary
or�

� A comparator is an object that defines (encapsulates)
one ordering for a class

� A comparator has to implement:

public interface Comparator<T> {

 int compare(T object1, T object2);

}

13/07/10 19

The Comparator Interface

� The return value for this method

� is defined in the same way as for the compareTo
method of the Comparable interface:

 compare(a,b) is like a.compareTo(b)

� We may define many comparators for a class if we
need to order objects of that type in different ways.

13/07/10 20

� Create a Comparator that compares Accounts by id numbers.

public class AccountIdComparator
 implements Comparator<Account>
{
 public int compare(Account ac1, Account ac2)
 {

return (ac1.getId() � ac2.getId());

}

}

Example

13/07/10 21

The SortedSet Interface

public interface SortedSet<E> extends Set<E>

{

// Views on the sorted set

SortedSet<E> subSet(E from, E to);

SortedSet<E> headSet(E toElement);

SortedSet<E> tailSet(E fromElement);

// Endpoints

E first();

E last();

// Comparator access

Comparator<? super E> comparator();
}

13/07/10 22

� Like Set but keeps elements in ascending order
according to
� the natural order defined by the compareTo method of

Comparable, or

� the compare method of a Comparator

� Iterator will traverse elements in the defined order

� Array produced by toArray methods is sorted

� Additional operations:

� first() and last() return min and max elements in set

� comparator() returns the Comparator used to sort the set, or

null if the natural order is used

The SortedSet Interface

13/07/10 23

� The TreeSet class implements the SortedSet interface. It

has the following constructors (among others):

public TreeSet()
// orders the elements according to their
// natural order

public TreeSet(Comparator< ? super E > c)
// orders the elements according to the
// comparator c

The TreeSet Class

13/07/10 24

� Note the use of the bounded wildcard:
� Comparator< ? super E > c

� This indicates that the Comparator must compare types that

are supertypes of E (including E itself).

� For example, if SavingsAccount is a subclass of Account

and BalanceComparator implements the

Comparator<Account> interface, then we can create the
following TreeSet of SavingsAccount objects:

TreeSet<SavingsAccount> accts
= new TreeSet<SavingsAcount>(

 new BalanceComparator());

The TreeSet Class

13/07/10 25

TreeSet - Time Complexity

� The add, remove and contains methods all have a
guaranteed O(log N) time complexity.

� So these operations on a TreeSet are less efficient

than for a HashSet (assuming a good hashCode()

implementation) but we have to remember that the
TreeSet maintains the data in sorted order.

13/07/10 26

TreeSet vs. HashSet

� If you don't care about sorting but just want
efficient add(), remove() and contains()
operations, the question of which Set to use
depends on how confident you are in your
hash code method

� If you have a good hash code, there will be
few collisions, which means few objects in
each bucket, which means less to search
through

� Otherwise, you might want to use a TreeSet

13/07/10 27

Using TreeSet

� Now we can do this:

Set<Golfer> gSet = new TreeSet<Golfer>();

gSet.add(bob);

gSet.add(jane);

gSet.add(jim);

Iterator<Golfer> itr = gSet.iterator();

while (itr.hasNext())

{

System.out.println(itr.next().getName());

}

Golfer implements
Comparable

13/07/10 28

Using TreeSet

� Or we can supply a Comparator

Set<Golfer> gSet = new TreeSet<Golfer>(new

HandicapComparator());

gSet.add(bob);

gSet.add(jane);

gSet.add(jim);

Iterator<Golfer> itr = gSet.iterator();

while (itr.hasNext())

{

System.out.println(itr.next().getName());

}

13/07/10 29

Using TreeSet

� A different Comparator if we choose...

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(bob);

gSet.add(jane);

gSet.add(jim);

Iterator<Golfer> itr = gSet.iterator();

while (itr.hasNext())

{

System.out.println(itr.next().getName());

}

13/07/10 30

Using TreeSet

� Now Java will use either the compareTo()
method if we implement Comparable, or the
compare() method if we use Comparators,
and will keep our items nicely sorted

� Whenever we add something, Java will
determine where it belongs by calling those
methods

� Note: if we don't supply a Comparator and our
class doesn't implement Comparable, we will
get an error. We need one or the other.

13/07/10 31

compareTo() and equals()

� We stated earlier that one rule for
implementing compareTo() - and compare() -
is that it must be consistent with equals()

� a.equals(b) and (a.compareTo(b) == 0) should
have the same boolean value

� If these are not consistent, the Set contract
can be violated and you can end up with
strange behaviour

� In practice, however, you will often see
compareTo() that is not consistent with
equals()

13/07/10 32

compareTo() and equals()

� If you define compareTo() or compare() in a
way that is not consistent with equals(), you
should note this in the comments for that
method

� You should also be aware of the behaviour
that can result

� For example, when trying to add b to a set
containing a, if (!a.equals(b)) and
(a.compareTo(b) == 0), b will not be added
even though they are not equal according to
equals()

13/07/10 33

Inconsistency I � Golfer example

� Say we define the Golfer equals() method as
such:

public boolean equals(Object other)

{

if (other == null) return false;

if (other.getClass() != getClass()) return false;

Golfer og = (Golfer) other;

return (this.name.equals(og.getName()) &&

this.handicap == og.getHand());

}
13/07/10 34

Inconsistency I � Golfer example

� Then we use a Comparator based on the best
score attribute

public class BestScoreComparator implements

Comparator<Golfer>

{

public int compare(Golfer g1, Golfer g2)

{

return g1.getBest() - g2.getBest();

}

}

13/07/10 35

Inconsistency I � Golfer Example

� So Golfers are considered equal if they have
the same name and same handicap

� And the Comparator sorts Golfers based on
their best scores, with the compare() method
returning 0 when Golfers have the same score

� As far as the sorted set is concerned, this 0
value means that the Golfers are equal, and
so this is what will happen...

13/07/10 36

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer betty = new Golfer(8, 76, "betty");

gSet.add(betty);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

Create a couple
Golfers

13/07/10 37

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer betty = new Golfer(8, 76, "betty");

gSet.add(betty);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

Create a new TreeSet
with a
BestScoreComparator

13/07/10 38

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer betty = new Golfer(8, 76, "betty");

gSet.add(betty);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

Create a new Golfer
Betty who happens to
have the same best
score as Jane

13/07/10 39

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer betty = new Golfer(8, 76, "betty");

gSet.add(betty);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

Now what output do we
get if we iterate through
the set and print out
each Golfer's name and
best score?

13/07/10 40

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer betty = new Golfer(8, 76, "betty");

gSet.add(betty);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

>
jane 76
jim 105

Betty never got added to the
set, because the
BestScoreComparator
considered her and Jane to
be equal (returned 0)

13/07/10 41

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer betty = new Golfer(8, 76, "betty");

gSet.add(betty);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

>
jane 76
jim 105
false

Even though jane and betty
are not considered equal
according to the equals()
method

13/07/10 42

Inconsistency II � Golfer Example

� On the other hand, if a.equals(b) and
(a.compareTo(b)) != 0), b will be added to the
set even though a and b are equal

� For example, using the same Golfer example,
with the same equals() method and same
BestScoreComparator, this could happen...

13/07/10 43

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer jane2 = new Golfer(5, 88, "jane");

gSet.add(jane2);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

We create a new Golfer with the
same name and handicap as
jane, thus making them equal
according to the equals() method

13/07/10 44

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer jane2 = new Golfer(5, 88, "jane");

gSet.add(jane2);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(betty.equals(jane));

However, they have different best
scores, so compare() will return a
non-zero value.
The golfer jane2 gets added to
the set even though jane and
jane2 are equal

13/07/10 45

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(jane);

gSet.add(jim);

Golfer jane2 = new Golfer(5, 88, "jane");

gSet.add(jane2);

for (Golfer g: gSet)

{

System.out.print(g.getName());

System.out.println(" "+g.getBest());

}

System.out.println(jane2.equals(jane));

>
jane 76
jane 88
jim 105
true

13/07/10 46

compareTo() and equals()

� By making compareTo() and equals()
inconsistent, we now have unexpected
behaviour for sets

� So it's recommended to make them consistent

� Otherwise, just be aware of this behaviour

13/07/10 47

Maps, Stacks, Queues

and Generic Algorithms

Reading:

� 2nd Ed: 20.4, 21.2, 21.7

� 3rd Ed: 15.4, 16.2, 16.7

Additional references:

Online Java Tutorial at

http://java.sun.com/docs/b

ooks/tutorial/collections/

You will be expected to:
� program to the generic Map and SortedMap

 interfaces by reading and using the API
� compare and contrast HashMap and TreeMap

 classes (benefits of using each, basic run time

 analysis)
� program to the generic Queue interface
� program to the API of the generic Stack class
� program to the API of the generic Deque class
� identify (in words or through code) appropriate

 types for collections of data needed in a given

 software system
� write code (solve problems) that uses the generic

 algorithms provided in the Collections class

13/07/10 48

The Map Interface

� A map structure is also known as a table or

dictionary or association list.

� A map is a collection of pairs (key, value).

� The keys are unique within the map

� The map associates exactly one value with each key

� Examples:

� map of student ids to student records

� map of words to frequency of occurrence in a document

13/07/10 49

The Map Interface

� The Map interface is not related to the other
interfaces in the Java Collections Framework:

� Map does not extend Iterable (so you can't
iterate over a map or use the for-each loop)

� Map does not extend Collection

� a Collection operates on items

� a Map manipulates (key, value) pairs

13/07/10 50

The Map Interface (cont�)

public interface Map<K,V>

{

 // Basic Operations

 int size();

 boolean isEmpty();

 boolean containsKey(Object key);

 boolean containsValue(Object value);

 V get(Object key);

 V remove(Object key);

 V put(K key, V value);

 // Bulk Operations

 void clear();

 void putAll(Map<? extends K, ? extends V> m);

13/07/10 51

The Map Interface (cont�)
 // Collection Views

 Set<K> keySet();

 Collection<V> values();

 Set<Map.Entry<K,V>> entrySet();

 // Interface for entrySet elements; defined inside Map

 interface Entry<K,V>

 {

 K getKey();

 V getValue();

 V setValue(V value);

 }

}
13/07/10 52

Map Methods
� Basic methods:

� put adds a (key, value) entry; returns previous value

for that key or null

� containsKey, containsValue check if a key or value

is in the map

� get returns the value of a given key; returns null if

key is not in the map

� problems if map allows null values; must use containsKey

� remove removes the entry for that key; returns the

value removed or null if the map doesn't contain the

given key

13/07/10 53

Map Methods

� Collection Views: restructure the map (or parts of

it) as a Collection so we can use iterators:

� keySet returns a Set containing all keys in the map

� values returns a Collection with all map values

(may have duplicates)

� entrySet returns a Set of entries; each entry

represents a (key, value) pair and it is defined by the

interface Entry defined inside Map

13/07/10 54

Map Implementations

� The class HashMap provides an implementation of the Map

interface.

� The underlying implementation is similar to a HashSet (it

uses a hash table)

� When a (key, value) pair is added to a HashMap, the hash

code is generated using only the key (not the value)

� Assuming a good hashCode() method for the Key, the put,

get and remove methods run in O(1) time.

13/07/10 55

Map Examples
� A generic method that prints out all the key-value

pairs of a Map:

public static <K,V> void printMap(Map<K,V> theMap)

{

for(Map.Entry<K,V> e : theMap.entrySet()) {

 System.out.println(e.getKey() + ": "

+ e.getValue());

 }

13/07/10 56

Map example, cont'd

public static void main(String[] args)

 {

 Map<String, String> ourJobs = new

HashMap<String, String>();

 ourJobs.put("Grover", "researcher");

 ourJobs.put("Geneva", "librarian");

 ourJobs.put("Gina", "architect");

 printMap(ourJobs);

 }

13/07/10 57

Map example, cont'd
public static void main(String[] args)

 {

 Map<String, String> ourJobs = new

HashMap<String, String>();

 ourJobs.put("Grover", "researcher");

 ourJobs.put("Geneva", "librarian");

 ourJobs.put("Gina", "architect");

 printMap(ourJobs);

 }
Gina: architect
Geneva: librarian
Grover: researcher

13/07/10 58

Map Examples
� We could have used an Iterator instead (same output)

public static <K, V> void printMapIterator(Map<K, V> theMap)

{

Iterator<Map.Entry<K, V>> i = theMap.entrySet().iterator();

while (i.hasNext()) {

 Map.Entry<K, V> e = i.next();

 System.out.println(e.getKey() + ": " + e.getValue());

}

}

13/07/10 59

What gets printed here?
Map<String, String> ourJobs = new

HashMap<String, String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

ourJobs.put("Gina", "dog trainer");

ourJobs.remove("Grover");

printMapIterator(ourJobs);

13/07/10 60

What gets printed here?
Map<String, String> ourJobs = new

HashMap<String, String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

ourJobs.put("Gina", "dog trainer");

ourJobs.remove("Grover");

printMapIterator(ourJobs);

>
Gina: dog trainer
Geneva: librarian

13/07/10 61

What gets printed here?
Map<String, String> ourJobs = new

HashMap<String, String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

ourJobs.put("Gina", "dog trainer");

ourJobs.remove("Grover");

printMapIterator(ourJobs);

>
Gina: dog trainer
Geneva: librarian

Gina gets overwritten here. You
can't have duplicate keys.

13/07/10 62

What gets printed here?
Map<String, String> ourJobs = new

HashMap<String, String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

ourJobs.put("Gina", "dog trainer");

ourJobs.remove("Grover");

printMapIterator(ourJobs);

>
Gina: dog trainer
Geneva: librarian

Grover gets removed � both the
key and its value.

13/07/10 63

What gets printed here?

� Notice that put has a return type of the

previous value for that key, or null

Map<String, String> ourJobs = new HashMap<String,

String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

String ginaOld = ourJobs.put("Gina", "dog trainer");

System.out.println("Gina used to be an "+ginaOld);

System.out.println("Now she is a "+ourJobs.get("Gina"));

Get the previous value

13/07/10 64

What gets printed here?

� Notice that put has a return type of the

previous value for that key, or null

Map<String, String> ourJobs = new HashMap<String,

String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

String ginaOld = ourJobs.put("Gina", "dog trainer");

System.out.println("Gina used to be an "+ginaOld);

System.out.println("Now she is a "+ourJobs.get("Gina"));

Get current value for
key �Gina�

13/07/10 65

What gets printed here?

� Notice that put has a return type of the

previous value for that key, or null

Map<String, String> ourJobs = new HashMap<String,

String>();

ourJobs.put("Grover", "researcher");

ourJobs.put("Geneva", "librarian");

ourJobs.put("Gina", "architect");

String ginaOld = ourJobs.put("Gina", "dog trainer");

System.out.println("Gina used to be an "+ginaOld);

System.out.println("Now she is a "+ourJobs.get("Gina"));

Gina used to be an architect
Now she is a dog trainer

13/07/10 66

In-Class Exercise I
� A function that returns a map of words to the number of times each

word occurs in a text document (doc):

public static Map<String, Integer>

 frequencies(Collection<String> doc)

{

 Map<String,Integer> map = new HashMap<String,Integer>();

for (String word : doc) {

 if (__________________________________)

 else

}

 return map;
}

13/07/10 67

Tea break!

13/07/10 68

Sorted Map
� The SortedMap interface extends the Map interface.

� A SortedMap maintains the entries in the map sorted

by their key (not their value)

� The class TreeMap implements the SortedMap interface

� TreeMap uses a similar underlying implementation to

TreeSet. The get, put and remove operations run in

O(log N) time.

13/07/10 69

Sorted Map

� The TreeMap<K,V> has the following constructors

(note the similarity with TreeSet):

� public TreeMap()

// orders the entries using the natural

// ordering for the Key

� public TreeMap(Comparator< ? super K > c)

// orders the entries using the given

// comparator for the Key

13/07/10 70

SortedMap Interface

public interface SortedMap<K, V> extends Map<K, V>

{

// Range-view

SortedMap<K, V> subMap(K fromKey, K almostToKey);

SortedMap<K, V> headMap(K almostToKey);

SortedMap<K, V> tailMap(K fromKey);

// Endpoints

K firstKey();

K lastKey();

// Comparator access

Comparator<? super K> comparator();

}

13/07/10 71

SortedMap Example

Map<Golfer, String> golfTeams = new TreeMap<Golfer,

String>(new HandicapComparator());

Let's create a map associating Golfers with team names.

We'll supply the HandicapComparator that we defined before.

13/07/10 72

SortedMap Example

Map<Golfer, String> golfTeams = new TreeMap<Golfer,

String>(new HandicapComparator());

Golfer betty = new Golfer(12, 76, "betty");

Golfer jane = new Golfer(10, 88, "jane");

Golfer jim = new Golfer(15, 99, "jim");

We create a few Golfer instances.

13/07/10 73

SortedMap Example

Map<Golfer, String> golfTeams = new TreeMap<Golfer,

String>(new HandicapComparator());

Golfer betty = new Golfer(12, 76, "betty");

Golfer jane = new Golfer(10, 88, "jane");

Golfer jim = new Golfer(15, 99, "jim");

golfTeams.put(betty, "fairweather fairways");

golfTeams.put(jane, "the water hazards");

golfTeams.put(jim, "the water hazards");

Then we associate our Golfers with team names. Notice again that
it's possible to have duplicates values, just not duplicate keys.

13/07/10 74

SortedMap Example

� Our map should now be sorted according to key

� We can get the entrySet and iterate through to see

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

13/07/10 75

SortedMap Example

� It seems like there's a lot happening in a few lines, so let's
unpack it

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

13/07/10 76

SortedMap Example

EntrySet() returns a Set of type Entry.

Entry is defined within Map

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

13/07/10 77

SortedMap Example

The Entry has two type parameters, Golfer and String,
representing the keys and the values.

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

13/07/10 78

SortedMap Example

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

An Entry object has a getKey() method and a getValue()
method. In this case getKey() returns a Golfer object and
getValue() returns a String.

13/07/10 79

SortedMap Example

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

We can then call the getName() method of the Golfer object.

13/07/10 80

SortedMap Example

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

So we get the name associated with each key (Golfer) and the
 value for each key (String), with the result sorted using the
supplied comparator.
>
jane the water hazards
betty fairweather fairways
jim the water hazards

13/07/10 81

In-Class Exercise II

� Replace the for loop in that example with an
iterator

for (Map.Entry<Golfer, String> e: golfTeams.entrySet())

 {

 System.out.println(e.getKey().getName()+"

"+e.getValue());

 }

13/07/10 82

Some other structures

13/07/10 83

Queues

� A queue is a collection of items organized in a

structure with the First-In-First-Out (FIFO) property.

� new items join the queue at the end,

� the first item to enter the queue is the first to exit

� like a line-up at a cashier

� Typical queue operations

� add an item to a queue (enqueue)

� remove and return the first item of a queue (dequeue)

� return a queue's first item without removing it (front)

� check if a queue is empty (empty)

13/07/10 84

Applications of Queues.

� Queues are frequently used in operating systems

and networking software modules

� processor queue

� network router queues of outgoing packets, etc.

� Queues are very useful structures for computer

based simulation

� event queues, etc.

13/07/10 85

Interface Queue

public interface Queue<E> extends Collection<E>
{
 // enqueue
 public boolean offer(E element);

 // front
 public E peek(); // returns null if queue is empty
 public E element(); // throws a NoSuchElementException

// if queue is empty
 // dequeue
 public E poll(); // returns null if queue is empty
 public E remove(); // throws a NoSuchElementException
 // if queue is empty

}

13/07/10 86

Stacks
� A stack is a collection of items organized in a

structure with the Last-In-First-Out (LIFO)
property:
� new items are stacked on top of older items

� the item on top of the stack is the first to be removed
from it

� like a stack of plates in a cafeteria

� Stack operations
� push an item onto a stack

� pop an item off the stack and return it

� peek at the item on top of the stack (without popping it)

� check if the stack is empty

13/07/10 87

Stack class (partial)
class Stack <E> extends Vector<E>

{

 // Return true if the stack is empty.

 boolean empty();

 // Returns the item on top of the stack.

E peek();

// Pops item on top of stack and returns it.

 E pop();

 // Pushes a new item onto the stack, and returns it.

E push(E item);

}

NOTE: A more consistent Stack interface is provided by

Deque interface and its implementations
13/07/10 88

Applications of Stacks.

� A computer uses a run-time stack to keep

track of the function calls

� when a function is called, a new stack frame (with

space for the parameters and local variables) is

created and pushed onto the stack

� when the function returns, the system pops the frame

from the stack

13/07/10 89

Example Using Stacks

� Problem: Given an algebraic expression (with single

letter operands) with brackets, check if brackets are

balanced

� [a*(b+c)-{(d/a)-(d-a)}] is balanced

� [a*(b+c)-{(d/a}-(d-a))] is not balanced

� a*(b+c)-{(d/a)-(d-a)}] is not balanced

� [a*(b+c)-{(d/a)-(d-a)] is not balanced

13/07/10 90

Example (cont�d)
� Solution Strategy

� use a stack

� scan expression string from left to right once

� when we find a left bracket, we push it onto the stack

� when we find a right bracket:

� if the stack is empty, report �not balanced�

� otherwise:

� pop an item off the stack

� if the two brackets don't match, report �not balanced�

� when you reach the end of the expression

� if the stack is not empty, report �not balanced�

� otherwise report �balanced�

13/07/10 91

Example (cont�d)

public static boolean match(String expression)
{
 final String LEFTS = "([{<";
 final String RIGHTS = ")]}>";

 char nxtChar; // next character in expression
 char topChar; // character on top of stack
 Stack<Character> brackets = new Stack<Character>();

 for (int index = 0; index < expression.length(); index++)
 {
 nxtChar = expression.charAt(index);
 if (LEFTS.indexOf(nxtChar) != -1)
 {
 // ch is left bracket
 brackets.push(nxtChar); // autoboxing
 }

13/07/10 92

Example (cont�d)

 else if(RIGHTS.indexOf(nxtChar) != -1)
 {
 // ch is a right bracket
 if (brackets.empty())
 {
 return false; // stack empty, so no match.
 }

 topChar = brackets.pop(); // auto-unboxing
 if (LEFTS.indexOf(topChar) != RIGHTS.indexOf(nxtChar))
 {
 return false; // mismatched pair
 }
 }
 }
 return brackets.empty();
}

13/07/10 93

Deque<E> Interface
� A deque is a double ended queue:

� can insert and remove items from both ends of a deque

� Methods throw exception or return a special value

First Element (Head) Last Element (Tail)

Throws
exception

Special value
Throws

exception
Special
value

Insert addFirst(e) offerFirst(e) addLast(e) offerLast(e)

Remo
ve

removeFirst() pollFirst() removeLast() pollLast()

Exami
ne

getFirst() peekFirst() getLast() peekLast()

� Deque implementations:
�ArrayDeque, Linked List

13/07/10 94

Generic Algorithms

� The Collections class (in java.util) has many useful

static methods that operate on collections including the

following:

� public static void reverse(List<?> list)

// reverses the items in the list

� public static void shuffle(List<?> list)

// randomly permutes the items in the list

13/07/10 95

Generic Algorithms

� Two methods to sort a list:

� public static <T> void sort(List<T> list,

Comparator<? super T> c)

// sorts the list using the given comparator

� public static <T extends Comparable<? super T>>

 void sort(List<T> list)

// sorts the list according to the natural

// ordering of its elements

� And many more�
13/07/10 96

Learning Goals Review

You will be expected to:
� program to the generic Map and SortedMap

 interfaces by reading and using the API
� compare and contrast HashMap and TreeMap

 classes (benefits of using each, basic run time

 analysis)
� program to the generic Queue interface
� program to the API of the generic Stack class
� program to the API of the generic Deque class
� identify (in words or through code) appropriate

 types for collections of data needed in a given

 software system
� write code (solve problems) that uses the generic

 algorithms provided in the Collections class

13/07/10 97

Sneak Preview

� In an upcoming lecture we will talk in detail
about implementing associations

� But this is useful for your current assignment,
so here's a preview

13/07/10 98

Unidirectional one-to-one

associations
� The simplest type of association to implement is a

unidirectional one-to-one association between two
classes

� With a unidirectional association, you can navigate from
an object of one class to an object of the other class (as
indicated by the direction of the arrow) but not vice-versa

� This kind of association is easily implemented using an
attribute that holds a reference to an object of the other
class

13/07/10 99

Unidirectional one-to-one cont�d

� Consider the following association:

� Implementation:

public class Watch
{
 private Display theDisplay;

 ...
}

Watch Display

111 1

13/07/10 100

Bidirectional one-to-one

associations
� The following UML diagram indicates a bidirectional

association
� no arrows on any end of the association

� We must be able to navigate from an account to the
corresponding customer and vice versa

� Implementation:
� each class needs an attribute that holds a reference to

an object of the other class
� each class must have setter methods that allow the

reference to the object of the other class be established

Customer Account

111 1

13/07/10 101

A Bad Implementation
 public class Customer

 {

 private Account theAccount;

 public void setAccount(Account account)

 {

 theAccount = account;

 }

 // etc.

 }
 public class Account
 {
 private Customer theCustomer;
 public void setCustomer(Customer customer)
 {
 theCustomer = customer;
 }
 // etc.
 }

What is

Wrong?

13/07/10 102

How about this?

 public class Customer
 {
 private Account theAccount;

 public void setAccount(Account account)

 {

 theAccount = account;

 account.setCustomer(this)

 }

 }

 public class Account

 {

 private Customer theCustomer;

 public void setCustomer(Customer customer)

 {
 theCustomer = customer;
 customer.setAccount(this)

 }

 }

What is

Wrong?

13/07/10 103

A Better Solution
 public class Customer
 {
 private Account theAccount;
 public void setAccount(Account account)
 {
 if (theAccount != account) {
 theAccount = account;
 account.setCustomer(this)
 }
 }
 }
 public class Account
 {
 private Customer theCustomer;
 public void setCustomer(Customer customer)
 {
 if (theCustomer != customer) {
 theCustomer = customer;
 customer.setAccount(this)

}
 }
 }

13/07/10 104

One-to-many Associations
� One-to-many associations can also be bidirectional:

or unidirectional:

depending on the needs of the application. In either

case the �many� part of the association is realized

using a collection of references.

Customer Video

0..*11 0..*

Customer Video

0..*11 0..*

13/07/10 105

One-to-many Associations cont�d
� public class Customer

{
 private Set<Video> rentedVideos;

 public void addVideo(Video video)
 {

 …

 }
 // etc.
}

� The particular type of collection that is used will
depend on the needs of the application.

� If ordering matters, we may use an Array or List.
� If an element appears in the collection only once,

we may choose to use a Set, etc.
13/07/10 106

One-to-many Associations cont�d
� Assuming a bidirectional association between

customer and Video, the implementation of

the Video class would look something like:

� public class Video

{

 private Customer rentee;

 public void setRentee(Customer c)

 {

 �

 }

}

13/07/10 107

One-to-many associations cont�d
� Again, we have to be careful to ensure consistency. Would this be ok?

public class Customer {
 //…

public void addVideo(Video video)
{
 rentedVideos.add(video);
 video.setRentee(this);
}

}

 public class Video {
 //…

 public void setRentee(Customer c)
{
 rentee = c;

 rentee.addVideo(this);

 }

}

13/07/10 108

One-to-many associations cont�d
� Here�s a better implementation �

public class Customer {
 //…

public void addVideo(Video video)
{
 if (rentedVideos.add(video)){
 video.setRentee(this);

}

}

}

public class Video {
 //…
 public void setRentee(Customer c)

{
 if (rentee != c)
 {

 rentee = c;
 rentee.addVideo(this);
 }
 }

}

13/07/10 109

Many-to Many Associations
� Consider the following many-to-many association between

SalesRep and Customer:

� One way of implementing it is for both classes to maintain

collections of references to instances of the other class.

� Again, operations need to be added that preserve

consistency between the two collections of references.

SalesRep Customer

*** *

13/07/10 110

Aggregations and Compositions

� The implementation of an aggregation does

not differ from an association

� The implementation of a composition should

ensure that when the whole is deleted, the

parts are also deleted
� In Java, we need to make sure that when the whole is

deleted, there are no references to its parts, so the parts

are garbage collected.

