

07/11/10 1

Things get sorted

07/11/10 2

Sorting

� We've looked at Arrays, ArrayLists and
LinkedLists

� We're about to look at Sets

� Before we do, let's consider the case where
we want to sort an Array or a List...

07/11/10 3

Sorting

� The Arrays class and Collections class in java
supply sorting algorithms for arrays and
collections

� This is straightforward for cases like sorting an
array of integers:

int[] intArr = { 5, 4, 3, 2, 1 };

Arrays.sort(intArr);

for (int num : intArr) {

System.out.println(num);

>
1
2
3
4
5 07/11/10 4

Sorting Objects

� Seems easy enough, but...

� What if we want to sort an array of Employees,
or Bikes, or Accounts?

� Sorting integers is easy, but how does Java
know how to sort these complex objects?

� We have to tell Java how to sort them

07/11/10 5

Comparable

� We do that by having our class implement the
Comparable interface

� The Comparable interface lists a single
method compareTo()

� We have our class implement that method in a
way that tells Java how objects of the class
should be sorted

07/11/10 6

� The Comparable interface is declared as follows:

public interface Comparable<T> {

 int compareTo(T other)

}

� the integer returned by a.compareTo(b) must adhere to the

following convention:

� negative if a < b

� zero if a.equals(b)

� positive if a > b

� compareTo defines the natural ordering for the class

The Comparable Interface

07/11/10 7

Golfers
� Let's say we have a class Golfer

� It might have attributes and methods like this:
public class Golfer {

private int handicap;

private int bestscore;

private String name;

public Golfer(int hand, int best, String name)

{

bestscore = best;

handicap = hand;

this.name = name;

} continued

07/11/10 8

Golferpublic int getHand()

{

return handicap;

}

public int getBest()

{

return bestscore;

}

public String getName()

{

return name;

}

07/11/10 9

Golfer

� We want to create a sorted Array of Golfers,
and we want them sorted by handicap

� We need to tell Java that they should be
sorted this way

07/11/10 10

Golfers
� Let's say we have a class Golfer

� It might have attributes and methods like this:
public class Golfer implements Comparable<Golfer> {

private int handicap;

private int bestscore;

private String name;

public Golfer(int hand, int best, String name)

{

bestscore = best;

handicap = hand;

this.name = name;

} continued

We make our class
implement
Comparable

07/11/10 11

Golfers
� Let's say we have a class Golfer

� It might have attributes and methods like this:
public class Golfer implements Comparable<Golfer> {

private int handicap;

private int bestscore;

private String name;

public Golfer(int hand, int best, String name)

{

bestscore = best;

handicap = hand;

this.name = name;

} continued

And if we implement
Comparable, then we
need to define the
compareTo method

07/11/10 12

Comparing Golfers
� We add this method to our Golfer class

public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap < ohand)

{

return -1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return 1;

}

07/11/10 13

Comparing Golfers
� We add this method to our Golfer class

public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap < ohand)

{

return -1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return 1;

}

So when compareTo gets
called on a Golfer object, with
another Golfer passed as a
parameter, we compare their
handicaps and return -1, 0 or
1 indicating how they should
be sorted

07/11/10 14

Comparing Golfers
� We add this method to our Golfer class

public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap < ohand)

{

return -1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return 1;

}

Now when we put a bunch of
Golfers in an array and call
Arrays.sort(), Java will use
the compareTo method to put
each in its correct place

07/11/10 15

Comparing Golfers

Golfer[] golfBuddies = new Golfer[3];

Golfer bob = new Golfer(9, 85, "bob");

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

golfBuddies[0] = bob;

golfBuddies[1] = jane;

golfBuddies[2] = jim;

Arrays.sort(golfBuddies);

for (Golfer g: golfBuddies)

{

System.out.println(g.getName());

} 07/11/10 16

Comparing Golfers

Golfer[] golfBuddies = new Golfer[3];

Golfer bob = new Golfer(9, 85, "bob");

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

golfBuddies[0] = bob;

golfBuddies[1] = jane;

golfBuddies[2] = jim;

Arrays.sort(golfBuddies);

for (Golfer g: golfBuddies)

{

System.out.println(g.getName());

}

>
jane
bob
jim

07/11/10 17

Comparing Golfers
� How could we change the compareTo method

to rank them in reverse order?
public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap < ohand)

{

return -1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return 1;

}

07/11/10 18

Comparing Golfers
� How could we change the compareTo method

to rank them in reverse order?
public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap > ohand)

{

return -1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return 1;

}

We could change the if statement

07/11/10 19

Comparing Golfers
� How could we change the compareTo method

to rank them in reverse order?
public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap < ohand)

{

return 1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return -1;

}

Or instead we could change the
return values

07/11/10 20

Comparing Golfers
� How could we change the compareTo method

to rank them in reverse order?
public int compareTo(Golfer g)

{

int ohand = g.getHand();

if (this.handicap < ohand)

{

return 1;

}

else if (this.handicap == ohand)

{

return 0;

}

else return -1;

}

Either way:
>
jim
bob
jane

07/11/10 21

compareTo

� When a.compareTo(b) is called, the return
values mean:

� -1 a comes before b

� 1 b comes before a

� 0 they are equal

07/11/10 22

Comparing Golfers

� What if we decided we want to rank Golfers by
their best score instead?

� We could simply define compareTo()
differently

07/11/10 23

Comparing Golfers
public int compareTo(Golfer g)

{

int obest = g.getBest();

if (this.best < obest)

{

return -1;

}

else if (this.best == obest)

{

return 0;

}

else return 1;

}
07/11/10 24

Implementing compareTo

� So if we decide we want to sort objects based
on a different attribute, do we need to rewrite
compareTo?

� Some objects might have a single natural
ordering, but others may have many attributes
and sometimes we want to sort by one and
sometimes by another

� Also, what if we want to sort objects of a class
defined by someone else? In that case, we
can't go in and redefine their compareTo
method

07/11/10 25

Comparators

� There is an alternative to implementing
Comparable and its compareTo method

� We can use Comparators

07/11/10 26

The Comparator Interface

� A comparator has to implement:

public interface Comparator<T> {

 int compare(T object1, T object2);

}

07/11/10 27

The Comparator Interface

� The return value for this method

� is defined in the same way as for the compareTo
method of the Comparable interface:

 compare(a,b) is like a.compareTo(b)

� We may define many comparators for a class if we
need to order objects of that type in different ways.

07/11/10 28

Golf Comparators

� We could define two different Golfer
comparators:

public class HandicapComparator implements

Comparator<Golfer>{

public int compare(Golfer g1, Golfer g2)

{

 return g1.getHand() - g2.getHand();

}

}

07/11/10 29

Golf Comparators

� And other for best scores:

public class BestScoreComparator implements

Comparator<Golfer>{

public int compare(Golfer g1, Golfer g2)

{

 return g1.getBest() - g2.getBest();

}

}

07/11/10 30

Golf Comparators

� And other for best scores:

public class BestScoreComparator implements

Comparator<Golfer>{

public int compare(Golfer g1, Golfer g2)

{

 return g1.getBest() - g2.getBest();

}

} What's going on here? Don't we need to return -1,
0 or 1? This isn't guaranteed to do so.

07/11/10 31

Golf Comparators

� And other for best scores:

public class BestScoreComparator implements

Comparator<Golfer>{

public int compare(Golfer g1, Golfer g2)

{

 return g1.getBest() - g2.getBest();

}

} Actually, no. We just need to return a negative
value, positive value, or zero. Often people use
-1, 0 and 1, but not always. For that reason, be
careful doing something like if

(this.compareTo(g1) == -1)because it

may be a different negative value

07/11/10 32

Using Comparators

� So how do we use these Comparator classes?

� Methods such as sort() are overloaded

� If the class implements Comparable and has a
compareTo method, we just call sort() on our
array or collection

� There is also a version of sort() that takes a
Comparator as a second parameter

� We can take one of those two approaches

� Note: if the class implements Comparable and
we pass a Comparator, it is the Comparator
that gets used for sorting

07/11/10 33

Using Comparators
Golfer[] golfBuddies = new Golfer[3];

Golfer bob = new Golfer(9, 85, "bob");

Golfer jane = new Golfer(5, 76, "jane");

Golfer jim = new Golfer(15, 105, "jim");

golfBuddies[0] = bob;

golfBuddies[1] = jane;

golfBuddies[2] = jim;

Arrays.sort(golfBuddies, new HandicapComparator());

for (Golfer g: golfBuddies)

{

System.out.println(g.getName());

}

Now we can just provide whatever
Comparator we want

07/11/10 34

In-Class Exercise I
� Change this class Worker so that it

implements Comparable
public class Worker {

private int id;

private int age;

public Worker(int anID, int anAge)

 {

 this.id = anID;

 this.age = anAge;

 }

…

}

07/11/10 35

In-Class Exercise I
� Now write two Comparator classes to give us

more flexibility on how we sort Workers
public class Worker {

private int id;

private int age;

public Worker(int anID, int anAge)

 {

 this.id = anID;

 this.age = anAge;

 }

…

}

07/11/10 36

Sorting

� We'll come back to Comparable and
Comparator shortly, and in more detail, when
we talk about Sets

07/11/10 37

The Set Interface

Reading:

� 2nd Ed: 19.8,
21.1,
briefly: 21.3, 21.4

� 3rd/4th Ed: 14.8,
16.1,
briefly: 16.3, 16.4

You will be expected to:

� program to the generic Set and SortedSet
interfaces including read and use the API�s
� justify the use of a set vs a list for a given
problem
� compare and contrast the HashSet and
TreeSet classes (benefits of using each, basic
run time analysis)
� design and implement a class in such a way
that it can be used with the Java collections
framework

� overrides equals and hashCode
� implements the generic Comparable and

 Comparator interfaces to account for multiple
 sorting criteria

07/11/10 38

Using a Set

� A playlist is a set of songs:

Chris�s Play List

Meet Me Halfway

Jingle Bells

21 Guns

Thriller

PlayList

Song

07/11/10 39

Using a Set (continued)

� In a List,

� Each object has a position

� We can put the same object in the list multiple times

� Sometimes, we need the functionality of a
mathematical set

� No duplicates in the set

� Members do not have a position in the set

� For example�

� MenuItems that appear in the Menu of a restaurant

� Songs that appear on a PlayList

� Student enrolled in a Course

� In these cases we use a Set not a List
07/11/10 40

The Set interface
<<interface>>

Iterable

<<interface>>
Collection

<<interface>>
List

HashSet

<<interface>>
Set

TreeSet

<<interface>>
SortedSet

07/11/10 41

Methods of the Set interface

� Note that the Set interface extends the Collection interface. An
implementation of Set therefore supports the methods defined in the
Collection interface:

� add(o) � add a specified element to the set (if not already a

member)

� remove(o) � remove the specified element from the set

� contains(o) � is the specified element in the set?

� etc.

� Note that the add method:
 public boolean add(E item);
adds the item only if it isn't already in the set. The method returns true if the
item is added and false if it's already in the set.

� Similarly the addAll method does not add duplicates.
07/11/10 42

Methods of the Set interface

� We can use these methods to define known set
operations:

� c1.containsAll(c2) - true if c2 is a subset of c1

� c1.addAll(c2) - c1 becomes union of c1 and c2

� c1.retainAll(c2) - c1 becomes intersection of c1 and c2

� c1.removeAll(c2) - c1 becomes set difference of c1 and c2

07/11/10 43

Using Sets

� Since Set is specified as an interface, to use it we
have to pick a particular implementation (e.g.,
HashSet, or TreeSet)

� Example:
public class PlayList

{

private Set<Song> songs;

public PlayList()

{

 songs= new HashSet< Song >();

}

07/11/10 44

The HashSet implementation

� The HashSet implementation provides an efficient

implementation of the Set interface that allows us to add or

remove an item or check if the set contains an item in O(1)
time provided certain conditions are met (more later).

� That is, if

Set<�> s = new HashSet<�>();

� s.add(o) is O(1)

� s.remove(o) is O(1)

� s.contains(o) is O(1)

07/11/10 45

The HashSet implementation

� As mentioned, certain conditions must be met if we are to
add, remove or determine if the set contains an item in O(1)
time.

� To understand these conditions, we must have a basic
understanding of how the hash set works.

� A hash set uses a hash table as the underlying structure in
which data is stored.

� A hash table is an array of linked lists�

07/11/10 46

The HashSet implementation

� We add elements to the table using a hash code, an integer
that represents the object

� A hash set maintains a list of groups.

� All members of the group at position i have a hashCode of i.

� We'll talk more in a moment about where these hashCodes
come from

� Let�s see an example�.

07/11/10 47

Hash Table Example

� Suppose we want to add
integers to a hash table
using the following hash
code:

hashCode = value%10;

� What does the table look
like after inserting:
243556,
329394,

3348,

 436,

3234,

424

0

1

2

3

4

5

6

7

8

9 07/11/10 48

Hash Table Example

� Suppose we want to add
integers to a hash table
using the following hash
code:

hashCode = value%10;

� What does the table look
like after inserting:
243556,
329394,

3348,

 436,

3234,

424

0

1

2

3

4

5

6

7

8

9

243556, 436

329394, 3234, 424

3348

 49

Hash Tables

� Hashing can be used to find elements in a data structure quickly
without making a linear search

� A hash table can be used to implement sets and maps

� A hash function computes an integer value (called the hash code)
from an object

� A good hash function minimizes collisions � identical hash codes for
different objects

� To compute the hash code of object x:

int h = x.hashCode();

 50

Collisions

� Notice in the previous example that we had
quite a few collisions � items that are stored in
the same location (or bucket)

� We want a good hash code that will reduce
these collisions

 51

Sample Strings and Their Hash Codes

String Hash Code

�Adam� 2035631

�Eve� 700068

�Harry� 69496448

�Jim� 74478

�Joe� 74656

�Juliet� -2065036585

�Katherine� 2079199209

�Sue� 83491

 52

Sample Strings and Their Hash Codes

String Hash Code

�Adam� 2035631

�Eve� 700068

�Harry� 69496448

�Jim� 74478

�Joe� 74656

�Juliet� -2065036585

�Katherine� 2079199209

�Sue� 83491

Note: the String class has an already defined hashCode
method we can use

 53

Simplistic Implementation of a Hash Table

� To implement
� Generate hash codes for objects
� Make an array

� Insert each object at the location of its hash code

� To test if an object is contained in the set
� Compute its hash code
� Check if the array position with that hash code is already occupied

 54

Problems with Simplistic Implementation

� It is not possible to allocate an array that is large enough to hold
all possible integer index positions

� It is possible for two different objects to have the same hash code

 55

Solutions

� Pick a reasonable array size and reduce the hash codes to fall inside
the array

int h = x.hashCode();
if (h < 0) h = -h;
h = h % size;

� When elements have the same hash code:
� Use a node sequence to store multiple objects in the same array position

� These node sequences are called buckets

 56

Buckets

� So instead of a single object being stored at
each point in the array, we have a LinkedList
of objects at each point

� This allows for the possibility that some
different objects will have the same hash code
by chance and thus be stored at the same
array index

� We say they are in the same bucket

 57

Hash Table with Buckets to Store Elements with Same Hash Code

 58

Algorithm for Finding an Object x in a Hash Table

1. Get the index h into the hash table
� Compute the hash code
� Reduce it modulo the table size

2. Iterate through the elements of the bucket at position h
� For each element of the bucket, check whether it is equal to x

3. If a match is found among the elements of that bucket, then x is
in the set
� Otherwise, x is not in the set

 59

Hash Tables

� A hash table can be implemented as an array of buckets

� Buckets are sequences of nodes that hold elements with the same
hash code

� If there are few collisions, then adding, locating, and removing hash
table elements takes constant time

� Big-Oh notation: O(1)

� For this algorithm to be effective, the bucket sizes must be small

� The table size should be a prime number larger than the expected
number of elements

� An excess capacity of 30% is typically recommended

 60

Hash Tables

� Adding an element: simple extension of the algorithm for finding an
object

� Compute the hash code to locate the bucket in which the element should be
inserted

� Try finding the object in that bucket
� If it is already present, do nothing; otherwise, insert it

� Removing an element is equally simple
� Compute the hash code to locate the bucket in which the element should be

inserted
� Try finding the object in that bucket

� If it is present, remove it; otherwise, do nothing

� If there are few collisions, adding or removing takes O(1) time

07/11/10 61

The HashSet implementation

� In a HashSet the operations are performed as
following:

add(o)

� compute the hashcode of o, say i

� add o in the ith group

remove(o)

� compute the hashcode of o, say i

� search the ith group and remove o

contains(o)

� compute the hashcode of o, say i

� search the ith group to find o

� If each group is small (and of constant size) each of the
above operations is O(1).

07/11/10 62

The HashSet Implementation
� What makes these operations so efficient?

� Take add() for example

� Rather than iterating over a collection and checking
at each step whether the object already exists, we
just compute the hashCode and check that index in
the array

� We then check whether the object exists in that
bucket

� If we have a good hashCode and hash table, there
will be few collisions, meaning few items to search
through in the bucket

� If we can get close to 1 item per bucket, these
operations will be 0(1) � constant time

07/11/10 63

Where do hash codes come from?
�

Each Java class inherits a hashCode() method from the Java class Object

�
when invoked, hashCode() returns an integer that represents the object

�
a class� hashCode() is usually defined in terms of the hash codes of its attributes

�
if two objects are equal according to equals(), they must have the same hash code

�
objects with the same hash code are not necessarily equal

�
It would be nice to rely upon the Java Object�s class definition of hashCode() but you
can�t if you override equals() because two instances of an object that are equal
according to equals() may not return the same hashCode() unless you ensure they
do!

�
The rule is then:
�If you override equals() you should always override hashCode()�

�
See page 36 of http://java.sun.com/developer/Books/effectivejava/Chapter3.pdf for
a complete description

07/11/10 64

Default hashCode() and equals()

� If you rely on the default inherited equals() and
hashCode(), you are okay in the sense that
they both rely on the memory location of the
object and are therefore consistent with one
another

� But then you are left with a very restrictive
definition of equals() which might not be what
you want

07/11/10 65

How do you write a good
hashCode()

� Writing a fantastic hashCode() method for a class is hard
�The kind of thing people write PhD theses about

� Writing a decent hashCode() method for a class is straightforward

� Page 38 of http://java.sun.com/developer/Books/effectivejava/Chapter3.pdf provides a
recipe.

� Start with a non-zero value (preferably a prime number, like 11, 17, etc.) in the result value

� Pick another prime number, say 37, as a multiplier

� For each attribute that is taken into account in the equals() method

� if attribute is of a primitive type (i.e. an integer, float, etc.) ,
result = 37 * result + attribute�s value casted to an integer

� if attribute is an object,
result = 37 * result + attribute.hashCode()

� and so on�

07/11/10 66

Song Example

public class Song{

private String title;

 private Artist artist;

 private int lengthInSeconds;

 private Album album;

 private int playCount;

07/11/10 67

Song Example (cont.)

public boolean equals(Object other){

 if (other == null)

 return false;

 if(getClass() != other.getClass())

 return false;

 Song otherItem = (Song) other;

 return(title.equals(other.title) &&
artist.equals(other.artist));

 }

07/11/10 68

Song Example (cont.)

public int hashCode() {

 int result = 17;

 final int MULT = 31;

 result = MULT*result + title.hashCode();

 result = MULT*result + artist.hashCode();

 return result;

}

. . .

} // end Song

 69

Computing Hash Codes

� A hash function computes an integer hash code from an object

� Choose a hash function so that different objects are likely to have
different hash codes.

� Bad choice for hash function for a string
� Adding the unicode values of the characters in the string

int h = 0;
for (int i = 0; i < s.length(); i++)
 h = h + s.charAt(i);

� Because permutations ("eat" and "tea") would have the same hash code

 70

Computing Hash Codes

� Hash function for a string s from standard library

� final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)
 h = HASH_MULTIPLIER * h + s.charAt(i)

� For example, the hash code of "eat" is

31 * (31 * 'e' + 'a') + 't' = 100184

� The hash code of "tea" is quite different, namely

31 * (31 * 't' + 'e') + 'a' = 114704

 71

A hashCode Method for the Coin Class

� There are two instance fields: String coin name and double coin
value

� Use String's hashCode method to get a hash code for the name

� To compute a hash code for a floating-point number:
� Wrap the number into a Double object

� Then use Double's hashCode method

� Combine the two hash codes using a prime number as the
HASH_MULTIPLIER

 72

A hashCode Method for the Coin Class

class Coin
{
 public int hashCode()
 {
 int h1 = name.hashCode();
 int h2 = new Double(value).hashCode();
 final int HASH_MULTIPLIER = 29;
 int h = HASH_MULTIPLIER * h1 + h2; return h;
 }
 . . .

}

 73

Creating Hash Codes for your Classes

Use a prime number as the HASH_MULTIPLIER

Compute the hash codes of each instance field

For an integer instance field just use the field value

Combine the hash codes

int h = HASH_MULTIPLIER * h1 + h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER *h + h4;
. . .
return h;

 74

Creating Hash Codes for your Classes

� Your hashCode method must be compatible with the equals method
� if x.equals(y) then x.hashCode() == y.hashCode()

� You get into trouble if your class defines an equals method but not a

hashCode method
� If we forget to define hashCode method for Coin it inherits the method from

Object superclass

� That method computes a hash code from the memory location of the object
� Effect: any two objects are very likely to have a different hash code

Coin coin1 = new Coin(0.25, "quarter");

Coin coin2 = new Coin(0.25, "quarter");

� In general, define either both hashCode and equals methods or neither

07/11/10 75

� Allows the user to retrieve objects from the set in sorted
order

� To sort a collection, the objects within the collection
must be comparable:

� the corresponding class must implement either the
Comparable interface or the Comparator

interface.

The SortedSet Interface

07/11/10 76

� The Comparable interface is declared as follows:

public interface Comparable<T> {

 int compareTo(T other)

}

� the integer returned by a.compareTo(b) must adhere to the

following convention:

� negative if a < b

� zero if a.equals(b)

� positive if a > b

� compareTo defines the natural ordering for the class

The Comparable Interface

07/11/10 77

Implementing compareTo

� Rules to follow when you implement this method in a class
C:

� C must implement Comparable<C>

� must be asymmetric

� a.compareTo(b) and b.compareTo(a) must both

equal 0 or have opposite signs

� must be transitive

� if a.compareTo(b) < 0 and b.compareTo(c) < 0

then a.compareTo(c) < 0

� must be consistent with equals()

� a.equals(b) is true iff a.compareTo(b) is zero and

 b.compareTo(a) is zero
07/11/10 78

The Comparator Interface

� Some classes may not have a single natural ordering

� employees may be ordered by name or by salary
or�

� A comparator is an object that defines (encapsulates)
one ordering for a class

� A comparator has to implement:

public interface Comparator<T> {

 int compare(T object1, T object2);

}

07/11/10 79

The Comparator Interface

� The return value for this method

� is defined in the same way as for the compareTo
method of the Comparable interface:

 compare(a,b) is like a.compareTo(b)

� We may define many comparators for a class if we
need to order objects of that type in different ways.

07/11/10 80

� Create a Comparator that compares Accounts by id numbers.

public class AccountIdComparator
 implements Comparator<Account>
{
 public int compare(Account ac1, Account ac2)
 {

return (ac1.getId() � ac2.getId());

}

}

Example

07/11/10 81

The SortedSet Interface

public interface SortedSet<E> extends Set<E>

{

// Views on the sorted set

SortedSet<E> subSet(E from, E to);

SortedSet<E> headSet(E toElement);

SortedSet<E> tailSet(E fromElement);

// Endpoints

E first();

E last();

// Comparator access

Comparator<? super E> comparator();
}

07/11/10 82

� Like Set but keeps elements in ascending order
according to
� the natural order defined by the compareTo method of

Comparable, or

� the compare method of a Comparator

� Iterator will traverse elements in the defined order

� Array produced by toArray methods is sorted

� Additional operations:

� first() and last() return min and max elements in set

� comparator() returns the Comparator used to sort the set, or

null if the natural order is used

The SortedSet Interface

07/11/10 83

� The TreeSet class implements the SortedSet interface. It

has the following constructors (among others):

public TreeSet()
// orders the elements according to their
// natural order

public TreeSet(Comparator< ? super E > c)
// orders the elements according to the
// comparator c

The TreeSet Class

07/11/10 84

� Note the use of the bounded wildcard:
� Comparator< ? super E > c

� This indicates that the Comparator must compare types that

are supertypes of E (including E itself).

� For example, if SavingsAccount is a subclass of Account

and BalanceComparator implements the

Comparator<Account> interface, then we can create the
following TreeSet of SavingsAccount objects:

TreeSet<SavingsAccount> accts
= new TreeSet<SavingsAcount>(

 new BalanceComparator());

The TreeSet Class

07/11/10 85

TreeSet - Time Complexity

� The add, remove and contains methods all have a
guaranteed O(log N) time complexity.

� So these operations on a TreeSet are less efficient

than for a HashSet (assuming a good hashCode()

implementation) but we have to remember that the
TreeSet maintains the data in sorted order.

07/11/10 86

TreeSet vs. HashSet

� If you don't care about sorting but just want
efficient add(), remove() and contains()
operations, the question of which Set to use
depends on how confident you are in your
hash code method

� If you have a good hash code, there will be
few collisions, which means few objects in
each bucket, which means less to search
through

� Otherwise, you might want to use a TreeSet

07/11/10 87

Using TreeSet

� Now we can do this:

Set<Golfer> gSet = new TreeSet<Golfer>();

gSet.add(bob);

gSet.add(jane);

gSet.add(jim);

Iterator<Golfer> itr = gSet.iterator();

while (itr.hasNext())

{

System.out.println(itr.next().getName());

}

07/11/10 88

Using TreeSet

� Or we can supply a Comparator

Set<Golfer> gSet = new TreeSet<Golfer>(new

HandicapComparator());

gSet.add(bob);

gSet.add(jane);

gSet.add(jim);

Iterator<Golfer> itr = gSet.iterator();

while (itr.hasNext())

{

System.out.println(itr.next().getName());

}

07/11/10 89

Using TreeSet

� A different Comparator if we choose...

Set<Golfer> gSet = new TreeSet<Golfer>(new

BestScoreComparator());

gSet.add(bob);

gSet.add(jane);

gSet.add(jim);

Iterator<Golfer> itr = gSet.iterator();

while (itr.hasNext())

{

System.out.println(itr.next().getName());

}

07/11/10 90

Using TreeSet

� Now Java will use either the compareTo()
method if we implement Comparable, or the
compare() method if we use Comparators,
and will keep our items nicely sorted

� Whenever we add something, Java will
determine where it belongs by calling those
methods

� Note: if we don't supply a Comparator and our
class doesn't implement Comparable, we will
get an error. We need one or the other.

07/11/10 91

Exercises

� More Exercises:

� 2nd Ed: P19.12, P21.1, P21.11 (but use HashSet<Integer>

rather than their IntSet class)

� 3rd Ed: P14.12, P16.1, P16.12 (but use HashSet<Integer>

rather than their IntSet class)

07/11/10 92

In-Class Exercise II

� Write the equals() and hashCode() methods
for our Golfer class

public class Golfer {

private int handicap;

private int bestscore;

private String name;

public Golfer(int hand, int best, String name)

{

bestscore = best;

handicap = hand;

this.name = name;

}

07/11/10 93

Learning Goals Review
You will be expected to:

� program to the generic Set and SortedSet
interfaces including read and use the API�s
� justify the use of a set vs a list for a given
problem
� compare and contrast the HashSet and
TreeSet classes (benefits of using each, basic
run time analysis)
� design and implement a class in such a way
that it can be used with the Java collections
framework

� overrides equals and hashCode
� implements the generic Comparable and

 Comparator interfaces to account for multiple
 sorting criteria

