

06/24/10 1

Class Design

Handling Errors
Reading:

2nd Ed: Chapter 15

3rd, 4th Ed: Chapter 11

Exercises

2nd Ed: P15.5, P15.6

 (Hint: look at
documentation for
Scanner class!)

3rd Ed: P11.9, P11.11

4th Ed: P11.12, P11.14

You will be expected to:

� incorporate exception handling into the

 design of a method's contract

� trace code that makes use of exception

 handling

� write code to throw, catch or propagate an

 exception

� write code that uses a finally block

� write code to define a new exception class

� compare and contrast checked and

 unchecked exceptions

� understand the consequence of using

 checked vs. unchecked exceptions

06/24/10 2

Office hours posted

� Office hours / Demco Learning Centre
hours posted

� See course webpage

06/24/10 3

Course Info

� Students with the following IDs please
see me after class or at the break

06/24/10 4

Course Info

� Assignment 1 due Wednesday

� Midterm exam: Friday, July 9th

� Final exam: Friday, July 30th

� Both exams are at the normal time and
location for the class (9:00-11:30, DMP
110)

06/24/10 5

Review

� Contracts

� Preconditions, Postconditions, Invariants

� Assertions

� Exceptions

06/24/10 6

Contracts

� Check that your code satisfies the
contracts

� If the client has satisfied the precondition
for your method, will your method
satisfy the postcondition?

� Do your methods satisfy the defined
class invariants?

06/24/10 7

Assertions

� Assertions check whether some condition
is true (e.g. a precondition)

� Very useful for debugging

� Can be enabled and disabled

� More powerful and flexible than the
classic �print statements� form of
debugging

06/24/10 8

Exceptions � Why do we need

them?
� Remember the Account class? We added the

following precondition to the deposit method:

amount >= 0

� What if the client fails to check the

precondition? The customers won't be happy

to find out that sloppy programming has

resulted in losing money because of a simple

mistake!

06/24/10 9

Exceptions � Why we need

them?
� Rather than using a precondition, we can have the method:

� return a special value (e.g., true/false) to indicate whether or not the

operation was successful

problem:

� print an error message

problem:

� terminate the program

problem:
06/24/10 10

Exceptions � Why we need

them?
� Rather than using a precondition or one of the

other methods suggested on the previous slide, we

can have the method throw an exception if the

amount is negative.

Benefits:

� We can force the client to acknowledge the problem.

� We allow the client to decide how to handle the

problem.

06/24/10 11

What's a Java Exception?

� An exception is an object with a specific interface, that

can be thrown.

� All exception classes are subclasses of the class

Throwable defined in the Java library.

� Here are some of the methods of this class:
Throwable();

Throwable(String message);

String getMessage();

void printStackTrace();

� Exceptions encapsulate information about the kind of

problem that has occurred (the message) and the

sequence of method calls that led to the problem (the

stack trace).

06/24/10 12

What's an exception?

� There are two types of exception: checked and

unchecked.

� Unchecked exceptions are subclasses of Java�s

RuntimeException class, while all others are checked

exceptions.

� There is also an Error class that represents abnormal

conditions that a program would normally not be

expected to handle. Errors are treated like unchecked

exceptions.

06/24/10 13

Java Exception Hierarchy

� Numerous exceptions and errors are defined in various java packages. i.e.,

� FileNotFoundException in java.io

� IOException in java.io

� NullPointerException in java.lang

� etc.

� Programmers can define their own exceptions as subclasses of Exception or its subclasses.

Object

Throwable

Exception Error

RunTimeException

checked

exceptions

unchecked

IOException

06/24/10 14

Throwing an Exception
 /**

 * Deposit money into the account

 * @param amount The amount to be deposited

 *

 * @pre true

 * @post IF amount >= 0

 * THEN getBalance() = @pre.getBalance() + amount

 * ELSE getBalance() = @pre.getBalance()

 * @throws IllegalValueException if amount is negative

 */

 public void deposit(double amount)

 throws IllegalValueException {

 if (amount < 0)

 throw new IllegalValueException("Error: Neg. amount");

 balance = balance + amount;

}

06/24/10 15

The finally clause

� A finally clause can follow the catch clauses of a try block

(or even a try block with no catch clauses):

 try {
 // code that may throw checked exceptions

 }

 catch(SomeException e) {

�

 }

 finally {

 �

 }

� The finally clause is executed whether or not an exception

is thrown, and (if thrown) whether or not it was caught.

� It is often used to ensure that resources are released.

06/24/10 16

Comments

� Note that methods can throw more than one type

of exception.

� If we call a method that throws more than one

type of exception we can have more than one

catch block to handle each type of exception.

� Catch blocks must be ordered from the most

specific type of exception (the one lowest in the

inheritance hierarchy) to the least specific (the

one highest in the hierarchy).

06/24/10 17

Designing Exceptions
� Need to distinguish boundary cases that can be handled by the method from

exceptional cases which should throw exceptions

� Define individual exception for each type of error

� can group them into hierarchies � allows more flexibility in handling them

� Exceptions thrown by a method are shown in the method�s comment using the
@throws tag.

� Too many exceptions may make the method difficult to use.

� Exceptions and Postconditions:

� The postcondition should distinguish the case where an
exception is thrown from the case when it is not

� i.e., if withdraw(amount) throws an exception when the
amount is negative, its postcondition would be:

� IF amount>=0 THEN getBalance() = @pre.getBalance() �
amount

 ELSE getBalance() = @pre.getBalance()

06/24/10 18

Example: Class Account Re-

designed

We redesign deposit and withdraw to throw
exceptions in the error cases

/**

 * A simple bank account for which the balance can never be

 * less than zero
 *
 * @invariant getBalance() >= 0
 * @invariant getId()is unique and set when account is created
 * @invariant getName()is set when account is created
 * @invariant the values of getId() and getName() never change
 */
public class Account
{
 private int id;
 private static int nextAccountId = 0;
 private String name;
 private double balance;

.

06/24/10 19

 /**

 * Deposit money into the account

 * @param amount The amount to be deposited

 *

 * @pre amount >= 0

 * @post getBalance() = @pre.getBalance() + amount

 * @return The current balance of the account

 */

 public double deposit(double amount)

 {

 assert amount >= 0;

 balance = balance + amount;

 return balance

 }

06/24/10 20

 /**

 * Deposit money into the account

 * @param amount The amount to be deposited

 *

 * @pre true

 * @post IF amount >= 0

 * THEN getBalance() = @pre.getBalance() + amount

 * ELSE getBalance() = @pre.getBalance()

 * @return The current balance of the account

 * @throws IllegalValueException if amount is negative

 */

 public double deposit(double amount)

 throws IllegalValueException {

 if (amount < 0)

 throw new IllegalValueException("Error: Neg. amount");

 balance = balance + amount;

 return balance

 }

Should it have

�assert�?

YES NO

Another Design for Deposit

06/24/10 21

 /**
 * Withdraw money from the account
 * @param amount The amount to be withdrawn
 * @pre true

 * @post IF (amount >= 0 AND @pre.getBalance()-amount >= 0)

 * THEN getBalance() = @pre.getBalance() - amount

 * ELSE getBalance() = @pre.getBalance()
 * @return The current balance of the account
 * @throws IllegalValueException if amount<0
 * @throws NotEnoughMoneyException if getBalance()-amount<0
 */
 public double withdraw(double amount) throws

 IllegalValueException, NotEnoughMoneyException {
 if (amount < 0)
 throw new IllegalValueException("Error: Neg. amount");
 if (balance - amount < 0)
 throw new NotEnoughMoneyException("Error: no $$$");

 balance = balance - amount;
 return balance;
 }

06/24/10 22

 /**

 * Returns the string representation of an account

 *

 * @pre true

 * @return the account represented as a string

 */

 public String toString()

 {

 return "[id = " + id + ", name = " + name +

 ", balance = " + balance + "]";

 }

}

06/24/10 23

Account Exceptions
public class IllegalValueException

 extends AccountException {

public IllegalValueException() {}

public IllegalValueException(String msg) {

super(msg);

}

}

public class NotEnoughMoneyException
 extends AccountException

{
public NotEnoughMoneyException() {}
public NotEnoughMoneyException(String msg) {
super(msg);
}

}

� NOTE: We could use Java�s IllegalArgumentException instead

of defining a new exception for illegal value 06/24/10 24

Exceptions � Checked and
Unchecked

� Q: Defining, throwing and handling
checked exceptions seems like a pain.
Why don't I just throw unchecked
exceptions?

� A: This misses the point. We want to
provide the client with info about what
went wrong, force them to acknowledge
the problem, and give them flexibility on
how to recover

06/24/10 25

Exceptions � Checked and
Unchecked

� These different exception types also have
different purposes

� Checked exceptions are errors typically
beyond the control of the programmer,
from which the client can reasonably be
expected to recover

� Unchecked exceptions are typically the
result of sloppy programming, from which
the client can not be expected to recover 06/24/10 26

Checked Exceptions

� Q: Okay, I'll use checked exceptions, but
why don't I just throw general Exceptions?

And why don't I replace all of my catch

blocks with a single catch block for
Exception?

� A: This still misses the point. We want
define and throw specific exception types
so that the client can handle each case
as they see fit.

06/24/10 27

Exceptions Example

� Let's say we have a very simple method taking an
integer parameter representing a month of the
year, and returning the number of months until the
end of the year

public int calcYearEnd(int month){

 return 12-month;

}

06/24/10 28

Exceptions Example

� What if month > 12?

� What if month <= 0?

� We might want to throw more than one exception
and let the client respond to each as they see fit

public int calcYearEnd(int month){

 return 12-month;

}

06/24/10 29

Define an exception

public class MonthException extends

Exception{

public MonthException(){}

public MonthException(String msg)

{

super(msg);

}

}
06/24/10 30

And two subclasses
public class HighMonthException extends MonthException{

public HighMonthException(){}

public HighMonthException(String msg)

{

super(msg);

}

}

public class LowMonthException extends MonthException{

public LowMonthException(){}

public LowMonthException(String msg)

{

super(msg);

}

}

06/24/10 31

Rewrite our method

public int calcYearEnd(int month) throws

HighMonthException, LowMonthException

{

if (month > 12)

{

throw new HighMonthException("Error: too

high!");

}

if (month <= 0)

{

throw new LowMonthException("Error: too low!");

}

return 12-month;

}

06/24/10 32

A second method calls the first

public void calcRun(int month)

{

try{

int monthsLeft = calcYearEnd(month);

System.out.println(monthsLeft);

}

catch (LowMonthException e)

{

System.out.println(e.getMessage());

 // the client decides to do one thing...

}

catch (HighMonthException e)

{

System.out.println(e.getMessage());

 // the client decides to do something else...

}

}

06/24/10 33

Calling the method

public class YearEndTester {

public static void main(String[] args) {

YearEnd ye = new YearEnd();

ye.calcRun(14);

}

}

Assume the two methods calcYearEnd and calcRun are

defined in a class YearEnd

Error: too high!

06/24/10 34

Calling the method

public class YearEndTester {

public static void main(String[] args) {

YearEnd ye = new YearEnd();

ye.calcRun(-2);

}

}

Assume the two methods calcYearEnd and calcRun are

defined in a class YearEnd

Error: too low!

06/24/10 35

Exception methods

� So far we've seen the getMessage()
method of an Exception

� The other method you are likely to find
useful is printStackTrace()

� This prints the sequence of calls that lead
to the exception being thrown

06/24/10 36

Get the stack trace
public void calcRun(int month)

{

try{

int monthsLeft = calcYearEnd(month);

System.out.println(monthsLeft);

}

catch (LowMonthException e)

{

System.out.println(e.getMessage());

 e.printStackTrace();

 // the client decides to do one thing...

}

catch (HighMonthException e)

{

System.out.println(e.getMessage());

 e.printStackTrace();

 // the client decides to do something else...

}

}

06/24/10 37

Calling the method

public class YearEndTester {

public static void main(String[] args) {

YearEnd ye = new YearEnd();

ye.calcRun(-2);

}

}

Assume the two methods calcYearEnd and calcRun are

defined in a class YearEnd

Error: too low!

LowMonthException: too low!

at YearEnd.calcYearEnd(L02Exceptions.java:13)

at YearEnd.calcRun(L02Exceptions.java:21)

at YearEndTester.main(L02Exceptions.java:5)

06/24/10 39

Propagation

public class YearEndTester {

public static void main(String[] args) {

YearEnd ye = new YearEnd();

ye.calcRun(-2);

}

}

Exception in thread "main" java.lang.Error: Unresolved

compilation problem:

Unhandled exception type MonthException

at YearEndTester.main(YearEndTester.java:5)

We could add a try/catch block to the main method. We've got to handle the

exception at some point or the program will terminate if it's propagated all the way to

main and never handled

06/24/10 40

Exceptions are polymorphic
� You can DECLARE exceptions using a

supertype of the exceptions you throw

public int calcYearEnd(int month) throws MonthException

� You can CATCH exceptions using a supertype
of the exception thrown

catch(MonthException e)

� Just because you CAN catch everything with
one big super polymorphic catch, doesn't
always mean you SHOULD

� Write a different catch block for each exception
you need to handle uniquely.

� - Head First Java

06/24/10 41

Order matters with catch blocks

� More specific exceptions need to be listed
first

� more specific = lower in hierarchy

� Why? What would happen if you tried to
catch Exception first?

06/24/10 42

In-Class Exercise I
public class Weather

{

String sunshine(String s) throws

SunException, RainException

{

if (s != null) {

if (s.equals("Strong sun")) {

return "Better use sunblock!";

}

 throw new SunException(

“It won’t last long.");

}

 throw new RainException("No sun today.");

}

void fog(String x)

{

try {

 System.out.println(snow(x));

}

catch (ColdException ce) {

System.out.println(

“You should expect“ + ce.getMessage());

}

}

String snow(String s) throws ColdException

{

if (s != null && s.equals("Really cold")) {

throw new ColdException(“dry snow");

}

try {

return sunshine(s);

}

catch (RainException re){

return "Terrible! “ + re.getMessage();

}

catch (SunException se) {

return "Don't worry! “ + se.getMessage();

}

}

}

Assuming that the exceptions used here

are appropriately defined, what would the

following calls produce?

� new Weather().fog(�Showers�);

� new Weather().fog(�Really cold�);

� new Weather().fog(�Strong sun�);

� new Weather().fog(null);

06/24/10 43

Learning Goals Review

You will be expected to:

� incorporate exception handling into the

 design of a method's contract

� trace code that makes use of exception

 handling

� write code to throw, catch or propagate an

 exception

� write code that uses a finally block

� write code to define a new exception class

� compare and contrast checked and

 unchecked exceptions

� understand the consequence of using

 checked vs. unchecked exceptions

06/24/10 44

A short video...

06/24/10 45

Tea break!

06/24/10 46

Recap + equals()

This lecture ensures you are competent with the basics of the
Java you learned in 111 and 211 to this point. We�ll also add in
the concepts of:

� inheritance and over-riding
� equals()

If there are concepts covered today that are not clear after
lecture, review of lecture materials and review of relevant parts
of the book, please see an instructor to clarify the confusing
points. We�ll be building on all of these basics for the rest of
term.

46

06/24/10 47

Inheritance
� A polymorphic assignment is one of the form:

MyClass reference_to_object;

 reference_to_object = expression;

where the type of expression must be a subtype of MyClass.

� Three types are involved here:

� the reference type : the type that the reference was declared to be

� the expression type : the type of the result of the expression (as can be

determined at compile time)

� the actual type: the type of the object that is actually returned by the

expression (determined at run time)

� The expression type must be a subclass of the reference type, otherwise this gives

a compile-time error
06/24/10 48

Inheritance

� Example: Suppose that SavingsAccount is a subclass of Account, and

SpecialSavAccount is a subclass of SavingsAccount :

� Account acc = new SavingsAccount();
reference type :

expression type :

actual type :

Account acc;

 SavingsAccount sacc = new SpecialSavAccount();

 acc = sacc;

reference type :

expression type :

actual type :

06/24/10 49

Inheritance

� You can explicitly convert (cast) references between a type and its subtypes:

� widening: converting a subtype to one of its super-types
�always allowed in Java (subtype "is-a" super-type)

�no explicit cast is needed

� narrowing or downcasting: converting a supertype to one of its

subtypes

�not always possible

�may throw ClassCastException

�explicit cast is always needed

Account acc = new SavingsAccount();

SavingsAccount sacc;

sacc = (SavingsAccount) acc; // cast OK

06/24/10 50

More Downcast Uses

� The declared (static) type of a reference determines which methods can be called.

� Suppose that SavingsAccount defines addInterest()

and that this method is not defined in Account, then:

Account acc = new SavingsAccount();

acc.addInterest(); // Error

but

((SavingsAccount) acc).addInterest(); // ok

the following also works:

SavingsAccount sacc = (SavingsAccount) acc;

sacc.addInterest();

06/24/10 51

Which method is called?

� The actual method called is determined at run time based on the actual type of the object.

� Example: Suppose that SavingsAccount is a subclass of Account, and

SpecialSavAccount is a subclass of SavingsAccount :

 Account acc;

SavingsAccount sacc = new SpecialSavAccount();

 �

acc = sacc;

 acc.m();

 calls the method m() defined for the SpecialSavAccount; defined in SpecialSavAccount or

inherited from its lowest superclass that defines m().
06/24/10 52

Comparing References

Bicycle

Make:

Cannondale
CurrentGear: 3
�

myBike bikeForSale

Bicycle myBike;

Bicycle bikeForSale;

myBike = new Bicycle();

bikeForSale = myBike;

� In this case

bikeForSale == myBike

is true

� We can compare two object references using Java�s
== operator
� two object references are equal if and only if they

reference the same object (i.e. have the same value)

52

06/24/10 53

53

Comparing Objects

� To compare objects we have to use Java�s .equals() method

� Equals is defined in Object to mean ==

� a.equals(b) can be overridden if a and b are the same as far as an application
is concerned.

Bicycle myBike;

Bicycle bikeForSale;

myBike = new Bicycle();

bikeForSale=new Bicycle();
Bicycle

Make:

Cannondale
CurrentGear: 3
�

myBike bikeForSale

Bicycle

Make:

Cannondale
CurrentGear: 3
�

Then:

myBike.equals(bikeForSale)

May be true true, but

myBike == bikeForSale

is false
06/24/10 54

Overriding equals()

� Its parameter must be of type Object to match the method defined in the
Object class

� The method must check if its explicit argument is null
� must return false if it is so

� The method must check that its implicit and its explicit arguments are of the
same type
� must return false if they are of different type

� For any object references o, o1, o2, o3 in the class,the following must hold
� o.equals(o)
� IF o1.equals(o2) THEN o2.equals(o1)
� IF o1.equals(o2) AND o2.equals(o3) THEN o1.equals(o3)

� The method usually returns
� true if the two objects are of the same type and their corresponding data

components are equal
� false otherwise

54

06/24/10 55

Checking an Object�s Class
� To check that two objects are of the same type, equals()

� must use getClass (defined in Object) to get the actual class of an object

� instanceof is not specific enough; returns true if one object is a subclass of the other
� For instance, assuming SavAccount extends Account :

� Account a1 = new Account();

� Account a2 = new SavAccount();

� SavAccount a3 = new SavAccount();

� Account a4 = (Account) a3;

then
� a1 instanceof Account, a2 instanceof Account, a3 instanceof Account,

 a4 instanceof Account, are all true

but

� a1.getClass() returns �Account�

� a2.getClass() returns �SavAccount�

� a3.getClass() returns �SavAccount�

� a4.getClass() returns �SavAccount�

55

06/24/10 56

Overriding equals() in Account

public boolean equals(Object obj) {

if (obj == null)

 return false;

 if (getClass() != obj.getClass())

 return false;

 Account other = (Account) obj;

 return id == other.id

&& balance == other.balance

&& name.equals(other.name);

}

56

06/24/10 57

APPENDIX

Credit Card Example

06/24/10 58

public class SIVACard {

private int number; // A unique number for each card
private static int nextNumber = 1; // A real credit card # is far more

// complicated to generate
private CardHolder holder; // The holder of the card

protected double rewardsBalance; // The points available to the card
holder

private double balance; // The balance on the card
private Transaction[] currentTransactions; // This period's transactions

rivate int currentTransactionCount;
private Statement lastStatement; // Last statement issued

private final static int TRANSACTION_LIMIT = 30;

public SIVACard(CardHolder holder) {

number = nextNumber++;
this.holder = holder;

rewardsBalance = 0.0;
balance = 0.0;

lastStatement = new Statement(this); // Blank statement
currentTransactionCount = 0;

currentTransactions = new Transaction[TRANSACTION_LIMIT];
}

public double getRewardsBalance() {
return rewardsBalance;

}

public double getBalance() {
return balance;

}

public Statement getLastStatement() {

return lastStatement;
}

public void postPayment(double amount) {

balance -= amount;
}

public void redeemRewards(double amount) {

rewardsBalance -= amount;
}

public CardHolder getHolder() {
return holder;

}

/**
 * Post a purchase to the card

 * @param purchase The purchase to post.
 */

public void postPurchase(Transaction purchase) {
currentTransactions[currentTransactionCount++] = purchase;

computeRewards(purchase);
}

/**
 * Put all current transactions onto the last statement.

 */
public void generateStatement() {

lastStatement = new Statement(this);
for (int i = 0; i < currentTransactionCount; i++) {

lastStatement.addTransaction(currentTransactions[i]);
}

currentTransactionCount = 0;
}

/**
 * A basic card just gives you one reward point per dollar purchased

 * @param purchase The purchase from which to determine points
 */

void computeRewards(Transaction purchase) {
rewardsBalance += purchase.getValue();

}

}

06/24/10 59

public class CardHolder {

private String lastName;
private String firstName;

public CardHolder(String lastName, String firstName) {
this.lastName = lastName;
this.firstName = firstName;

}

public String toString() {
return new String(lastName + ", " + firstName);

}

}
06/24/10 60

public class Statement {

private String[] lines;
private int numberOfLines; // The lines on the statement
private SIVACard card;

public Statement(SIVACard card) {
numberOfLines = 0;
lines = new String[30];
this.card = card;

}

public void addTransaction(Transaction aTransaction) {
lines[numberOfLines++] = aTransaction.toString();

}

public void print(PrintStream stream) {
stream.println("====== " + card.getHolder().toString());
stream.println("\tTransactions:");
for (int i = 0; i < numberOfLines; i++) {

stream.println("\t\t" + lines[i]);
}
stream.println("\tRewards: " + card.getRewardsBalance());
stream.println(":::::");
stream.println();

}

}

06/24/10 61

public class Transaction {

private int value;
private String description;

public Transaction(String description, int value) {
this.value = value;
this.description = description;

}

public int getValue() {
return value;

}

public String getDescription() {
return this.description;

}

public String toString() {
return new String(description + ": " + value);

}
} 06/24/10 62

public class Driver {

private final static int NUMBER_OF_CARDS = 10;
private static Object[] allCards;
private static int allCardsIndex = 0;

public static void main(String args[]) {

CardHolder gail = new CardHolder("Murphy", "Gail");
CardHolder george = new CardHolder("Tsiknis", "George");

SIVACard gailsCard = new SIVACard(gail);
SIVACard georgesCard = new SIVACard(george);

gailsCard.postPurchase(new Transaction("sushi", 20));
gailsCard.postPurchase(new Transaction("air-cdn", 750));

georgesCard.postPurchase(new Transaction("pizza", 25));
georgesCard.postPurchase(new Transaction("air-cdn2",

750));

printStatement(gailsCard);
printStatement(georgesCard);

CardHolder gail2 = new CardHolder("Murphy", "Gail");
if (gail.equals(gail2))

System.out.println("The two cardholders are the
same!");

else
System.out.println("The two cardholders are

different");

}

private static void printStatement(SIVACard aCard)
{

aCard.generateStatement();
Statement theStatement =

aCard.getLastStatement();
theStatement.print(System.out);

}

}

06/24/10 63

SOLUTION

06/24/10 64

public class CardHolder {

private String lastName;
private String firstName;

public CardHolder(String lastName, String firstName) {
this.lastName = lastName;
this.firstName = firstName;

}

public String toString() {
return new String(lastName + ", " + firstName);

}

public boolean equals(Object ob){
if (ob == null)

return false;
if (getClass() != ob.getClass())

return false;
CardHolder holder = (CardHolder)(ob);
return lastName.equals(holder.lastName) &&

firstName.equals(holder.firstName);
}

}

06/24/10 65

Interfaces
� When we define a class that implements

an interface, we are committed to
providing definitions for the abstract
methods listed in the interface

� The interface itself contains no method
definitions, it just tells you what you need
to do

� So if you need to implement an interface
(e.g. for an assignment, hint hint), look at
the interface definition and it will tell you
which methods your class will need

 66

An interface type is similar to a class, but there are several important

differences:

� All methods in an interface type are abstract; they don't have an implementation
� All methods in an interface type are automatically public

� An interface type does not have instance fields

Interfaces vs. Classes

 67

public interface InterfaceName

{

 // method signatures

}

Example:

public interface Measurable

{

 double getMeasure();

}

Purpose:

To define an interface and its method signatures. The methods are

automatically public.

Syntax 9.1 Defining an Interface

 68

public class ClassName

implements InterfaceName, InterfaceName, ...

{

 // methods

 // instance variables

}

Example:

public class BankAccount implements Measurable

{

 // Other BankAccount methods

 public double getMeasure()

 {

 // Method implementation

 }

}

Syntax 9.2 Implementing an Interface

 69

Advantages of Interfaces

� Polymorphism

� Classes that implement an interface x will
have objects of type x with the methods
defined in x, but the method definitions
will differ

� Simulating multiple inheritance

� Reducing coupling between classes

 70

A simple interface

public interface Moveable {

 public void moveForward();

 public void moveBackward();

}

 71

Implementing the interface

public class Car implements Moveable {

public void moveBackward() {

System.out.println("Going 95 in reverse");

}

public void moveForward() {

System.out.println("Going 95 on the freeway");

}

}

 72

Implementing the interface

public class Bike implements Moveable {

public void moveBackward() {

System.out.println("Pedaling backwards!");

}

public void moveForward() {

System.out.println("Pedaling forwards!");

}

}

 73

Interfaces and Polymorphism

public class MoveTest {

public static void main(String[] args) {

Moveable[] moveArr = new Moveable[2];

moveArr[0] = new Bike();

moveArr[1] = new Car();

for (Moveable mover: moveArr)

{

mover.moveForward();

}

}

}

What gets printed?

 74

Inner Classes

� A trivial class can be defined within
another class � thus �inner� class

� We will be discussing this in detail later in
the term

� An inner class can use all the methods
and variables of the outer class, even the
private ones

 75

Inner Classes

class MyOuterClass {

 private int x;

 class MyInnerClass {

 void go() {

 x = 42;

 }

 }

}
 76

Inner Classes

class MyOuter {

 private int x;

 class MyInner {

 void go() {

 x = 42;

 }

 }

}

We can use x just as if it

were a variable of the inner

class

 77

Inner Classes

� An instance of the inner class is tied to an
instance of the outer class

 78

class MyOuter {

 private int x;

 MyInner inner = new MyInner();

 public void doStuff(){

 inner.go();}

 class MyInner {

 void go() {

 x = 42;}

 } // end of inner class

 } // end of outer class

