

07/06/10 1

Time Complexity of Algorithms

You are expected to:

� use big-O notation to categorize an algorithm as
constant, linear, quadratic, logarithmic and exponential
time

� given two or more algorithms, rank them in terms of
their time efficiency

07/06/10 2

Complexity of Algorithms

� In the coming lectures, we�ll be discussing different
implementations of collections and comparing them with
respect to certain operations.

� We need to have a good way to define the performance of
an algorithm (or a piece of code).

� In this section, we examine a means of analyzing the
performance of an algorithm. Usually we are interested in
the algorithm�s

� time complexity: time taken for an algorithm to run

� space complexity: amount of memory required by it

� In this course we mainly interested in time complexity .

07/06/10 3

Time Complexity

� One approach to determining an algorithm's time complexity would be to
count the number of CPU cycles (or CPU time) it takes the algorithm to to
perform its operation

� tedious and not a very practical approach

� depends on the machine

� Instead we will count the number of simple statements (or steps) which are
executed by the algorithm for a given input value n (time will be a function of

 n).

� By simple statement we mean a statement whose running time does not depend

on n:

� an assignment (without function calls)

� a comparison between variables, etc.

For instance, a loop that executes n times would contribute n times the number of

steps of the body

07/06/10 4

Big-O Notation

� We are not interested in an exact count of steps. Instead we want to know how

fast the time grows as n grows. So, we use the following approximation

� Definition: Let T and f be a functions of n. We say that T is

O(f(n)) (pronounced "big-O f(n)� or "O f(n)�) if:

T(n) <= c f(n) for any n > n0

where c and n
0
 are constants.

� Example: Suppose that T is the time taken for an algorithm to sort an
array of length n and that:

T(n) <= c n2

for all n then we say that the algorithm is O(n2).

07/06/10 5

Example 1

int count = 0;

int sum = 0;

while(count < N)

{
 sum += count;
 count++;

}

System.out.print(� The sum is : �);

System.out.println(sum);

� The time complexity of it
depends on N.

� So

T(N) = 2 + (3)N + 2

 = 4 + 3N

� and

T(N) <= 4N + 3N

<= 7N

<= c N (c=7)

� Therefore

T(N) is O(n)

07/06/10 6

Linear Algorithms

� Algorithms like the previous one are called
"linear algorithms"

� This means that the time taken to execute the
algorithm T(n) for large values of n is O(n)

� It also means that the time for the algorithm
grows linearly as n grows

� Let's suppose that we double n. How does
this affect the time taken to execute the
algorithm?

07/06/10 7

Example 2

int count = 0;
int sum = 0;
while(count < N)
{

 int index = 0;
 while(index < N)
 {
 sum += index * count;
 index++;
 }
 count++;

}

� T(N) = 2 + N(2+ N(3) +1)
= 2 +N(3N+3)
= 3N2 + 3N + 2

� Then
T(N) <= 3N2 + 3N2 + 2N2

or
T(N) <= 8N2

� Therefore:
T(N) is O(N2)

07/06/10 8

Quadratic Algorithms and More

� Algorithms like the previous one are called
"quadratic algorithms"

� This means that the time taken to execute the
algorithm T(n) for large values of n is O(n2)

� It also means that the time for the algorithm grows
by n2 as n grows

� In general we are interested in the following
algorithm types:

Algorithm Type T(n)

Constant O(1)

Linear O(n)

Logarithmic O(log n)

Polynomial O(nk) where k is an int constant

Exponential O(kn) where k is an int constant

07/06/10 9

Complexity Example (Sorting)

 10

Selection Sort

� Sorts an array by repeatedly finding the smallest element of
the unsorted tail region and moving it to the front

� Slow when run on large data sets

� Example: sorting an array of integers

11 9 17 5 12

 11

Sorting an Array of Integers

� Find the smallest and swap it with the first element

� Find the next smallest. It is already in the correct place

� Find the next smallest and swap it with first element of unsorted portion

� Repeat

� When the unsorted portion is of length 1, we are done

5 9 17 11 12

5 9 17 11 12

5 9 11 17 12

5 9 11 12 17

5 9 11 12 17

 12

ch14/selsort/SelectionSorter.java

/**

 This class sorts an array, using the selection sort

 algorithm

*/

public class SelectionSorter

{

 /**

 Constructs a selection sorter.

 @param anArray the array to sort

 */

 public SelectionSorter(int[] anArray)

 {

 a = anArray;

 }

 /**

 Sorts the array managed by this selection sorter.

 */

 public void sort()

 {

Continued

 13

ch14/selsort/SelectionSorter.java (cont.)

 for (int i = 0; i < a.length - 1; i++)

 {

 int minPos = minimumPosition(i);

 swap(minPos, i);

 }

 }

 /**

 Finds the smallest element in a tail range of the array.

 @param from the first position in a to compare

 @return the position of the smallest element in the

 range a[from] . . . a[a.length - 1]

 */

 private int minimumPosition(int from)

 {

 int minPos = from;

 for (int i = from + 1; i < a.length; i++)

 if (a[i] < a[minPos]) minPos = i;

 return minPos;

 } Continued 14

ch14/selsort/SelectionSorter.java (cont.)

 /**

 Swaps two entries of the array.

 @param i the first position to swap

 @param j the second position to swap

 */

 private void swap(int i, int j)

 {

 int temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 private int[] a;

}

 15

ch14/selsort/SelectionSortDemo.java

01: import java.util.Arrays;

02:

03: /**

04: This program demonstrates the selection sort algorithm by

05: sorting an array that is filled with random numbers.

06: */

07: public class SelectionSortDemo

08: {

09: public static void main(String[] args)

10: {

11: int[] a = ArrayUtil.randomIntArray(20, 100);

12: System.out.println(Arrays.toString(a));

13:

14: SelectionSorter sorter = new SelectionSorter(a);

15: sorter.sort();

16:

17: System.out.println(Arrays.toString(a));

18: }

19: }

20:

21:

 16

File ArrayUtil.java

Typical Output:
[65, 46, 14, 52, 38, 2, 96, 39, 14, 33, 13, 4, 24, 99, 89, 77,

73, 87, 36, 81] [2, 4, 13, 14, 14, 24, 33, 36, 38, 39, 46, 52,

65, 73, 77, 81, 87, 89, 96, 99]

 17

Question

Why do we need the temp variable in the swap method? What would
happen if you simply assigned a[i] to a[j] and a[j] to a[i]?

 Answer: Dropping the temp variable would not work. Then a[i]
 and a[j] would end up being the same value.

 18

Question

What steps does the selection sort algorithm go through to sort the
sequence 6 5 4 3 2 1?

 Answer:

1 5 4 3 2 6

1 2 4 3 5 6

1 2 3 4 5 6

 19

Analyzing the Performance of the Selection Sort Algorithm

� In an array of size n, count how many times an array element is visited
� To find the smallest, visit n elements + 2 visits for the swap
� To find the next smallest, visit (n - 1) elements + 2 visits for the swap
� The last term is 2 elements visited to find the smallest + 2 visits for the swap

 20

Analyzing the Performance of the Selection Sort Algorithm

� The number of visits:
� n + 2 + (n - 1) + 2 + (n - 2) + 2 + . . .+ 2 + 2
� This can be simplified to n2 /2 + 5n/2 - 3
� 5n/2 - 3 is small compared to n2 /2 � so let's ignore it
� Also ignore the 1/2 � it cancels out when comparing ratios

 21

Analyzing the Performance of the Selection Sort Algorithm

� The number of visits is of the order n2

� Using big-Oh notation: The number of visits is O(n2)

� Multiplying the number of elements in an array by 2 multiplies the
processing time by 4

� Big-Oh notation "f(n) = O(g(n))"
expresses that f grows no faster than g

� To convert to big-Oh notation:
locate fastest-growing term, and ignore constant coefficient

 22

Question

If you increase the size of a data set tenfold, how much longer does it
take to sort it with the selection sort algorithm?

 Answer: It takes about 100 times longer.

07/06/10 23

Learning Goals Review

You are expected to:

� use big-O notation to categorize an algorithm as
constant, linear, quadratic, logarithmic and exponential
time

� given two or more algorithms, rank them in terms of
their time efficiency

07/06/10 24

Java Collections:
the List Interface

Reading :

�2nd Ed: 20.1

� 3rd/4th Eds: 15.1

You will be expected to:
� program to the generic List interface
 including read and use the List API
 (e.g., use Lists in ways similar to
 arrays)
� program using the ListIterator
 interface (be able to read and use
 the ListIterator API)
� explain the difference between
 Iterator and ListIterator

� compare and contrast ArrayList and
 LinkedList implementations of the
 List interface

07/06/10 25

25List

The List Interface

� A list is an ordered collection that can contain
duplicates. Lists
are also called sequences. Example: ArrayLists.

� The List interface extends Collection and adds methods
for:
� positional access: can access

� current position (using an iterator)

� i-th element (0 � i < size)

� positional search

� returns the position of a given object

� special iteration

� defines special iterators for moving forwards or backwards

� subrange operations

� create sub-lists

� add/delete elements at a given position

07/06/10 26

26List

The List Interface (cont�d)

public interface List<E> extends Collection<E> {

// Positional Access

E get(int index);

E set(int index, E element); // Optional

void add(int index, E element); // Optional

E remove(int index); // Optional

boolean addAll(int index, Collection c); // Optional

// Search

int indexOf(Object o);

int lastIndexOf(Object o);

// Iteration

ListIterator<E> listIterator();

ListIterator<E> listIterator(int index);

// Sublist

List<E> subList(int fromIndex, int toIndex);

}

07/06/10 27

27List

� New methods in addition to those inherited from
Collection:

� add(i,e) adds at position i

� addAll(i,c) adds the given collection c starting
at position i

� remove(i) removes object at position i

� Methods whose behaviour is specified to be different
than in the Collection interface (overridden):

� add(e) � adds e at the end of the list

� addAll(c) � adds collection c at the end of the
list

� remove(o) � removes first occurrence of o

The List Interface (cont�d)

07/06/10 28

28List

The List Interface (cont�d)

� The subList method returns a view of this list

between fromIndex (inclusive) and toIndex

(exclusive).

� Any non-structural changes to the sublist are reflected

in this list and vice versa.

� You must not make structural changes (i.e., add or

remove) to the original underlying list while using the

sublist.

� Structural changes to the sublist are reflected in the

backing list.

07/06/10 29

29List

� Example: clear / remove all the items from a list between index 1
(inclusive) and 4 (exclusive):

myList.subList(1, 4).clear();

� Example: a function that swaps two list elements:

� public static <T> void swap(List<T> list, int i, int j)

� {

� }

� Why do we have <T> at the start of the method declaration?

The List Interface (cont�d)

07/06/10 30

30List

ListIterator

� In addition to a general Iterator, a list can also

create a more specialized ListIterator.

� A ListIterator is an example of a bi-directional

iterator. You can traverse the list either forwards or
backwards.

07/06/10 31

31List

Java Collection Framework

<<interface>>

Iterable

<<interface>>

Collection

<<interface>>

List

ArrayList

<<interface>>

Iterator
<<creates>>

<<interface>>

ListIterator
<<creates>>

07/06/10 32

32List

The ListIterator Interface

public interface ListIterator<E>

extends Iterator<E>

{

boolean hasPrevious();

E previous();

int nextIndex();

int previousIndex();

void set(E o); // Optional

void add(E o); // Optional

}

07/06/10 33

33List

ListIterator
� Can create an iterator that is positioned at

� the first element

� a specified position

� next() returns items in the order they are in

the list
� List iterators can move forwards or backwards

� nextIndex() returns the index of the next item

� previousIndex() returns the index of the previous

element

� Best way is to think that the iterator points between the
items: item 0 item 1 item 2 item 3
index
:

0 1 2 3 4 07/06/10 34

34List

ListIterator (cont�)

� The remove and set method affect the last element
that was returned by a call to next or previous.
� Cannot be called if remove() or add() have been called since

last call to next() or previous(). Throws IllegalStateException.

� The add method adds a new element after the one
that will be returned by a call to previous and before
the one that will be returned by next.
� Cannot be called if add() has been called since last call to

next() or previous(). Throws IllegalStateException.

� The restrictions we discuss for general iterators are
also applicable to ListIterator�s. See the Java API for
more details on restrictions.

07/06/10 35

35List

ListIterator (cont�)

� After performing an add, a subsequent call to

previous will return the element just added and a

subsequent call to next is unaffected.

� Example:

07/06/10 36

In-Class Exercise I

� 1. Write a method that takes a List<String>
parameter and prints out each item in the list

� 2. Write a second method that takes a
List<String> parameter and prints out each
item in reverse

� Indicate the time complexity of your methods

07/06/10 37

37List

List Implementations

� The Java collections framework provides the following
implementations of a List interface (among others):

� ArrayList

� LinkedList

<<interface>>

List

ArrayList LinkedList

07/06/10 38

38List

List Implementations

� We've already considered the ArrayList. As you

can probably guess, if we were to look under the hood,
we'd find that its implementation is based on an array.

� The LinkedList class provides a different

implementation of the List interface.

07/06/10 39

39List

The LinkedList Class

� Rather than using an array to store data, the
LinkedList class stores data in a collection of nodes

that are chained or linked together similar to the one
shown below:

� One advantage of this implementation is that the list
creates only as many nodes as are needed to store
the data in the list. The number of nodes
increases/decreases every time we add/remove data.
 40

Using Linked Lists

� A linked list consists of a number of nodes, each of which has a
reference to the next node

� Adding and removing elements in the middle of a linked list is
efficient

� Visiting the elements of a linked list in sequential order is efficient

� Random access is not efficient

 41

Inserting an Element into a Linked List

 42

Java's LinkedList class

� Generic class
� Specify type of elements in angle brackets: LinkedList<Product>

� Package: java.util

� Easy access to first and last elements with methods
void addFirst(E obj)
void addLast(E obj)
E getFirst()
E getLast()
E removeFirst()
E removeLast()

 43

List Iterator

� ListIterator type

� Gives access to elements inside a linked list

� Encapsulates a position anywhere inside the linked list

� Protects the linked list while giving access

 44

A List Iterator

 45

A Conceptual View of the List Iterator

 46

List Iterator

� Think of an iterator as pointing between two elements
� Analogy: like the cursor in a word processor points between two characters

� The listIterator method of the LinkedList class gets a list iterator

LinkedList<String> employeeNames = . . .; ListIterator<String>

iterator =

 employeeNames.listIterator();

 47

List Iterator

� Initially, the iterator points before the first element

� The next method moves the iterator

iterator.next();

� next throws a NoSuchElementException if you are already past
the end of the list

� hasNext returns true if there is a next element

if (iterator.hasNext())

iterator.next();

 48

List Iterator

� The next method returns the element that the iterator is passing

while iterator.hasNext()

{

 String name = iterator.next();

 Do something with name

}

� Shorthand:
for (String name : employeeNames)

{

 Do something with name

}

Behind the scenes, the for loop uses an iterator to visit all list
elements

 49

List Iterator

� LinkedList is a doubly linked list
� Class stores two links:

o One to the next element, and
o One to the previous element

� To move the list position backwards, use:
� hasPrevious

� previous

 50

Adding and Removing from a LinkedList

� The add method:
� Adds an object after the iterator
� Moves the iterator position past the new element

 iterator.add("Juliet");

 51

Adding and Removing from a LinkedList

� The remove method

� Removes and
� Returns the object that was returned by the last call to next or
previous

 //Remove all names that fulfill a certain condition

while (iterator.hasNext())

{

String name = iterator.next();

if (name fulfills condition)

 iterator.remove(); }

� Be careful when calling remove:
� It can be called only once after calling next or previous

� You cannot call it immediately after a call to add

� If you call it improperly, it throws an IllegalStateException

 52

Sample Program

� ListTester is a sample program that
� Inserts strings into a list
� Iterates through the list, adding and removing elements
� Prints the list

 53

ch15/uselist/ListTester.java

01: import java.util.LinkedList;

02: import java.util.ListIterator;

03:

04: /**

05: A program that tests the LinkedList class

06: */

07: public class ListTester

08: {

09: public static void main(String[] args)

10: {

11: LinkedList<String> staff = new LinkedList<String>();

12: staff.addLast("Dick");

13: staff.addLast("Harry");

14: staff.addLast("Romeo");

15: staff.addLast("Tom");

16:

17: // | in the comments indicates the iterator position

18:

19: ListIterator<String> iterator

20: = staff.listIterator(); // |DHRT

21: iterator.next(); // D|HRT

22: iterator.next(); // DH|RT

Continued 54

ch15/uselist/ListTester.java (cont.)

23:

24: // Add more elements after second element

25:

26: iterator.add("Juliet"); // DHJ|RT

27: iterator.add("Nina"); // DHJN|RT

28:

29: iterator.next(); // DHJNR|T

30:

31: // Remove last traversed element

32:

33: iterator.remove(); // DHJN|T

34:

35: // Print all elements

36:

37: for (String name : staff)

38: System.out.print(iterator.next() + " ");

39: System.out.println();

40: System.out.println("Expected: Dick Harry Juliet Nina Tom");

41: }

42: }

 55

ch15/uselist/ListTester.java (cont.)

Output:
Dick Harry Juliet Nina Tom

Expected: Dick Harry Juliet Nina Tom

 56

LinkedList

� Let's look at how LinkedList is actually
implemented, since it differs from ArrayList

� This is actually a simplified version of
LinkedList from Big Java

 57

Adding a New First Element

� When a new node is added to the list
� It becomes the head of the list
� The old list head becomes its next node

 58

Adding a New First Element

public void addFirst(Object obj)

{

 Node newNode = new Node();

 newNode.data = obj;

 newNode.next = first; first = newNode;

}

 59

Adding a New First Element

public void addFirst(Object obj)

{

 Node newNode = new Node();

 newNode.data = obj;

 newNode.next = first;

 first = newNode;

}

 60

Adding a New First Element

public void addFirst(Object obj)

{

 Node newNode = new Node();

 newNode.data = obj;

 newNode.next = first;

 first = newNode;

}

 61

Removing the First Element

� When the first element is removed
� The data of the first node are saved and later returned as the method result
� The successor of the first node becomes the first node of the shorter list
� The old node will be garbage collected when there are no further references to it

 62

Removing the First Element

public Object removeFirst()

{

 if (first == null)

 throw new NoSuchElementException();

 Object obj = first.data;

 first = first.next;

 return obj;

}

 63

Linked List Iterator

� We define LinkedListIterator: private inner class of LinkedList

� Implements a simplified ListIterator interface

� Has access to the first field and private Node class

� Clients of LinkedList don't actually know the name of the iterator class

� They only know it is a class that implements the ListIterator interface

 64

LinkedListIterator

The LinkListIterator class
public class LinkedList

{

 . . .

 public ListIterator listIterator()

 {

 return new LinkedListIterator();

 }

 private class LinkedListIterator implements

 ListIterator

 {

 public LinkedListIterator()

 {

 position = null;

 previous = null;

 }

Continued

 65

LinkedListIterator (cont.)

 . . .

 private Node position;

 private Node previous;

 }

 . . .

}

 66

The Linked List Iterator's next Method

� position: reference to the last visited node

� Also, store a reference to the last reference before that

� next method: position reference is advanced to position.next

� Old position is remembered in previous

� If the iterator points before the first element of the list,
then the old position is null and position must be set to first

 67

The Linked List Iterator's next Method

public Object next()

{

 if (!hasNext())

 throw new NoSuchElementException();

 previous = position; // Remember for remove

 if (position == null)

 position = first;

 else position = position.next;

 return position.data;

}

 68

The Linked List Iterator's hasNext Method

� The next method should only be called when the iterator is not at

the end of the list

� The iterator is at the end

� if the list is empty (first == null)

� if there is no element after the current position (position.next == null)

 69

The Linked List Iterator's hasNext Method

private class LinkedListIterator implements ListIterator

{

 . . .

 public boolean hasNext()

 {

 if (position == null)

 return first != null;

 else

 return position.next != null;

 }

 . . .

}

 70

The Linked List Iterator's remove Method

� If the element to be removed is the first element, call removeFirst

� Otherwise, the node preceding the element to be removed needs
to have its next reference updated to skip the removed element

� If the previous reference equals position:
� this call does not immediately follow a call to next
� throw an IllegalArgumentException

� It is illegal to call remove twice in a row

� remove sets the previous reference to position

 71

The Linked List Iterator's remove Method

public void remove()

{

 if (previous == position)

 throw new IllegalStateException();

 if (position == first)

 {

 removeFirst();

 }

 else

 {

 previous.next = position.next;

 }

 position = previous;

}

Continued
 72

The Linked List Iterator's remove Method (cont.)

 73

The Linked List Iterator's remove Method

public void remove()

{

 If (previous == position)

 throw new IllegalStateException();

 if (position == first)

 {

 removeFirst();

 }

 else

 {

 previous.next = position.next;

 }

 position = previous;

}

Continued
 74

The Linked List Iterator's remove Method (cont.)

 75

The Linked List Iterator's set Method

� Changes the data stored in the previously visited element

� The set method

public void set(Object obj)

{

 if (position == null)

 throw new NoSuchElementException();

 position.data = obj;

}

 76

The Linked List Iterator's add Method

� The most complex operation is the addition of a node
� add inserts the new node after the current position
� Sets the successor of the new node to the successor of the current position

 77

The Linked List Iterator's add Method

public void add(Object obj)

{

 if (position == null)

 {

 addFirst(obj);

 position = first;

 }

 else

 {

 Node newNode = new Node();

 newNode.data = obj;

 newNode.next = position.next;

 position.next = newNode;

 position = newNode;

 }

 previous = position;

}

Continued
 78

The Linked List Iterator's add Method (cont.)

 79

The Linked List Iterator's add Method

public void add(Object obj)

{

 if (position == null)

 {

 addFirst(obj);

 position = first;

 }

 else

 {

 Node newNode = new Node();

 newNode.data = obj;

 newNode.next = position.next;

 position.next = newNode;

 position = newNode;

 }

 previous = position;

}

Continued
 80

The Linked List Iterator's add Method (cont.)

 81

The Linked List Iterator's add Method

public void add(Object obj)

{

 if (position == null)

 {

 addFirst(obj);

 position = first;

 }

 else

 {

 Node newNode = new Node();

 newNode.data = obj;

 newNode.next = position.next;

 position.next = newNode;

 position = newNode;

 }

 previous = position;

}

Continued
 82

The Linked List Iterator's add Method (cont.)

07/06/10 83

83List

The LinkedList Class

� Let's look at some differences between
ArrayList and LinkedList. Let's consider
the time complexity of some common
operations in the worst case:

LinkedList ArrayList

get(int index) O(n) O(1)

add(int i, E e) O(n) O(n)

add(E e) O(1) O(1)

remove(int index) O(n) O(n)

contains(Object o) O(n) O(n)

ListIterator -> add O(1) O(n)

ListIterator -> remove O(1) O(n)

 84

Efficiency of Operations for Arrays and Lists

Operation ArrayList LinkedList

Random access O(1) O(n)

Linear traversal step O(1) O(1)

Add/remove an element O(n) O(1)

07/06/10 85

85List

List Example
� Reverse a list

public static <E> List<E> reverse(List<E> list) {

 List<E> newlist = new ArrayList<E>();

 Iterator<E> itr = list.iterator();

 while (itr.hasNext()) {

 newlist.add(0, itr.next());

 }

 return newlist;

}

 W hat is its com plexity?

07/06/10 86

86List

List Example

�A better way to write this method:
public static <E> List<E> reverse(List<E> list) {

07/06/10 87

In-Class Exercise II

� Write a method that takes an
ArrayList<String>, and visits each item in
order, printing out the item and then removing
it

� Write a method that takes a
LinkedList<String>, and visits each item in
reverse order, printing out the item and then
removing it

� Indicate the complexity of each method
07/06/10 88

Learning Goals Review

You will be expected to:
� program to the generic List interface
 including read and use the List API
 (e.g., use Lists in ways similar to
 arrays)
� program using the ListIterator
 interface (be able to read and use
 the ListIterator API)
� explain the difference between
 Iterator and ListIterator

� compare and contrast ArrayList and
 LinkedList implementations of the
 List interface

07/06/10 89

Midterm Exam

� Class contracts

� Preconditions

� Postconditions

� Invariants

07/06/10 90

Midterm Exam

� Exceptions

� Throwing

� Catching

� Propagating

� Defining

07/06/10 91

Midterm Exam

� Testing

� Unit testing

� Blackbox testing

� Equivalence classes

� Test cases: typical values, boundary values

07/06/10 92

Midterm Exam

� Good and bad design

� High cohesion, low coupling

� Open-closed principle

� Liskov substitution principle

� Weakening precondition, strengthening
postcondition

07/06/10 93

Midterm Exam

� Java collections

� Interfaces: Iterable, Collection, List, Iterator

� Classes: ArrayList

� Generic programming

� Generic classes (defining and using)

� Generic methods (defining and using)

� Type parameters

� Bounded wildcards

