

29/06/10 1

Review � Unit Testing

29/06/10 2

Equivalence Classes

� With blackbox testing, we don't attempt to test
all inputs

� Instead, we divide the input into equivalence
classes so that

� the classes cover the entire valid input space

� the classes are disjoint

� all values within an equivalence class behave
similarly with respect to specification

29/06/10 3

Equivalence Classes

� Note: there is often more than one acceptable
way of partitioning the valid input space

� Once we have determined our equivalence
classes, we select at least one typical value
and one boundary value for each class

29/06/10 4

Example 1

class Account {
�
/**

 * @pre amount >= 0

 * �

 */

 public void deposit(double amount) { � }

}

� One equivalence class that satisfies the precondition:
amount >= 0

� Select at least one typical member of the class, amount = 200

� Select values at boundaries, only one boundary, amount = 0

� Test cases are then: {amount = 200, amount = 0 }

29/06/10 5

Example 2
class Account {

�
/**

 * @pre true
 * �
 * @throws IllegalValueException when amount < 0
 */
 public void withdraw(double amount) { � }
}

� Two equivalence classes. What are they?

 --

� What test cases would you specify?

--

29/06/10 6

Class Design II: Class Diagrams

Reading:

 2nd Ed:

 Chapter 9: 9.1, 9.2

Chapter 17: 17.2, 17.3, 17.4

 3rd Ed:

 Chapter 8: 8.1, 8.2

Chapter 12: 12.2, 12.3, 12.4

Some ideas in this section come from:

�Practical Object-Oriented Development
with UML and Java�

R. Lee, W. Tepfenhart, Prentice
Hall, 2002.

�Object-Oriented Software Development
Using Java�,

Xiaoping Jia, Addison Wesley,
2002

You should be able to:

� interpret UML class diagrams to identify
 relationships between classes

� draw a UML class diagram to represent the
 design of a software system

� describe the basic design principles of low
 coupling and high cohesion

� design a software system (expressed in UML)
 from a given specification that adheres to
 basic design principles (low coupling and
 high cohesion)

� identify elements of a given design that
 violate the basic design principles of low
 coupling, high cohesion

29/06/10 7

Heuristics for Finding Classes

� We usually start with the problem description and map each
relevant word as follows:

nouns � classes or attributes

is/are � inheritance

has/have � aggregation or association

other verbs � methods

must � constraint

adjective � attribute, relation

� This is called Abbott�s heuristics for natural language
analysis

� This is not always very accurate but it provides a good start

�

29/06/10 8

Simple Design Example

� Problem Description:
We want to simulate a simple betting game. In this game,
a player with money to gamble makes a bet and then rolls
a single die. If a 1 is rolled, the player wins an amount
equal to the bet, otherwise (s)he loses the bet.

� Let us try to identify the classes and their behaviour�..
� Nouns:

� game, player, money, bet, die, amount, bet

� Verbs :
� gamble, makes (a bet), rolls, wins, loses

29/06/10 9

Putting it Together

Game DiePlayer

29/06/10 10

Relationship 1: Association

� Association:
� A structural relationship that describes a connection between objects: each object

of one type contains reference(s) to objects of the other type.

� Example: Unidirectional association
� employee stores a reference of a department

+ getDept() : Department

Department

- name: string

�

+ addSale(s: Item) : void

�

Employee

- name: string
- empId: integer

�

1 *

29/06/10 11

Relationship 1: Association

� �Associations are stronger than dependencies
and typically indicate that one class retains a
relationship to another class over an extended
period of time. The lifelines of two objects
linked by associations are probably not tied
together (meaning one can be destroyed
without necessarily destroying the other).�

� UML 2.0 In a Nutshell

29/06/10 12

Relationship 1: Association

� Typically read as a �has a� relationship

� Associations have explicit notation to indicate
navigability

� The arrows indicate whether you can navigate
from one class to the other

� Relationship indicated by solid line, open
arrow (no arrow if bidirectional...)

� Line may be adorned with a phrase or
symbols to add information

29/06/10 13

Bidirectional Association

� 1 and * in the previous examples are called multiplicities
� indicate the number of objects of this side that are associated by each object of the other side

� * means any number

� Indicates that both classes reference each other

� Shown with a line without arrows

� Example:

Department

- name: string

�

+ addEmployee(Employee) :
void

�

Employee

- name: string
- empId: integer

�

1 *

+ getDept() : Department

. . .

29/06/10 14

Relationship 2: Aggregation

� Aggregation:

� A special form of association that specifies a whole-part relationship between the

aggregate (the whole) and a component (the part)

� Example:

Inventory

�

+ addItem() : void

�

Item

- name : String

- description : String

�

+ getName() : String

�

29/06/10 15

Relationship 2: Aggregation

� �Aggregation is a stronger version of
association. Unlike association, aggregation
typically implies ownership and may imply a
relationship between lifelines.�

� UML 2.0 In a Nutshell

� Typically read as a �owns a� relationship

� Aggregation indicated by diamond shape next
to owning class and solid line to owned class

29/06/10 16

Relationship 3: Composition
� Composition:

� a form of aggregation, where the composite (whole) strongly owns the parts

� when the whole is deleted (dies) the parts are also deleted (die)

� A part is in exactly one whole (implicit multiplicity of 1)

� Example:

ChessBoard

�

+ movePiece() : void

�

ChessSquare

- colour : String

�

+ getColour() : String

�

6411

29/06/10 17

Relationship 3: Composition

� �Composition represents a very strong
relationship between classes, to the point of
containment. Composition is used to capture a
whole-part relationship. The �part� piece of the
relationship can be involved in only one
composition relationship at any given time.�

� UML 2.0 In a Nutshell

� Typically read as a �is part of� relationship

� Indicated by filled diamond next to owner class
and solid line to owned class 29/06/10 18

Relationship 4: Dependency

� Dependency:
� A relationship describing that a change to the target element may require a change

in the source element.

� Example:

Player

- name : String

�

+ move() : boolean

�

Joystick

- position : int

�

+ changePos() : void

�

<<use>>

29/06/10 19

Relationship 4: Dependency

� �The weakest relationship between classes is
a dependency relationship. Dependency
between classes means that one class uses,
or has knowledge of, another class. It is
typically a transient relationship, meaning a
dependent class briefly interacts with the
target class but typically doesn't retain a
relationship with it for any real length of time.�

� UML 2.0 In a Nutshell

29/06/10 20

Relationship 4: Dependency

� Typically read as a �uses a� relationship

� Indicated by a dashed line with an arrow
pointing from the dependent class to the class
that is used.

29/06/10 21

Relationship 5: Generalization

� Generalization:
� An inheritance relationship, where a subclass is a specialized form of the

superclass

� Example:

Student

- major: String
- year: int

+ enrollInCourse() : boolean
+ toString() : String

Person

- name : String
- age : int
- SIN : int

+ toString() : String

29/06/10 22

Relationship 5: Generalization

� �A generalization relationship conveys that the
target of the relationship is a general, or less
specific, version of the source class�

� UML 2.0 In a Nutshell

� Typically read as a �is a� relationship

� Indicated by a solid line with a closed arrow,
pointing from the specific class to the general
class

29/06/10 23

Relationship 5: Generalization

� Note: UML allows for multiple inheritance, but
Java does not

� If we want to simulate multiple inheritance, we
can use interfaces

 24

Example

class Car extends Vehicle

{

 . . .

 private Tire[] tires;

}

 25

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

 Association

 Solid Open

 Composition Solid
Filled
Diamond

UML Relationship Symbols

 26

� Task: print out an invoice

� Invoice: describes the charges for a set of products in certain
quantities

� Omit complexities
� Dates, taxes, and invoice and customer numbers

� Print invoice
� Billing address, all line items, amount due

� Line item
� Description, unit price, quantity ordered, total price

� For simplicity, do not provide a user interface

� Test program: adds line items to the invoice and then prints it

Printing an Invoice � Requirements

 27

I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA 98765

Description Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Sample Invoice

 28

� Discover classes

� Nouns are possible classes

Invoice

Address

LineItem

Product

Description

Price

Quantity

Total

Amount Due

Printing an Invoice

 29

� Analyze classes

Invoice

Address

LineItem // Records the product and the quantity

Product

Description // Field of the Product class

Price // Field of the Product class

Quantity // Not an attribute of a Product

Total // Computed � not stored anywhere

Amount Due // Computed � not stored anywhere

� Classes after a process of elimination

Invoice

Address

LineItem

Product

Printing an Invoice

 30

Printing an Invoice � UML Diagrams

 31

� Invoice aggregates Address and LineItem

� Every invoice has one billing address

� An invoice can have many line items:

public class Invoice

{

 . . .

 private Address billingAddress;

 private ArrayList<LineItem> items;

}

Implementation

 32

 ch12/invoice/InvoicePrinter.java

01: /**

02: This program demonstrates the invoice classes by printing

03: a sample invoice.

04: */

05: public class InvoicePrinter

06: {

07: public static void main(String[] args)

08: {

09: Address samsAddress

10: = new Address("Sam's Small Appliances",

11: "100 Main Street", "Anytown", "CA", "98765");

12:

13: Invoice samsInvoice = new Invoice(samsAddress);

14: samsInvoice.add(new Product("Toaster", 29.95), 3);

15: samsInvoice.add(new Product("Hair dryer", 24.95), 1);

16: samsInvoice.add(new Product("Car vacuum", 19.99), 2);

17:

18: System.out.println(samsInvoice.format());

19: }

20: }

21:

22:

23:

 33

ch12/invoice/Invoice.java

01: import java.util.ArrayList;

02:

03: /**

04: Describes an invoice for a set of purchased products.

05: */

06: public class Invoice

07: {

08: /**

09: Constructs an invoice.

10: @param anAddress the billing address

11: */

12: public Invoice(Address anAddress)

13: {

14: items = new ArrayList<LineItem>();

15: billingAddress = anAddress;

16: }

17:

18: /**

19: Adds a charge for a product to this invoice.

20: @param aProduct the product that the customer ordered

21: @param quantity the quantity of the product

22: */

Continued 34

ch12/invoice/Invoice.java (cont.)

23: public void add(Product aProduct, int quantity)

24: {

25: LineItem anItem = new LineItem(aProduct, quantity);

26: items.add(anItem);

27: }

28:

29: /**

30: Formats the invoice.

31: @return the formatted invoice

32: */

33: public String format()

34: {

35: String r = " I N V O I C E\n\n"

36: + billingAddress.format()

37: + String.format("\n\n%-30s%8s%5s%8s\n",

38: "Description", "Price", "Qty", "Total");

39:

40: for (LineItem i : items)

41: {

42: r = r + i.format() + "\n";

43: }

44:

Continued

 35

ch12/invoice/Invoice.java (cont.)

45: r = r + String.format("\nAMOUNT DUE: $%8.2f",

getAmountDue());

46:

47: return r;

48: }

49:

50: /**

51: Computes the total amount due.

52: @return the amount due

53: */

54: public double getAmountDue()

55: {

56: double amountDue = 0;

57: for (LineItem i : items)

58: {

59: amountDue = amountDue + i.getTotalPrice();

60: }

61: return amountDue;

62: }

63:

64: private Address billingAddress;

65: private ArrayList<LineItem> items;

66: }

 36

 ch12/invoice/LineItem.java

01: /**

02: Describes a quantity of an article to purchase.

03: */

04: public class LineItem

05: {

06: /**

07: Constructs an item from the product and quantity.

08: @param aProduct the product

09: @param aQuantity the item quantity

10: */

11: public LineItem(Product aProduct, int aQuantity)

12: {

13: theProduct = aProduct;

14: quantity = aQuantity;

15: }

16:

17: /**

18: Computes the total cost of this line item.

19: @return the total price

20: */

Continued

 37

ch12/invoice/LineItem.java (cont.)

21: public double getTotalPrice()

22: {

23: return theProduct.getPrice() * quantity;

24: }

25:

26: /**

27: Formats this item.

28: @return a formatted string of this item

29: */

30: public String format()

31: {

32: return String.format("%-30s%8.2f%5d%8.2f",

33: theProduct.getDescription(), theProduct.getPrice(),

34: quantity, getTotalPrice());

35: }

36:

37: private int quantity;

38: private Product theProduct;

39: }

 38

ch12/invoice/Product.java

01: /**

02: Describes a product with a description and a price.

03: */

04: public class Product

05: {

06: /**

07: Constructs a product from a description and a price.

08: @param aDescription the product description

09: @param aPrice the product price

10: */

11: public Product(String aDescription, double aPrice)

12: {

13: description = aDescription;

14: price = aPrice;

15: }

16:

17: /**

18: Gets the product description.

19: @return the description

20: */

Continued

 39

ch12/invoice/Product.java (cont.)

21: public String getDescription()

22: {

23: return description;

24: }

25:

26: /**

27: Gets the product price.

28: @return the unit price

29: */

30: public double getPrice()

31: {

32: return price;

33: }

34:

35: private String description;

36: private double price;

37: }

38:

 40

 ch12/invoice/Address.java

01: /**

02: Describes a mailing address.

03: */

04: public class Address

05: {

06: /**

07: Constructs a mailing address.

08: @param aName the recipient name

09: @param aStreet the street

10: @param aCity the city

11: @param aState the two-letter state code

12: @param aZip the ZIP postal code

13: */

14: public Address(String aName, String aStreet,

15: String aCity, String aState, String aZip)

16: {

17: name = aName;

18: street = aStreet;

19: city = aCity;

20: state = aState;

21: zip = aZip;

22: }

Continued

 41

ch12/invoice/Address.java (cont.)

23:

24: /**

25: Formats the address.

26: @return the address as a string with three lines

27: */

28: public String format()

29: {

30: return name + "\n" + street + "\n"

31: + city + ", " + state + " " + zip;

32: }

33:

34: private String name;

35: private String street;

36: private String city;

37: private String state;

38: private String zip;

39: }

40:

29/06/10 42

Properties of a Good Design

� In most case there are many ways to break a problem into

classes that would provide a solution (implementation) for it

� Some of these ways are better than the others in the sense

that

� it is easier to understand the software system

� it is easier to revise and modify the code

� it is easier to extend the code (add new functionality)

29/06/10 43

Basic Design Principles

� How would we know if our design is good?

� it must satisfy some properties

� Two basic principles (properties) of a good design:

1. design should have high cohesion

2. design should have low coupling

29/06/10 44

Cohesion

� A class should represent one concept; it should be cohesive

� its public interface must be cohesive

� If a class is not cohesive (i.e. represents many concepts)

� there's a greater chance that it might have to change in the future

� changing one concept may inadvertently break an unrelated concept

� Violations of this rule are acceptable in some special cases:

� utility classes that contain only static methods and constants (like the Math class)

� classes that contain just a main method

29/06/10 45

Coupling

� We want classes with high cohesion and low coupling

� A class A depends on another class B if it uses instances of the class B

� If many classes of a program depend on each other, we say that they have high
coupling

� The coupling among classes is low, if there are only a few dependencies among them

high coupling low coupling

29/06/10 46

Use Interfaces to Reduce Coupling

� Use most general classes and interfaces to reduce
coupling

� For instance:

instead of this we should do this

Appointment

Personal Business

Appointment
BookAppointment

Personal Business

Appointment
Book

29/06/10 47

Use Interfaces to Reduce Coupling

� A couple of lectures ago we reviewed
interfaces and noted that they can reduce
coupling

� Since we were doing single class design at
that point, we didn't go in to that topic in detail

� Let's revisit those examples now

29/06/10 48

Interfaces
� When we define a class that implements an

interface, we are committed to providing
definitions for the abstract methods listed in
the interface

� The interface itself contains no method
definitions, it just tells you what you need to do

� So if you need to implement an interface (e.g.
for an assignment, hint hint), look at the
interface definition and it will tell you which
methods your class will need

 49

An interface type is similar to a class, but there are several important
differences:

� All methods in an interface type are abstract; they don't have an implementation
� All methods in an interface type are automatically public

� An interface type does not have instance fields

Interfaces vs. Classes

 50

public interface InterfaceName

{

 // method signatures

}

Example:

public interface Measurable

{

 double getMeasure();

}

Purpose:

To define an interface and its method signatures. The methods are
automatically public.

Syntax 9.1 Defining an Interface

 51

public class ClassName

implements InterfaceName, InterfaceName, ...

{

 // methods

 // instance variables

}

Example:

public class BankAccount implements Measurable

{

 // Other BankAccount methods

 public double getMeasure()

 {

 // Method implementation

 }

}

Syntax 9.2 Implementing an Interface

 52

Advantages of Interfaces

� Polymorphism

� Classes that implement an interface x will have
objects of type x with the methods listed in x,
but the method definitions will differ

� Simulating multiple inheritance

� Reducing coupling between classes

 53

A simple interface

public interface Moveable {

 public void moveForward();

 public void moveBackward();

}

 54

Implementing the interface

public class Car implements Moveable {

public void moveBackward() {

System.out.println("Going 95 in reverse");

}

public void moveForward() {

System.out.println("Going 95 on the freeway");

}

}

 55

Implementing the interface

public class Bike implements Moveable {

public void moveBackward() {

System.out.println("Pedaling backwards!");

}

public void moveForward() {

System.out.println("Pedaling forwards!");

}

} 56

Interfaces and Polymorphism

public class MoveTest {

public static void main(String[] args) {

Moveable[] moveArr = new Moveable[2];

moveArr[0] = new Bike();

moveArr[1] = new Car();

for (Moveable mover: moveArr)

{

mover.moveForward();

}

}

}

What gets printed?

 57

Interfaces and Coupling
� Say we have a third class, TrafficController

� It has various methods for moving items (such as
cars and bikes) around a city

� It would simplify things to have all of those items
implement the Moveable interface

� That way TrafficController only needs to know about
the Moveable interface and doesn't directly know
about the classes that implement the interface

� All TrafficController cares about is that its methods
can take Moveable objects and call moveForward()
or moveBackward() on them

 58

Interfaces and Coupling

<<Moveable>>

TrafficController

BikeCar

High coupling

 59

Interfaces and Coupling

<<Moveable>>

TrafficController

BikeCar

Low coupling

 60

Interfaces

� �The most important characteristic of
interfaces is that they completely separate the
definition of the functionality (the class's
'interface' in the wider sense of the word) from
its implementation.�

� Objects First with Java

29/06/10 61

A larger example: a Restaurant

� Suppose we want to simulate a restaurant.

� We will use the following classes:
� Bill

� CashPayment

� CreditCardPayment

� IndividualBill

� Menu

� MenuItem

� Order

� Payment

� Table

� TableBill

� Waiter

� What are the relationships between these classes?

29/06/10 62

Summary

� UML diagrams help us to specify relationships between
classes.

� Five important relationships:
� Association

� Aggregation

� Composition

� Dependency

� Generalization

� The classes for a software system should be defined in
such a way that they have
� high cohesion

� low coupling

29/06/10 63

In-Class Exercise I

� Given project description, use heuristics to
identify classes and their relationships:

� We want to create a graphical user interface
(GUI) simulating an ATM machine. The GUI
has a keypad. The ATM is linked with a
bank. A bank has multiple customers. Each
customer can have two accounts (savings
and checking). The ATM can serve one
customer at a time, and the customer can
select one account at a time.

29/06/10 64

Learning goals review
You should be able to:

� interpret UML class diagrams to identify
 relationships between classes

� draw a UML class diagram to represent the
 design of a software system

� describe the basic design principles of low
 coupling and high cohesion

� design a software system (expressed in UML)
 from a given specification that adheres to
 basic design principles (low coupling and
 high cohesion)

� identify elements of a given design that
 violate the basic design principles of low
 coupling, high cohesion

29/06/10 65

Tea break!

29/06/10 66

Class Design III:
Good Practices and Bad Practices

� Additional References

� �Object-Oriented Software
Development Using Java�,
Xiaoping Jia, Addison Wesley,
2002

� �Core Java 2�, Cay Hortsmann,
Gary Cornell, Sun
Microsystems Press, 2003

You should be able to:

� describe the open-closed principle, why it matters, and how it
 applies to object-oriented code.

� use overloading correctly and recognize inappropriate uses

� describe the Liskov Substitution Principle (LSP)

� explain whether or not a given design adheres to the LSP

� incorporate inheritance into the design of software systems so
 that the LSP is respected

� compare and contrast the use of inheritance and delegation

� use delegation and interfaces to realize multiple inheritance in
 design (e.g., to support the implementation of multiple types)

� identify elements of a given design that violate the basic
 design principles of low coupling and high cohesion

29/06/10 67

To Overload or Not to Overload

� Overloading: Same name is used for more than one
method in the same class

� Mainly used for convenience

� Misuse may reduce program readability

� Should use overloading only in two situations:

� There is a general description that fits all overloaded methods

� All overloaded methods have the same functionality (some may
provide default arguments)

29/06/10 68

Overloading Examples

Good: Bad:

public class StringBuffer

{

 public StringBuffer append(char c)

 { … }

 public StringBuffer append(int i)

 { … }

 public StringBuffer append(float f)

 { … }

 …

public class Employee

{

 //sets employee’s name

 public void name(String s)

 { … }

 // returns employee’s name

 public String name()

 { … }

 …

Do both fit under
a common
description?

29/06/10 69

Overloading Example � another problem

public class Employee {

public void name(String s)

 { � }

public void name(Object o)

 { � }

In Main:
String stringAsString = new String(�aString�);

Object stringAsObject = stringAsString;

Employee e = new Employee();

e.name(stringAsObject); // what gets called?

e.name(stringAsString); // what gets called?

* It is a very bad idea to overload methods in a way that
all parameters of one method are subclasses of those in
the other

29/06/10 70

Open-Closed Principle

� Classes should be open for extension but closed for
modification

� Want to extend the behaviour of our system by adding subclasses

� without having to modify the superclasses

� The principle suggests you should consider possible future
subclasses when defining a class

29/06/10 71

is-a Style Inheritance : The right way

� Must be able to replace any instance of a superclass with
an instance of any of its subclasses (Liskov Substitution
Principle or LSP)

� Each class defines a type (the set of all instances of that
class).
A subclass following LSP defines a subtype (a subset of
the superclass type).

� Example:
� A Person class and a Student class

29/06/10 72

Is-A Style Inheritance: The right way�

� Client program should be able to create a number of cars,
and then control each one without having to know exactly
which car it is:

Car myToyota = new HybridCar();

myToyota.turnLeft();

Car

�
turnLeft(): void
turnRight(): void
�

SelfNavigatingCar HybridCarHummer

29/06/10 73

Weakening the precondition
� A subclass method can weaken the precondition (but it

cannot strengthen it) when overriding a method from its
superclass.
The subclass can accept a wider range of values as input.

abstract class Payment {
/**

 * @pre amt >= 0
*/

public void setPaymentAmount(int amt) {�}

}

class CreditCardPayment extends Payment {
/**
 * @pre true
 */
public void setPaymentAmount(int amt) {�}

}

class CashPayment extends Payment { � }
29/06/10 74

Weakening the precondition

� Why does it not make sense to strengthen the precondition?

� Suppose we set the precondition on the setPaymentAmount
of CreditCardPayment to be:
@pre amt >= 25

� Client should be able to do:

Payment p;

// substitute CashPayment for Payment

p = new CashPayment();

p.setPaymentAmount(5);

// substitute CreditCardPayment for Payment

p = new CreditCardPayment();

p.setPaymentAmount(5); // oops!

29/06/10 75

Strengthening the postcondition

� A subclass�s method can strengthen the postcondition (but
it cannot weaken it): a subclass�s method can return a
subset of the values returned by the method it overrides.

class Pump {

/**

 * @post true

*/

public double volumePumped() {…}

}

class PropanePump extends Pump {

/**

 * @post value returned is integral and divisible by 5

 */

public double volumePumped() {…}

}
29/06/10 76

Strengthening the postcondition

� Why does it not make sense to weaken the postcondition?

� Suppose the client writes code based on the postcondition
of the superclass.

� That client code could break if we substitute a superclass
object with an instance of one of its subclasses if the
subclass' method has a weaker postcondition.

� Example:
� client writes code assuming that a method returns a value that is positive

� subclass overrides method to return *any* value (so postcondition is
weakened)

� client code is going to break if a negative value is returned.

29/06/10 77

Limitation Inheritance : The wrong way

� Subclass restricts rather than extends the behavior

inherited from the superclass

� Violates is-a relationship

� Violates the Liskov Substitution Principle

� Usually used for implementation convenience (obviously in

the wrong way)

� Example

� Square defined as a subclass of Rectangle (next slide)

� Methods setHeight and setWidth are not applicable to a square

29/06/10 78

Example: Rectangle Class

public class Rectangle {

private double height; // class invariant
height>0

private double width; // class invariant
width>0

public Rectangle(){

height = 1.0; width = 1.0;

}

public Rectangle(double h, double w){

height = h; width = w;

}

29/06/10 79

public void setHeight(double h) {

height = h;

}

public void setWidth(double w){

width = w;

}

public double area() {

return height * width;

}

}

What happens to the area when the height is doubled?

What happens to the width when the height is doubled?

Can we rely on this?

Example: Rectangle Class

29/06/10 80

 /**

 * @pre width > 0

 * @post width=w and height is unchanged */

public void stretchToWidth(double w) {

 width = w; }

 /**

 * @pre width > 0

 * @post width=w and ratio of height:width is unchanged */

public void growToWidth(double w){

 height = height*(w/width);

 width = w; }

}

.....is there other reasonable behaviour?

Example: Rectangle Class

29/06/10 81

Example : Square Class (the wrong way)

public class Square extends Rectangle {

public Square() {

super();

}

public Square(double s) {

super(s, s);

}

}

What is wrong with this?

29/06/10 82

 // What about stretch to width???

/**

 * @pre width > 0

 * @post width=w and height is unchanged
*/

public void stretchToWidth(double w) { }

// It could just throw a NoSuchMethodException

// (defined in java.lang), instead

Example : Square Class (the wrong way)

29/06/10 83

 // Override setHeight and setWidth

public void setHeight(double l) {

 ??????

 }

public void setWidth(double l) {

 ???????

}

public void setSide(double s){

 super.setHeight(s);

 super.setWidth(s);

}

}

Example : Square Class (the wrong way)

29/06/10 84

Example: Rectangle Class (revised)

public class Rectangle {

double height; // class invariant height>0

double width; // class invariant width>0

public Rectangle(){

height = 1.0; width = 1.0; }

public Rectangle(double h, double w){

height = h; width = w; }

public double area(){

 return = height*width; }

There are no assumptions of what happens if the
height or width changes!

29/06/10 85

public class GrowableRectangle extends Rectangle {

/** @invariant width > 0 and height > 0 */

public GrowableRectangle() {

super(); }

public GrowableRectangle(double h, double w){

super(h,w); }

/**

 * @pre w > 0

 *@post width=w and ratio of height:width is unchanged */

public void growToWidth(double w){

 height = height*(w/width);

 width = w; }

 }

Example: GrowableRectangle Class

29/06/10 86

Example : Square Class (a correct way)

public class Square extends GrowableRectangle {

public Square() {

super();

}

public Square(double s) {

super(s, s);

}

public void setSide(double s){

 super.growToWidth(s);

}

}

29/06/10 87

Delegation � another form of re-use
�A method delegates the execution of a task to another
object of a different type
�Think of the �other object� as a servant used to carry out the
task
�In OO languages delegation can be:
- class-based (or static)
servant is a component of the class

� method-based (or dynamic)

method creates a servant and delegates the service
�Example next slide:

� Square defined using class based delegation

29/06/10 88

Square Class (a right way)

public class Square {

private Rectangle rectangle;

public Square() {

rectangle = new Rectangle();

}

public Square(double s) {

rectangle = new Rectangle(s, s);

}

29/06/10 89

public void setSide(double s){

rectangle.growToWidth(s);

}

public double area() {

return rectangle.area();

}

}

Square Class (a right way)

29/06/10 90

Multiple Inheritance
� Multiple inheritance occurs when a class has more than

one super-class.
� Multiple inheritance is supported by some programming

languages (e.g., C++) but not others (e.g., Java).

� Multiple inheritance can lead to problems, for example,
the classic diamond problem:

Studen
t

Employee

TeachingAssistant

Person
Suppose Person has a method myMethod()

that's overridden in a different way in Student
and Employee and that's not overridden in
TeachingAssistant. Which version of the
method should the following code call:

TeachingAssistant ta =

 new TeachingAssistant();

ta.myMethod();

29/06/10 91

Handling Multiple Inheritance in Java

� We can use delegation to implement multiple class
inheritance if necessary

� For instance:
instead of this: you can do this:

Studen
t

Employee

TeachingAssistant

TeachingAssistant

StudentInterfac
e

EmployeeInterface

EmployeeStudent

29/06/10 92

Multiple Inheritance Example

interface StudentInterface {

 public float getGPA();

}

interface EmployeeInterface {

 public float getSalary();

}

public class Student implements StudentInterface {

protected float GPA;

public float getGPA() {

// code for GPA

}

}

29/06/10 93

public class Employee implements EmployeeInterface {

protected float salary;

public float getSalary() {

// code for Salary

}

}

public class TeachingAssistant implements

 StudentInterface,

EmployeeInterface {

private Student student;

private Employee employee;

Multiple Inheritance Example (continued)

29/06/10 94

Multiple Inheritance Example (continued)

public TeachingAssistant() {

student = new Student();

employee = new Employee();

}

public float getGPA() {

return student.getGPA();

}

public float getSalary() {

 return employee.getSalary();

}

}

29/06/10 95

Name Collisions Among Interfaces
� A Java class may extend another class and implement one

or more interfaces

� Inherited method from one interface may have same name
as a method in another class or interface

� Name Collision procedure:

� if methods have different signatures, they are considered
overloaded

� if they have same signature and return type, they are one method

� if they have same signature, different return types, produce
compilation error

� if they have same signature and return type, but throw different
exceptions, they are one method that throws the union of the
exceptions thrown by each of them

29/06/10 96

General Design Guidelines for
Inheritance

� Place common attributes and methods in the superclasses

� Use inheritance to model only is-a type relationships

� Use abstract classes and interfaces to design extensible families

of objects with common properties

� e.g., employees of different types

� e.g., different types of objects to be drawn in a CAD application

29/06/10 97

Exercise

Which is the right way to define ellipse and circle?

Ellipse

+setMajorAxis(double):void

+setMinorAxis(double):void

Circle

+setRadius(double):void

Ellipse

+setMajorAxis(double):void

+setMinorAxis(double):void

Circle

+setRadius(double):void

29/06/10 98

Problem Description
�A TicketWizard Office needs a software system to

track various events, their venues, and ticket
orders for the events.
�Each event has a name, description, date, time, a

base ticket price and occurs at a single venue.

�Each venue has a name, address, phone number.

� Different events can have different seating plans. The
seating plan consists of a number of sections and each
section contains a number of seats. The price of a seat
is determined by the base ticket price of the event and
the section�s price factor. A venue may host many
different events, one event at a time, of course.

29/06/10 99

Problem Description (cont�t)

�Customers can place orders, which are made up of one or
more seats for one or more events. Ticket office
employees can also place orders; they enjoy a 10%
discount on any regular ticket price.

�Customers can pay for their orders by cash or charge them
to a credit card. For each order, the system must track the
type of payment.

�Finally, the system must track customer information so that
customers can be notified if the event is changed or
cancelled.

29/06/10 100

Some Issues to consider

�Does a venue need to know about events? If so,
how?

�Does an event need to know about venue? If so,
how?

�Do we need Seat objects?

�Do we need Ticket objects?

�Do we need Customer objects?

�Do we need Employee objects?

�What other objects do we need?

29/06/10 101

How many errors can you find in this design?

Note: The default
multiplicities are 1

29/06/10 102

Key Concepts In This Lecture

� There are a lot of related concepts we covered today

� When you design a superclass, think about whether it might be extended in the future
(i.e., which methods should be protected instead of private, etc.). This is the open-
closed principle in action.

� In Java, a subclass is considered a subtype as is an implementation of an interface. To
ensure an instance of a subclass (or a class that extends an interface) is substitutable for
its superclass (or its interface) we need to follow the Liskov Substitutability Principle
(LSP). i.e., watch out that pre-conditions and post-conditions of overridden methods do
the right thing.

� If we want to reuse code but can�t do it via a subclass because we�d violate the LSP, we
can use delegation where we keep an object of the type from which we want the code
and we call the object�s methods to do the work we want done.

� If we want one class to act like different types, use interfaces (and sometimes
delegation too!)

29/06/10 103

Learning Goals Review

You should be able to:

� describe the open-closed principle, why it matters, and how it
 applies to object-oriented code.

� use overloading correctly and recognize inappropriate uses

� describe the Liskov Substitution Principle (LSP)

� explain whether or not a given design adheres to the LSP

� incorporate inheritance into the design of software systems so
 that the LSP is respected

� compare and contrast the use of inheritance and delegation

� use delegation and interfaces to realize multiple inheritance in
 design (e.g., to support the implementation of multiple types)

� identify elements of a given design that violate the basic
 design principles of low coupling and high cohesion

