

01/07/10 1

Assignment 2

� Designing the music library system

� Due Tuesday, 8 pm

� No coding, just design

� You are free (and encouraged) to work with a
partner

� Ask the Client

01/07/10 2

Review Class Design

01/07/10 3

Problem Description
�A TicketWizard Office needs a software system to

track various events, their venues, and ticket
orders for the events.
�Each event has a name, description, date, time, a base

ticket price and occurs at a single venue.

�Each venue has a name, address, phone number.

� Different events can have different seating plans. The
seating plan consists of a number of sections and each
section contains a number of seats. The price of a seat
is determined by the base ticket price of the event and
the section�s price factor. A venue may host many
different events, one event at a time, of course.

01/07/10 4

Problem Description (cont�t)

�Customers can place orders, which are made up of
one or more seats for one or more events. Ticket
office employees can also place orders; they enjoy a
10% discount on any regular ticket price.

�Customers can pay for their orders by cash or charge
them to a credit card. For each order, the system must
track the type of payment.

�Finally, the system must track customer information so
that customers can be notified if the event is changed
or cancelled.

01/07/10 5

Some Issues to consider

�Does a venue need to know about events? If so,
how?

�Does an event need to know about venue? If so,
how?

�Do we need Seat objects?

�Do we need Ticket objects?

�Do we need Customer objects?

�Do we need Employee objects?

�What other objects do we need?

01/07/10 6

How many errors can you find in this design?

Note: The default
multiplicities are 1

 7

Better Design

*

*

*

*

*

01/07/10 8

Key Concepts

� There are a lot of related concepts we covered

� When you design a superclass, think about whether it might be extended in the
future (i.e., which methods should be protected instead of private, etc.). This is
the open-closed principle in action.

� In Java, a subclass is considered a subtype as is an implementation of an
interface. To ensure an instance of a subclass (or a class that extends an
interface) is substitutable for its superclass (or its interface) we need to follow
the Liskov Substitutability Principle (LSP). i.e., watch out that pre-conditions
and post-conditions of overridden methods do the right thing.

� If we want to reuse code but can�t do it via a subclass because we�d violate the
LSP, we can use delegation where we keep an object of the type from which we
want the code and we call the object�s methods to do the work we want done.

� If we want one class to act like different types, use interfaces (and sometimes
delegation too!)

01/07/10 9

Introduction to Collections:
the List interface

� Reading

� 3rd & 4th Ed:
Chapter 17 ; Skip
17.2

� 2nd Ed:
Chapter 22 ; Skip
22.2

� Exercises

� 3rd & 4th Ed:
Chapter 17, P17.1,
P17.2, P17.3,
P17.13

� 2nd Ed:
Chapter 22, P22.1,
P22.2, P22.3,
P22.13

� compare and contrast the use of a

 List over an array

� know how and when to use a

 List data structure

� compare and contrast the use of generic

 data structures and arrays of type Object

� compare and contrast assignment with

 various generic collections under specific

 subclass scenarios

� use wildcards appropriately in generic type

parameters to enable assignment in subclass

scenarios

01/07/10 10

Course Structure

� So far�
� we�ve considered how to design and implement robust classes

� Now�
� we�re going to look at how to represent collections of information (objects)

so that we can build programs that do more

� Then�
� we�re going to some programming concepts that will help you build even

more interesting programs (Streams, GUI, Threads)

01/07/10 11

Why arrays aren't enough�

� Objects often have to store collections of references to
other objects
� e.g., a bank has a collection of accounts

� To this point, you have used arrays to store such
collections

e.g., public class Bank {
 private Account[] accounts; �

� But�
� We have to decide the size of an array when we allocate it.

� If the array fills, it doesn't expand automatically. We have to
write code to create a bigger array and copy the data over.

01/07/10 12

Collections of Objects

� Sometimes we want to create objects that store a
collection of other objects of an unspecified type.

� For example, we might want to create a list class that
can store a list of any other type of object (e.g., a list of
String or Account or Point).

� We can achieve this by storing the items in the
collection in an array of type Object:

01/07/10 13

Collections of Objects: An Example
 public class MyList {

 private Object[] items;
 private int numItems;
 final int INIT_NUM=10;

 public MyList {

 items = new Object[INIT_NUM];

 numItems = 0;

 }

 public void add(Object item){�}

 public Object get(int index){�}

 public boolean isEmpty(){�}

 public int size(){�}

}

01/07/10 14

Some Problems with MyList

� As a user of such a list, we have no problem adding
items to the list:

myList.add(new Account());

� �but we've got to be careful when we retrieve items
from the list

� we need to cast them to the appropriate type

Account acc = (Account) myList.get(0);

01/07/10 15

More Problems with MyList

� The fact that we can add any type of object to our List can
be problematic.

� Suppose we want to create a list of Account objects:

MyList myList = new MyList();

myList.add(new Account());
myList.add(new Account());
myList.add(new Account());
myList.add(new KitchenSink());
myList.add(new Account());

� The compiler won't flag the fact that we've added a
KitchenSink to our list of Account objects � ugh.

01/07/10 16

List

� A List is an interface defined in the Java libraries.

� An object of type List acts like an array except
that it automatically grows and shrinks as needed.

� There are several kinds of List classes which differ in
their performance characteristics

� ArrayList, Vector, LinkedList, etc..

� Details are described in CPSC 221

� We will use an ArrayList for this lecture

01/07/10 17

List

� A List is an example of a generic interface/class.

� We specify the type of data to be stored in the list when
a List is declared and instantiated:

� List<Account> accts = new ArrayList<Account>();
// a list of Account objects

� List<String> strings = new ArrayList<String>();
// a list of String objects

01/07/10 18

List

� The compiler will not allow us to add objects of the wrong
type:
� List<Account> accts = new ArrayList<Account>();

accts.add(new Account()); // OK
accts.add(new Account()); // OK
accts.add(new KitchenSink()); // won't compile

� This is a good thing. The compiler will now check that we're
adding the right type of object to our list.

01/07/10 19

List

� It's also easy to retrieve items from the list.

� Recall that when we retrieve an item from MyList, we have to
cast to the appropriate type.

 The cast is not necessary when working with a generic List.

� Let's assume that we're working with the List declared on the
previous page and that we've inserted a few Account objects
into the list:

Account myAccount = accts.get(0);
// Gets the account at position 0 in the list

� No cast is necessary.

01/07/10 20

List

� Given:

List<Account> accts = new ArrayList<Account>();

� we can add objects of type Account

� we can also add objects that are a subtype of Account

� So, if SavingsAccount is a subclass of Account, we

can do the following:

accts.add(new Account());
accts.add(new SavingsAccount());

01/07/10 21

List Methods

� List has many useful methods:
public interface List<E> {

. . .

public boolean add(E item)
// add at end of list

public boolean add(int i, E item)
// insert at specific position i

public boolean contains(Object item)
// is item in the accounts collection

public E get(int i)
// get item at position i

public E remove(int i)
// remove account at position i

public int size()
// gets number of elements in list
// NOT current capacity of list

...

E is a generic
parameter

01/07/10 22

Java Generics

� Note that the E in the List API is a generic parameter (or
type parameter)

� E represents the type that is specified by the client when
the List is declared and instantiated

� For example:

List<Account> accList;
// E is Account

List<String> strList;
// E is String

� For the API for this interface, see the online documentation:

http://java.sun.com/javase/6/docs/api/index.html

01/07/10 23

Generic Programming

� Generic programming is the creation of
programming constructs that can be used with
many different types

� A generic class has one or more type
variables, e.g.

� public class ArrayList<E>

� These type variables can be instantiated with
class or interface types

01/07/10 24

Type Variables

� The type that you supply replaces the type
variable in the class or interface, e.g.

� ArrayList<Account>

� Type variables make generic code safer and
easier to read

� By the way, E means �element type in a
collection.�

 25

Good Type Variable Names

Type Variable Name Meaning

E Element type in a collection

K Key type in a map

V Value type in a map

T General type

S, U Additional general types

01/07/10 26

Type Variables

� You cannot use primitive types as type
parameters, e.g.

� There is no ArrayList<int> or
ArrayList<double>

� Use the Wrapper class instead, e.g.

� Integer and Double

 27

Instantiating a Generic Class

GenericClassName<Type1, Type2, . . .>

Example:

ArrayList<BankAccount>

HashMap<String, Integer>

Purpose:
To supply specific types for the type variables of a generic class.

01/07/10 28

Example using List

public class Bank {
 private List<Account> accounts;

 public Bank() {
 accounts = new ArrayList<Account>();
 }

 // Add new account at the end of List
 public void newAccount(double balance) {
 accounts.add(new Account(balance));
 }

 // Get number of accounts at Bank
 public int getNumAccounts() {
 return accounts.size();
 }

�
}

 29

Another Generic Example

public class Pair<T, S>
{
 public Pair(T firstElement, S secondElement)
 {
 first = firstElement;
 second = secondElement;
 }
 public T getFirst() { return first; }
 public S getSecond() { return second; }

 private T first;
 private S second;
}

 30

Another Generic Example

How would you use the generic Pair class to construct a pair of strings

"Hello" and "World"?

Answer: new Pair<String, String>("Hello", "World")

01/07/10 31

In-Class Exercise I

� Complete the following method that counts the number of
times a particular string is found in an List

public static int count(List<String> list,
 String toFind)
{

01/07/10 32

Tea break!

 33

Generic Methods

� Generic method: method with a type variable

� Can be defined inside ordinary and generic classes

� A regular (non-generic) method:

/**
 Prints all elements in an array of strings.
 @param a the array to print
*/
public static void print(String[] a)
{
 for (String e : a)
 System.out.print(e + " ");
 System.out.println();

}

Continued

 34

Generic Methods (cont.)

� What if we want to print an array of Rectangle objects instead?

public static <E> void print(E[] a)
{
 for (E e : a)
 System.out.print(e + " ");
 System.out.println();
}

 35

Generic Methods

� When calling a generic method, you need not instantiate the type
variables:

Rectangle[] rectangles = . . .;

ArrayUtil.print(rectangles);

� The compiler deduces that E is Rectangle

� You can also define generic methods that are not static

� You can even have generic methods in generic classes

 36

 Defining a Generic Method

modifiers <TypeVariable1, TypeVariable2, . . .> returnType

methodName(parameters)
{

 body

}

Example:
public static <E> void print(E[] a)
{
 . . .
}

Purpose:
To define a generic method that depends on type variables.

 37

Is the getFirst method of the Pair class a generic method?

 Answer: No � the method has no type parameters. It is an
 ordinary method in a generic class.

Generic Methods

01/07/10 38

Assignment with Arrays and subclasses

� Assume that SavingsAccount is a subclass of Account.
Consider this:

Account[] acc = new Account[10];

SavingsAccount[] sAcc = new SavingsAccount[10];

� Is this allowed?

acc[0] = new SavingsAccount();

SavingsAccount sa = acc[0];

Account

SavingsAccount

01/07/10 39

Assignment with Arrays and subclasses

� What about this?

acc = sAcc;

 This does compile but can lead to problems if we then do

acc[0] = new Account();

// oops � just put an Account into an array
// of SavingsAccount objects
:

�problem isn't detected by compiler.

An exception is thrown when the program runs � nasty.

01/07/10 40

Assignment with Generics

� Consider this:

List<Account> accounts
= new ArrayList<Account>();

List<SavingsAccount> savingsAccounts
 = new ArrayList<SavingsAccount>();

� Is this allowed?

accounts.add(0, new SavingsAccount());

SavingsAccount sa = accounts.get(0);

01/07/10 41

Assignment with Generics

� What about this?

accounts = savingsAccounts;

� This code does not compile and so the problem illustrated
with arrays earlier is avoided.

01/07/10 42

Assignment with Generics

� Assume we have the method:

public void myMethod(List<Account> list) {�}

then the following client call will also not compile:

List<SavingsAccount> savAccs
= new ArrayList<SavingsAccount>();

myMethod(savAccs);

01/07/10 43

Assignment with Generics

� Note that List<SavingsAccount> is not a
subclass of List<Account>

� Even though SavingsAccount is a subclass of
Account

� Inheritance of type parameters does not lead
to inheritance of generic classes

� This restriction saves us some trouble, as just
shown

01/07/10 44

Arrays and ArrayLists

� Let's look at another example
� from Head First Java

01/07/10 45

A simple Animal class hierarchy

abstract class Animal {

void eat() {

System.out.println("animal eating");

}

}

public class Dog extends Animal {

void bark() { }

}

public class Cat extends Animal {

void meow() {}

}
01/07/10 46

Arrays

� Let's consider arrays first

� Let's create an array of Animals that hold both
cats and dogs

� Let's also create an array of Dogs that can
hold only dogs

01/07/10 47

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

01/07/10 48

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

Create Animal array

Create Dog array

Call takeAnimals() on each of them

01/07/10 49

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

We can call ONLY the
methods declared in type
Animal since the parameter is
an Animals array

01/07/10 50

Arrays

public class TestGenerics1 {

public static void main(String[]

args) {

new TestGenerics1().go();

}

public void go(){

Animal[] animals = {new Dog(), new

Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),

new Dog()};

takeAnimals(animals);

takeAnimals(dogs);

}

public void takeAnimals(Animal[]

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

>
animal eating
animal eating
animal eating
animal eating
animal eating
animal eating

01/07/10 51

ArrayLists

� That was using Arrays

� Let's try the same thing with ArrayLists

01/07/10 52

ArrayLists

import java.util.*;

public class TestGenerics2 {

public static void main(String[]

args) {

new TestGenerics2().go();

}

public void go(){

 ArrayList<Animal> animals = new

ArrayList<Animal>();

 animals.add(new Dog());

 animals.add(new Cat());

 animals.add(new Dog());

takeAnimals(animals);

}

public void

takeAnimals(ArrayList<Animal>

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

We've just changed from Animal[] to
ArrayList<Animal>
We create an ArrayList of Animals
containing Cats and Dogs, and call the
takeAnimals() method

01/07/10 53

ArrayLists

import java.util.*;

public class TestGenerics2 {

public static void main(String[]

args) {

new TestGenerics2().go();

}

public void go(){

 ArrayList<Animal> animals = new

ArrayList<Animal>();

 animals.add(new Dog());

 animals.add(new Cat());

 animals.add(new Dog());

takeAnimals(animals);

}

public void

takeAnimals(ArrayList<Animal>

animals)

{

for(Animal a: animals)

{

a.eat();

}

}

}

The method takes an ArrayList<Animal>.
The output is:
>
animal eating
animal eating
animal eating

01/07/10 54

ArrayLists

� So far, so good

� With the Array example, we were able to pass
a Dog array to a method that took an Animal
array parameter

� What happens if we pass an ArrayList<Dog>
to our takeAnimals() method, which takes
ArrayList<Animal> as a parameter?

01/07/10 55

ArrayLists
public void go(){

 ArrayList<Dog> dogs = new ArrayList<Dog>();

 dogs.add(new Dog());

 dogs.add(new Dog());

 takeAnimals(dogs);

}

public void takeAnimals(ArrayList<Animal> animals){

for(Animal a: animals)

{

a.eat();

}

}
01/07/10 56

ArrayLists
public void go(){

 ArrayList<Dog> dogs = new ArrayList<Dog>();

 dogs.add(new Dog());

 dogs.add(new Dog());

 takeAnimals(dogs);

}

public void takeAnimals(ArrayList<Animal> animals){

for(Animal a: animals)

{

a.eat();

}

}

Exception in thread "main"
java.lang.Error: Unresolved compilation
problem:

The method
takeAnimals(ArrayList<Animal>) in the
type TestGenerics2 is not applicable for
the arguments (ArrayList<Dog>)

at
TestGenerics2.go(TestGenerics2.java:13)

at
TestGenerics2.main(TestGenerics2.java:5
)

01/07/10 57

Arrays, ArrayLists, and
Polymorphism

� With arrays, we could pass a Dog array to a
method expecting an Animal array

� Polymorphism in action

� Dog IS-A Animal

� We lost this ability with ArrayLists

� What if we were allowed to pass an
ArrayList<Dog> to that method? What would
happen?

� Just hypothetically (Java won't let us) 01/07/10 58

ArrayLists

� What's the worst that could happen?

public void takeAnimals(ArrayList<Animal> animals){

animals.add(new Cat()); // bad! A Cat in what should

 // have been a Dogs-only

 // ArrayList

� So Java just won't let you take this risk

� If you declare a method to take
ArrayList<Animal> it can take ONLY an
ArrayList<Animal>, not ArrayList<Dog> or
ArrayList<Cat>

01/07/10 59

Arrays and ArrayLists

� So why could we do that with Arrays but not
ArrayLists?

� We could pass a Dog array to a method that
takes an Animal array

� Couldn't somebody add a Cat to the Dog
array?

� Yes! And unfortunately it would compile and
the error wouldn't be caught until runtime

01/07/10 60

Runtime

takeAnimals(dogs);

public void takeAnimals(Animal[] animals)

{

animals[0] = new Cat();

for(Animal a: animals)

{

a.eat();

}

}

Exception in thread "main"
java.lang.ArrayStoreException: Cat

at
TestGenerics1.takeAnimals(TestGenerics1.java:1
9)

at TestGenerics1.go(TestGenerics1.java:14)
at TestGenerics1.main(TestGenerics1.java:6)

01/07/10 61

ArrayList

� With ArrayLists, we avoid this nasty problem
because type checking occurs when we
compile

01/07/10 62

Motivating Wildcards

� Imagine that we want to add a method to Bank that will take a
list of accounts and send a directed advertisement to their
owners

public void spam(List<Account> targetAccounts) �

� We have a problem. We may want to spam a list of
SavingsAccount but we cannot write:

List<SavingsAccount> savingsAccounts
= new ArrayList<SavingsAccount>();

Bank b = new Bank();

b.spam(savingsAccounts); //not allowed

01/07/10 63

Bounded Wildcards

� In such cases we can use wildcards in the type
parameter:

public void spam(
 List<? extends Account> targetAccounts)
{�}

� <? extends Account> indicates that we can pass a List

of any type that is a subtype of Account

� So we can now pass a List of Account or SavingsAccount

or any other type that�s a subtype of Account.

01/07/10 64

Bounded Wildcards - Question

� When we use a bounded wildcard, we can visit the
items in the collection but we are not allowed to add an
item to the collection.

public void spam(List<? extends Account>

targetAccounts)

{

 targetAccounts.add(new Account());

 //…

}

� Why is this not allowed?

01/07/10 65

Bounded Wildcards - Question

� We can answer that by revisiting our
Animals/Dogs/Cats example

� We discovered that we could not pass
ArrayList<Dog> to a method expecting an
ArrayList<Animal> parameter

� But now we know about a workaround:
bounded wildcards

01/07/10 66

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

 for (Animal a : animals){

 a.eat();

 }

} Now we can pass in an
ArrayList<Dog> or ArrayList<Cat>

01/07/10 67

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

 for (Animal a : animals){

 a.eat();

 }

}

But what's the difference? Don't we have the same problem as before?
This allows us to pass in an ArrayList<Dog> but somebody could still
add a Cat to the ArrayList of Dogs, right?

01/07/10 68

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

 for (Animal a : animals){

 a.eat();

 }

}

But what's the difference? Don't we have the same problem as before?
This allows us to pass in an ArrayList<Dog> but somebody could still
add a Cat to the ArrayList of Dogs, right?

No! When you use a bounded wildcard in a method parameter, the
compiler will not let you add anything to that list. You can use the list
but not add anything to it. Problem solved.

01/07/10 69

Wildcard Types

Name Syntax Meaning

Wildcard with lower bound ? extends B Any subtype of B

Wildcard with upper bound ? super B Any supertype of B

Unbounded wildcard ? Any type

 70

Constraining Type Variables

� Very occasionally, you need to supply two or more type bounds

<E extends Comparable & Cloneable>

� extends, when applied to type variables, actually means "extends
or implements"

� The bounds can be either classes or interfaces

� Type variable can be replaced with a class or interface type

 71

Using ArrayLists

� We started by introducing the List interface
and ArrayList implementation, and took a bit of
a detour through generic programming

� Let's look at how to use ArrayLists in more
detail

 72

� The ArrayList class manages a sequence of objects

� Can grow and shrink as needed

� ArrayList class supplies methods for many common tasks,

 such as inserting and removing elements

� The ArrayList class is a generic class: ArrayList<T> collects

 objects of type T:

ArrayList<BankAccount> accounts = new
ArrayList<BankAccount>();

accounts.add(new BankAccount(1001));
accounts.add(new BankAccount(1015));

accounts.add(new BankAccount(1022));

� size method yields number of elements

Array Lists

 73

� Use get method

� Index starts at 0

� BankAccount anAccount = accounts.get(2); // gets the
 third element of the array list

� Bounds error if index is out of range

� Most common bounds error:
 int i = accounts.size();

 anAccount = accounts.get(i); // Error
 //legal index values are 0. . .i-1

Retrieving Array List Elements

 74

� set overwrites an existing value
 BankAccount anAccount = new BankAccount(1729);
 accounts.set(2, anAccount);
� add adds a new value before the index
 accounts.add(i, a)

Adding Elements

Continued

 75

Adding Elements (cont.)

 76

remove removes an element at an index
accounts.remove(i)

Removing Elements

 77

01: import java.util.ArrayList;
02:
03: /**
04: This program tests the ArrayList class.
05: */
06: public class ArrayListTester
07: {
08: public static void main(String[] args)
09: {
10: ArrayList<BankAccount> accounts
11: = new ArrayList<BankAccount>();
12: accounts.add(new BankAccount(1001));
13: accounts.add(new BankAccount(1015));
14: accounts.add(new BankAccount(1729));
15: accounts.add(1, new BankAccount(1008));
16: accounts.remove(0);
17:
18: System.out.println("Size: " + accounts.size());
19: System.out.println("Expected: 3");
20: BankAccount first = accounts.get(0);

ch07/arraylist/ArrayListTester.java

Continued 78

21: System.out.println("First account number: "
22: + first.getAccountNumber());
23: System.out.println("Expected: 1015");
24: BankAccount last = accounts.get(accounts.size() - 1);
25: System.out.println("Last account number: "
26: + last.getAccountNumber());
27: System.out.println("Expected: 1729");
28: }
29: }

ch07/arraylist/ArrayListTester.java (cont.)

 79

01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance
09: @param anAccountNumber the account number for this account
10: */
11: public BankAccount(int anAccountNumber)
12: {
13: accountNumber = anAccountNumber;
14: balance = 0;
15: }
16:
17: /**
18: Constructs a bank account with a given balance
19: @param anAccountNumber the account number for this account
20: @param initialBalance the initial balance
21: */

ch07/arraylist/BankAccount.java

Continued 80

22: public BankAccount(int anAccountNumber, double initialBalance)
23: {
24: accountNumber = anAccountNumber;
25: balance = initialBalance;
26: }
27:
28: /**
29: Gets the account number of this bank account.
30: @return the account number
31: */
32: public int getAccountNumber()
33: {
34: return accountNumber;
35: }
36:
37: /**
38: Deposits money into the bank account.
39: @param amount the amount to deposit
40: */
41: public void deposit(double amount)
42: {
43: double newBalance = balance + amount;
44: balance = newBalance;
45: }

ch07/arraylist/BankAccount.java (cont.)

Continued

 81

46:
47: /**
48: Withdraws money from the bank account.
49: @param amount the amount to withdraw
50: */
51: public void withdraw(double amount)
52: {
53: double newBalance = balance - amount;
54: balance = newBalance;
55: }
56:
57: /**
58: Gets the current balance of the bank account.
59: @return the current balance
60: */
61: public double getBalance()
62: {
63: return balance;
64: }
65:
66: private int accountNumber;
67: private double balance;
68: }

ch07/arraylist/BankAccount.java (cont.)

Continued 82

Output:
Size: 3
Expected: 3
First account number: 1008
Expected: 1008
Last account number: 1729
Expected: 1729

ch07/arraylist/BankAccount.java (cont.)

 83

How do you construct an array of 10 strings? An array list of strings?

 Answer:
 new String[10];
 new ArrayList<String>();

Arrays and ArrayLists

 84

What is the content of names after the following statements?

 ArrayList<String> names = new ArrayList<String>();
 names.add("A");
 names.add(0, "B");
 names.add("C");

 names.remove(1);

 Answer: names contains the strings "B" and "C" at positions 0
 and 1

ArrayLists

 85

� You cannot insert primitive types directly into array lists
� To treat primitive type values as objects, you must use wrapper

classes:
ArrayList<Double> data = new ArrayList<Double>();
data.add(29.95);
double x = data.get(0);

Wrappers

 86

There are wrapper classes for all eight primitive types:

Wrappers

 87

� Auto-boxing: Starting with Java 5.0, conversion between primitive
types and the corresponding wrapper classes is automatic.
 Double d = 29.95; // auto-boxing; same as Double d =

new Double(29.95);
 double x = d; // auto-unboxing; same as double x =

d.doubleValue();

� Auto-boxing even works inside arithmetic expressions
 Double e = d + 1;

� Means:
� auto-unbox d into a double
� add 1
� auto-box the result into a new Double
� store a reference to the newly created wrapper object in e

Auto-boxing

 88

Suppose data is an ArrayList<Double> of size > 0. How do you
increment the element with index 0?

 Answer: data.set(0, data.get(0) + 1);

ArrayList Question

 89

Comparison
ArrayList<String> myList = new
ArrayList<String>();

String[] myList = new String[2];

String a = new String(�Whoohoo�); String a = new String(�Whoohoo�);

myList.add(a); myList[0] = a;

String b = new String(�Frog�); String b = new String(�Frog�);

myList.add(b); myList[1] = b;

int theSize = myList.size(); int theSize = myList.length;

String o = myList.get(1); String o = myList[1];

myList.remove(1); myList[1] = null;

01/07/10 90

Lists and beyond...

� Suppose that we want to maintain a list of objects, but
without allowing duplicates.

� Can we use a List for this purpose?

 Yes, but...

� It would be nice if there was another, similar class, that
does not allow duplicates.

� Java library provides a family of such classes called
Collection Classes

 91

Recall our Moveable interface...

public class Car implements Moveable {

public void moveBackward() {

System.out.println("Going 95 in reverse");

}

public void moveForward() {

System.out.println("Going 95 on the freeway");

}

} 92

...and Bike and Car classes

public class Bike implements Moveable {

public void moveBackward() {

System.out.println("Pedaling backwards!");

}

public void moveForward() {

System.out.println("Pedaling forwards!");

}

}

01/07/10 93

In-Class Exercise II

� 1. Write a method that takes an
ArrayList<Moveable> and iterates over it,
calling the moveForward() method for each
item

� 2. Write a method that takes an
ArrayList<Moveable> or an ArrayList of any
subclass type of Moveable (e.g. Bike or Car),
calling the moveForward() method for each
item

01/07/10 94

Learning Goals Review

� compare and contrast the use of a

 List over an array

� know how and when to use a

 List data structure

� compare and contrast the use of generic

 data structures and arrays of type Object

� compare and contrast assignment with

 various generic collections under specific

 subclass scenarios

� use wildcards appropriately in generic type parameters to enable

assignment in subclass scenarios

