Assignment 2

» Designing the music library system
* Due Tuesday, 8 pm
* No coding, just design

* You are free (and encouraged) to work with a
partner

* Ask the Client

01/07/10 1

Problem Description

m A TicketWizard Office needs a software system to |

track various events, their venues, and ticket
orders for the events.

»Each event has a name, description, date, time, a base
ticket price and occurs at a single venue.

»Each venue has a name, address, phone number.

» Different events can have different seating plans. The
seating plan consists of a number of sections and each
section contains a number of seats. The price of a seat
is determined by the base ticket price of the event and
the section’s price factor. A venue may host many
different events, one event at a time, of course.

Review Class Design

01/07/10 2

01/07/10 3

Problem Description (cont’t)

® Customers can place orders, which are made up of
one or more seats for one or more events. Ticket
office employees can also place orders; they enjoy a
10% discount on any regular ticket price.

m Customers can pay for their orders by cash or charge
them to a credit card. For each order, the system must
track the type of payment.

® Finally, the system must track customer information so
that customers can be notified if the event is changed
a@r.cancelled. .

——

Some Issues to consider

® Does a venue need to know about events? If so,
how?

m Does an event need to know about venue? If so,
how?

® Do we need Seat objects?

® Do we need Ticket objects?

® Do we need Customer objects?

® Do we need Employee objects?

® What other objects do we need?

01/07/10

Better Design

How many errors can you find in this design?

Evert Note: The default
venue:Siring Customer multi ies are 1
-everiName:Sting eme:Sting
+setvenue(venuehlame: String) woid —aetame0Sving
+getvenue(IString
+setEventreverthlame: Stringvoid
+gel veni()Sting

I Ticket Order ioyee

P - caploy
idint
+owchar “name: String
seatumint
+getDCyint
+getRow(yint +getiam =g Siring
gt eatNuCrint
Payment
amourtouble
+gethmount(r double
[Credit_Gard_ Payment CashPayment
« 6

Created with Poseidon for UML Cornmuniy Edion. Not for Commercial Use.

—

[TwSoltion
I venue:
Evert Customer

“name:String
ddressSiing ane:Sting
-phone:Siring - |t +selEmployee(rvaid
+cresteSeaingPlan(ySeating? “mseTioketpriceint +Employee(ybooiean

- Order << interface >

ScatingPlan i
:double - double
Section
_priceF actor.double = >
[r—
Seat

Created with Poseldan for UML Communiy Exition. Mot for Cormmercial Use,

Key Concepts

. There are a lot of related concepts we covered

« When you design a superclass, think about whether it might be extended in the
future (i.e., which methods should be protected instead of private, etc.). This is
the open-closed principle in action.

. In Java, a subclass is considered a subtype as is an implementation of an
interface. To ensure an instance of a subclass (or a class that extends an
interface) is substitutable for its superclass (or its interface) we need to follow
the Liskov Substitutability Principle (LSP). i.e., watch out that pre-conditions
and post-conditions of overridden methods do the right thing.

. If we want to reuse code but can’t do it via a subclass because we’d violate the
LSP, we can use delegation where we keep an object of the type from which we
want the code and we call the object’'s methods to do the work we want done.

. If we want one class to act like different types, use interfaces (and sometimes
delegation too!)

01/07/10 8

Introduction to Collections:
the List interface

« compare and contrast the use of a

List * Reading
ist over an array . 398 4" Eg:
* know how and when to use a Chapter 17 ; Skip
List data structure 17.2
. « 2MEd:
« compare and contrast the use of generic Chapter 22 ; Skip
data structures and arrays of type Object 222

+ Exercises
+ 39&4"Ed:
Chapter 17, P17.1,

« compare and contrast assignment with
various generic collections under specific

subclass scenarios P17.2, P17.3,
« use wildcards appropriately in generic type . 2P"l7E1§
parameters to enable assignment in subclass Chaptér 22 P22.1
scenarios P22.2, P22.3,
P22.13
01/07/10 9

Why arrays aren't enough...

» Objects often have to store collections of references to
other objects
* e.g., a bank has a collection of accounts
« To this point, you have used arrays to store such
collections

€.d., public class Bank {
private Account[] accounts; ..

» But...
* We have to decide the size of an array when we allocate it.

* If the array fills, it doesn't expand automatically. We have to
write code to create a bigger array and copy the data over.

01/07/10 11

Course Structure

» Sofar...
* we’ve considered how to design and implement robust classes

* Now...

* we’re going to look at how to represent collections of information (objects)
so that we can build programs that do more

* Then...

* we’re going to some programming concepts that will help you build even
more interesting programs (Streams, GUI, Threads)

01/07/10 10

Collections of Objects

* Sometimes we want to create objects that store a
collection of other objects of an unspecified type.

» For example, we might want to create a list class that
can store a list of any other type of object (e.g., a list of
String OF Account OF Point).

» We can achieve this by storing the items in the
collection in an array of type object:

01/07/10 12

Collections of Objects: An Example

public class MyList {
private Object[] items;
private int numItems;
final int INIT NUM=10;

public MyList {
items = new Object[INIT NUM];
numItems = 0;

public void add(Object item) {..}
public Object get(int index) {..}
public boolean isEmpty () {..}

public int size() {..}

01/07/10

(

More Problems with MyList

The fact that we can add any type of object to our rist can
be problematic.

Suppose we want to create a list of account Objects:

MyList myList = new MyList();

myList.add(new Account ());
myList.add(new Account ());
myList.add(new Account ());
myList.add(new KitchenSink());
myList.add(new Account ());

The compiler won't flag the fact that we've added a
Kitchensink to our list of account Objects — ugh.

01/07/10

——

Some Problems with MyList

| » As a user of such a list, we have no problem adding
items to the list:

myList.add(new Account ());

» ...but we've got to be careful when we retrieve items
from the list

« we need to cast them to the appropriate type

Account acc = (Account) myList.get(0);

01/07/10

| List

|« AList is an interface defined in the Java libraries.

« An object of type List acts like an array except
that it automatically grows and shrinks as needed.

their performance characteristics
e ArrayList, Vector, LinkedList,etc..
* Details are described in CPSC 221
» We will use an ArrayList for this lecture

01/07/10

» There are several kinds of List classes which differ in

16

List |

A List is an example of a generic interface/class. |

We specify the type of data to be stored in the list when
a List is declared and instantiated:

¢« List<Account> accts = new ArrayList<Account>();
// a list of Account objects

e List<String> strings = new ArrayList<String>();
// a list of String objects

01/07/10 17

List |

It's also easy to retrieve items from the list.

Recall that when we retrieve an item from uyList, we have to
cast to the appropriate type.

The cast is not necessary when working with a generic vist.

Let's assume that we're working with the rist declared on the
prtevtlgusllptage and that we've inserted a few account Objects
into the list:

Account myAccount = accts.get(0);
// Gets the account at position 0 in the list

No cast is necessary.

01/07/10 19

List
* The compiler will not allow us to add objects of the wrong
type:
e List<Account> accts = new ArrayList<Account>();

// OK
// OK
// won't compile

accts.add(new Account());
accts.add(new Account());
accts.add(new KitchenSink());

» This is a good thing. The compiler will now check that we're
adding the right type of object to our list.

01/07/10 18
“\ p—
V4
List
« Given:
List<Account> accts = new ArrayList<Account>();
« we can add objects of type Account
« we can also add objects that are a subtype of Account
e So, if SavingsAccount is a subclass of Account, we
can do the following:
accts.add(new Account());
accts.add(new SavingsAccount ());
01/07/10 20
“\ p—

.(List Methods

» List has many useful methods:

public interface List<E> { E is a generic

e
public boolean add(E item) /// parameter
// add at end of list ////
public boolean add(int i, E item) e

// insert at specific position i
public boolean contains(Object item)

// is item in the accounts collection
public E get(int i)

// get item at position i
public E remove(int 1)

// remove account at position i
public int size()

// gets number of elements in list

// NOT current capacity of list

01/07/10 21

Generic Programming

« Generic programming is the creation of
programming constructs that can be used with
many different types

* A generic class has one or more type
variables, e.g.

- public class ArrayList<E>
* These type variables can be instantiated with
class or interface types

01/07/10 23

Java Generics

* Note that the & in the rist APl is a generic parameter (or
type parameter)

* & represents the type that is specified by the client when
the 1ist is declared and instantiated

* For example:

List<Account> acclist;
// E is Account

List<String> strlist;
// E 1is String
» For the API for this interface, see the online documentation:
http://java.sun.com/javase/6/docs/api/index.html

01/07/10 22

Type Variables

* The type that you supply replaces the type
variable in the class or interface, e.g.

- ArrayList<Account>

» Type variables make generic code safer and
easier to read

* By the way, E means “element type in a
collection.”

01/07/10 24

Good Type Variable Names

Type Variable | Name Meaning
E Element type in a collection
K Key type in a map
l \ Value type in a map
i T General type
S,U Additional general types

e i

Instantiating a Generic Class

GenericClassName<Type1, Type2, . . .>

Example:

ArrayList<BankAccount>
HashMap<String, Integer>

Purpose:
To supply specific types for the type variables of a generic class.

Type Variables

* You cannot use primitive types as type
parameters, e.g.

- There is no ArrayList<int> or
ArrayList<double>

* Use the Wrapper class instead, e.g.
- Integer and Double

01/07/10 26

|

Example using List

public class Bank {
private List<Account> accounts;

public Bank() {
accounts = new ArrayList<Account>();
}

// Add new account at the end of List
public void newAccount (double balance) {

accounts.add (new Account (balance));
}

// Get number of accounts at Bank

public int getNumAccounts () {
return accounts.size();

}

01/07/10 28

Another Generic Example

public class Pair<T, S>
{

public Pair (T firstElement, S secondElement)
{

first = firstElement;

second = secondElement;
}
public T getFirst() { return first; }
public S getSecond() { return second; }

private T first;
private S second;

In-Class Exercise |

» Complete the following method that counts the number of
times a particular string is found in an vist

public static int count (List<String> list,
String toFind)

{

01/07/10

Another Generic Example

ow would you use the generic rair class to construct a pair of strings
ello" and "wWorld"?

Nswer: new Pair<String, String>("Hello", "World")

Tea break!

01/07/10

Generic Methods

~+ Generic method: method with a type variable

» Can be defined inside ordinary and generic classes
'+ Aregular (non-generic) method:

/**
Prints all elements in an array of strings.
@param a the array to print

for (String e : a)
System.out.print(e + " ");
System.out.println(); ‘

33

Generic Methods

» When calling a generic method, you need not instantiate the type
variables:
Rectangle[] rectangles = . . .;
ArrayUtil.print (rectangles);

* You can also define generic methods that are not static

“*» You can even have generic methods in generic classes

~ « What if we want to print an array of Rectangle objects instead?

public static <E> void print (E[] a)

for (E e : a)
System.out.print(e + " ");
System.out.println();

Defining a Generic Method

Generic Methods

Is the getrirst method of the rair class a generic method?

Answer: No — the method has no type parameters. It is an
ordinary method in a generic class.

Assignment with Arrays and subclasses

* What about this?

acc = sAcc;

This does compile but can lead to problems if we then do

acc[0] = new Account();

// oops - just put an Account into an array
// of SavingsAccount objects

.problem isn't detected by compiler.
An exception is thrown when the program runs — nasty.

01/07/10

Assignment with Arrays and subclasses

* Assume that savingsaccount is a subclass of account.
Consider this:

Account[] acc = new Account[10];

SavingsAccount[] sAcc = new SavingsAccount[10];

« Is this allowed?

new SavingsAccount () ; Account
AN

SavingsAccount sa = acc[0];

acc[0]

SavingsAccount

01/07/10

Assignment with Generics

» Consider this:

List<Account> accounts
= new ArrayList<Account>();

List<SavingsAccount> savingsAccounts

= new ArrayList<SavingsAccount>();

« Is this allowed?

accounts.add(0, new SavingsAccount());

SavingsAccount sa = accounts.get(0);

01/07/10 40

Assignment with Generics

* What about this?

accounts = savingsAccounts;

» This code does not compile and so the problem illustrated
with arrays earlier is avoided.

01/07/10 41

Assignment with Generics

* Note that List<SavingsAccount> is not a
subclass of List<Account>

- Even though SavingsAccount is a subclass of
Account

* Inheritance of type parameters does not lead
to inheritance of generic classes

 This restriction saves us some trouble, as just
shown

01/07/10 43

Assignment with Generics

» Assume we have the method:

public void myMethod (List<Account> list) {..}

then the following client call will also not compile:

List<SavingsAccount> savAccs

= new ArraylList<SavingsAccount>();

myMethod (savAccs) ;

01/07/10

42

Arrays and ArrayLists

 Let's look at another example

01/07/10

from Head First Java

44

abstract class Animal {
void eat() {

A simple Animal class hierarchy

System.out.printin("animal eating");

}

public class Dog extends Animal {
void bark() { }

}

public class Cat extends Animal {
void meow() {}

}

01/07/10

public class TestGenericsl {

public static void main(String[]
args) {

new TestGenericsl().go();

}

public void go(){

Animal[] animals = {new Dog(), new
Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),
new Dog()};

takeAnimals(animals);

Dﬁ@hﬁf\nin\als (dogs) ;
}

Arrays

public void takeAnimals(Animalf[]
animals)

{

for(Animal a: animals)
{

a.eat();

¥

}

Arrays

* Let's consider arrays first

« Let's create an array of Animals that hold both
cats and dogs

« Let's also create an array of Dogs that can
hold only dogs

01/07/10 46

Arrays

public class TestGenericsl { public void takeAnimals(Animall]
animals)

public static void main(String[]

args) {

new TestGenericsl().go(); for(Animal a: animals)

} {
a.eat();
public void go(){ }

Animal[] animals = {new Dog(), new
Cat(), new Dog()};

}«——— Create Animal array

Dog[] dogs = {new Dog(), new Dog(),
new Dog()};

takeAnimal imals) ;)
sremninals(anin j> Call takeAnimals() on each of them

Oﬁaﬁﬁfmimals (dogs); P
}

R — Create Dog array

public class TestGenericsl {

public static void main(String[]
args) {

new TestGenericsl().go();

}

public void go(){

Animal[] animals = {new Dog(), new
Cat(), new Dog()};

Dog[] dogs = {new Dog(), new Dog(),
new Dog()};

takeAnimals (animals);

Oﬁﬁﬁf\nimals (dogs) ;
}

* That was using Arrays

Arrays

ArrayLists

S — T,
public void takeAnimals(Animalf] |
animals) | |
{ il
for(Animal a: animals)

{

a.eat();

}
We can call ONLY the

¥ methods declared in type
Animal since the parameter is
an Animals array

}

49
S — T,

* Let's try the same thing with ArrayLists

01/07/10

public class TestGenericsl {

public static void main(String[]
args) {

new TestGenericsl().go();

}

public void go(){

Animal[] animals
Cat(), new Dog()}

{new Dog(), new

Dog[] dogs = {new Dog(), new Dog(),
new Dog()};
takeAnimals(animals);

Oﬁaﬁﬁfmimals (dogs);
}

import java.util.*;
public class TestGenerics2 {

public static void main(String[]
args) {

new TestGenerics2().go();

}

public void go(){

ArrayList<Animal> animals = new

ArrayLists

Arrays

public void takeAnimals(Animall]
animals)

{

for(Animal a: animals)

{

a.eat();

}
>

} animal eating
animal eating
animal eating

} animal eating
animal eating
animal eating

|

public void
takeAnimals (ArrayList<Animal>
animals)

{

for(Animal a: animals)
{

a.eat();

We've just changed from Animal[] to
ArrayList<Animal>

ArrayList<Animal>(); «——— 3 \We create an ArrayList of Animals
containing Cats and Dogs, and call the

animals.add(new Dog());
animals.add(new Cat());
animals.add(new Dog());

01/07/10
takeAnimals(animals);

} takeAnimals() method

ArrayLists

import java.util.x; public void
takeAnimals (ArrayList<Animal>

public class TestGenerics2 { animals)

public static void main(String[] {
args) {

for(Animal a: animals)
new TestGenerics2().go();

animals.add(new Dog());
01/07/10
takeAnimals(animals);

{
}
a.eat();
public void go(){ The method takes an ArrayList<Animal>.
ArrayList<Animal> animals = new The output is:
ArrayList<Animal>(); yoz
X animal eating
animals.add(new Dog()); } animal eating
animals.add(new Cat()); } animal eating

ArrayLists

public void go(){
ArrayList<Dog> dogs = new ArrayList<Dog>();
dogs.add(new Dog());
dogs.add(new Dog());
takeAnimals(dogs);
}
public void takeAnimals(ArrayList<Animal> animals){
for(Animal a: animals)
{

a.eat();

01/07/10

ArrayLists

 So far, so good

* With the Array example, we were able to pass
a Dog array to a method that took an Animal
array parameter

* What happens if we pass an ArrayList<Dog>
to our takeAnimals() method, which takes
ArrayList<Animal> as a parameter?

01/07/10

ArrayLists

public void go(){
ArrayList<Dog> dogs = new ArrayList<Dog>();
dogs.add(new Dog());
dogs.add(new Dog());
takeAnimals(dogs);

¥

public void takeAnimals(ArrayList<Animal> animals){

Exception in thread "main”
java.lang.Error: Unresolved compilation
{ problem:

The method
takeAnimals(ArrayList<Animal>) in the
type TestGenerics2 is not applicable for
} the arguments (ArrayList<Dog>)

for(Animal a: animals)

a.eat();

at
01/07/10} TestGinericsz.go(TestGenericsZ.java:13) 56
al

TestGenerics2.main(TestGenerics2.java:5

Arrays, ArrayLists, and
Polymorphism

* With arrays, we could pass a Dog array to a
method expecting an Animal array

~ Polymorphism in action
- Dog IS-A Animal
* We lost this ability with ArrayLists

* What if we were allowed to pass an
ArrayList<Dog> to that method? What would
happen?

- Just hypothetically (Java won't let us)

01/07/10

Arrays and ArrayLists

* So why could we do that with Arrays but not
ArrayLists?

- We could pass a Dog array to a method that
takes an Animal array

- Couldn't somebody add a Cat to the Dog
array?

- Yes! And unfortunately it would compile and
the error wouldn't be caught until runtime

01/07/10

57

ArrayLists

* What's the worst that could happen?
public void takeAnimals(ArrayList<Animal> animals){
animals.add(new Cat()); // bad! A Cat in what should
// have been a Dogs-only
// ArrayList
» So Java just won't let you take this risk

* If you declare a method to take
ArrayList<Animal> it can take ONLY an
ArrayList<Animal>, not ArrayList<Dog> or

owonfrraylist<Cat> s

Runtime

takeAnimals (dogs);

public void takeAnimals(Animal[] animals)

{

animals[0] = new Cat();

Exception in thread "main”
java.lang.ArrayStoreException: Cat

at
{ TestGenerics1.takeAnimals(TestGenerics1.java: 1
9

for(Animal a: animals)

a.eat();
O at TestGenerics1.go(TestGenerics1.java: 14)

} at TestGenerics1.main(TestGenerics1.java:6)

01/07/10 60

[il B B o

; ArrayList . Motivating Wildcards

| | . Imagine that we want to add a method to sanx that will take a |

- With ArrayLists, we avoid this nasty problem I(l;\t"?;‘rasccounts and send a directed advertisement to their
because type checking occurs when we
Comp"e public void spam(List<Account> targetAccounts) ...

» We have a problem. We may want to spam a list of
SavingsAccount but we cannot write:

List<SavingsAccount> savingsAccounts
= new ArrayList<SavingsAccount>();
Bank b = new Bank();

b.spam(savingsAccounts); //not allowed

01/07/10 61 01/07/10 62

— .

.(Bounded Wildcards . Bounded Wildcards - Question

i . . | . ..
* In such cases we can use wildcards in the type | * When we use a bounded wildcard, we can visit the
parameter: items in the collection but we are not allowed to add an
item to the collection.
public void spam/(
List<? extends Account> targetAccounts)

= public void spam(List<? extends Account>

targetAccounts)
{
+ <2 extends Account> indicates that we can pass a rist targetAccounts.add(new Account());

of any type that is a subtype of account N e

» So we can now pass a List Of account OF savingsaccount

. is thi ?
or any other type that’s a subtype of account. Why is this not allowed?

01/07/10 63 01/07/10 64

Bounded Wildcards - Question

* We can answer that by revisiting our
Animals/Dogs/Cats example

* We discovered that we could not pass
ArrayList<Dog> to a method expecting an
ArrayList<Animal> parameter

+ But now we know about a workaround:
bounded wildcards

01/07/10

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

for (Animal a : animals){
a.eat();
}

But what's the difference? Don't we have the same problem as before?
This allows us to pass in an ArrayList<Dog> but somebody could still
add a Cat to the ArrayList of Dogs, right?

01/07/10

65

67

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {

for (Animal a : animals){
a.eat();
}
) Now we can pass in an
ArrayList<Dog> or ArrayList<Cat>
01/07/10 66

Bounded Wildcards

public void takeAnimals(ArrayList<? extends Animal> animals) {
for (Animal a : animals){
a.eat();

}

But what's the difference? Don't we have the same problem as before?
This allows us to pass in an ArrayList<Dog> but somebody could still
add a Cat to the ArrayList of Dogs, right?

No! When you use a bounded wildcard in a method parameter, the

compiler will not let you add anything to that list. You can use the list
but not add anything to it. Problem solved.

01/07/10 68

Wildcard Types

Name Syntax Meaning

Wildcard with lower bound ? extends B Any subtype of B

Wildcard with upper bound ? super B Any supertype of B
Unbounded wildcard ? Any type

01/07/10 69

Using ArrayLists

« We started by introducing the List interface
and ArrayList implementation, and took a bit of
a detour through generic programming

 Let's look at how to use ArrayLists in more
detail

Constraining Type Variables

» Very occasionally, you need to supply two or more type bounds
<E extends Comparable & Cloneable>

* extends, When applied to type variables, actually means "extends
or implements”

» The bounds can be either classes or interfaces

» Type variable can be replaced with a class or interface type

70

Array Lists

* The arrayList class manages a sequence of objects
+ Can grow and shrink as needed

« ArrayList class supplies methods for many common tasks,
such as inserting and removing elements

* The arrayList class is a generic class: ArrayList<T> collects
objects of type T:
ArrayList<BankAccount> accounts = new
ArrayList<BankAccount>() ;
accounts.add (new BankAccount (1001));
accounts.add (new BankAccount (1015));
accounts.add (new BankAccount (1022)) ;

* size method yields number of elements

72

|

Retrieving Array List Elements

* Use get method
* Index starts at 0

* BankAccount anAccount = accounts.get(2); // gets the
third element of the array list

« Bounds error if index is out of range

* Most common bounds error:

int i = accounts.size();

anAccount = accounts.get(i); // Error
//legal index values are 0. . .i-1

e N

I Adding Elements (cor;t_.) =

Before After

Figure 3 Adding an Element in the Middle of an Array List ’

Adding Elements

* set overwrites an existing value
BankAccount anAccount = new BankAccount (1729);
accounts.set (2, anAccount);

* add adds a new value before the index
accounts.add (i, a)

Continued 74

— h

Removing Elements

emove removes an element at an index
ccounts.remove (1)

Before After

Figure 4 Removing an Element from the Middle of an Array List

hO07/arraylist/ArrayListTester.java

i :
2.

import java.util.ArrayList;

Jxx
This program tests the ArrayList class.
*/
: public class ArrayListTester
{
public static void main(String[] args)
{
ArrayList<BankAccount> accounts
= new ArrayList<BankAccount>();
accounts.add (new BankAccount (1001));
accounts.add (new BankAccount (1015));
accounts.add (new BankAccount (l729));
accounts.add (., new BankAccount (1008));
accounts.remove (0) ;

System.out.println("Size: " + accounts.size());
System.out.println ("Expected: 3");
BankAccount first = accounts.get(0);

Continued 77

hO07/arraylist/BankAccount.java

1:
2:

J*

A bank account has a balance that can be changed by
deposits and withdrawals.

*/

public class BankAccount

{

4:

/**

Constructs a bank account with a zero balance

@param anAccountNumber the account number for this account
*/

public BankAccount (int anAccountNumber)

{

accountNumber = anAccountNumber;

balance = 0;

Constructs a bank account with a given balance
@param anAccountNumber the account number for this account
@param initialBalance the initial balance

Continued 79

h07/arraylist/ArrayListTester.java (cont.)

System.out.println("First account number: "

+ first.getAccountNumber ());
System.out.println("Expected: 1015");
BankAccount last = accounts.get(accounts.size() - 1);
System.out.println("Last account number: "

+ last.getAccountNumber ());
System.out.println("Expected: 1729");

2:
: {

J*x

*/
{

}
/o
*/

pub
{

h07/arraylist/BankAccount.java (cont.)

public BankAccount (int anAccountNumber,

public int getAccountNumber ()

double initialBalance)

accountNumber = anAccountNumber;
balance = initialBalance;

Gets the account number of this bank account.
@return the account number

return accountNumber;

Deposits money into the bank account.
@param amount the amount to deposit

lic void deposit(double amount)

double newBalance = balance + amount;

= Continued so
balance = newBalance;

hO07/arraylist/BankAccount.java (cont.)

/**
Withdraws money from the bank account.
@param amount the amount to withdraw

*/

public void withdraw(double amount)

{
double newBalance = balance - amount;
balance = newBalance;

}

Jxx
Gets the current balance of the bank account.
@return the current balance

*/

public double getBalance ()

{
return balance;

}

private int accountNumber;

private double balance; Continued st

Arrays and ArrayLists

ow do you construct an array of 10 strings? An array list of strings?

Answer:
new String([10];
new ArrayList<String>();

h07/arraylist/BankAccount.java (cont.)

Output:
Size: 3
Expected: 3

First account number: 1008
Expected: 1008

Last account number: 1729
Expected: 1729

82

ArrayLists

hat is the content of names after the following statements?
ArrayList<String> names = new ArrayList<String>();
names.add ("A") ;
names.add (0, "B");
names.add ("C") ;
names.remove (1) ;

Answer: names contains the strings " and "c" at positions 0
and 1

84

Wrappers

You cannot insert primitive types directly into array lists

To treat primitive type values as objects, you must use wrapper
classes:

ArrayList<Double> data = new ArrayList<Double>();
data.add (29.95);

double x = data.get(0);

- A

Figure 5 An Object of a Wrapper Class

*

Auto-boxing

Auto-boxing: Starting with Java 5.0, conversion between primitive
types and the corresponding wrapper classes is automatic.
Double d = 29.95; // auto-boxing; same as Double d =
new Double (29.95);
double x = d; // auto-unboxing; same as double x =
d.doubleValue () ;

Auto-boxing even works inside arithmetic expressions
Double e = d + 1;

Means:

 auto-unbox d into a double

* add 1

« auto-box the result into a new pouble

« store a reference to the newly created wrapper object in e

Wrappers

here are wrapper classes for all eight primitive types:

Primitive Type Wrapper Class

byte Byte
boolean Boolean
char Character
double Double
fleoat Float
int Integer
Tong Long
short Short

86

ArrayList Question

uppose data is an ArrayList<Double> Of size > 0. How do you
crement the element with index 0?

Answer: data.set (0, data.get(0) + 1);

88

Com parison | Lists and beyond...
ArrayL?st<Str?ng> myList = new String[] myList = new String[2]; a
Arraylst=String>{) . . - Suppose that we want to maintain a list of objects, but
String a = new String(“Whoohoo”); String a = new String(“Whoohoo”); without allowing duplicates
List.add(a); List[0] = a; . .
myListadd(a) MyLISH(o] = a; « Can we use a List for this purpose?
Yes, but...
String b = new String(“Frog”); String b = new String(“Frog”);
myList.add(b); myList[1] = b; « It would be nice if there was another, similar class, that
does not allow duplicates.
int theSize = myList.size(); int theSize = myList.length;
String o = myList.get(1); String o = myList[1]; Java library provides a family of such classes called
Collection Classes
myList.remove(1); myList[1] = null;
9 01/07/10
—— \ ——
Recall our Moveable interface... | ...and Bike and Car classes
public class Car implements Moveable { a public class Bike implements Moveable {
public void moveBackward() { public void moveBackward() {
System.out.println("Going 95 in reverse"); System.out.println("Pedaling backwards!");
} }
public void moveForward() { public void moveForward() {
System.out.println("Going 95 on the freeway"); System.out.println("Pedaling forwards!");
} }
} 91 }

In-Class Exercise Il

* 1. Write a method that takes an
ArrayList<Moveable> and iterates over it,
calling the moveForward() method for each
item

« 2. Write a method that takes an
ArrayList<Moveable> or an ArrayList of any
subclass type of Moveable (e.g. Bike or Car),
calling the moveForward() method for each
item

01/07/10 93

Learning Goals Review

« compare and contrast the use of a
List over an array

« know how and when to use a
List data structure

« compare and contrast the use of generic
data structures and arrays of type Object

« compare and contrast assignment with
various generic collections under specific
subclass scenarios

assignment in subclass scenarios

01/07/10

« use wildcards appropriately in generic type parameters to enable

94

