

20/06/10 6

Labs

� Mondays & Wednesdays

� Starting this Wednesday, the 23rd

� Room ICICS 005

� You registered for a lab section when you
registered for the course

� Do the pre-reading and pre-exercise
before attending the lab

20/06/10 7

Lab 1

� Introduction to Unix and Eclipse

20/06/10 8

Assignments

� There are 4 assignments in 6 weeks

� Assignment 1 is being released within the
next day

� Check Vista

� Music library application

20/06/10 9

Exams

� The final exam will be on the last day of
class, normal time and location

� Midterm date to be announced soon

20/06/10 10

Getting Help

� Vista

� Fastest way to get a quick response to a
Java question

� Learning Centre (hours posted soon)

� Email TAs directly (check webpage)

� Email me directly (gabrielm@cs.ubc.ca)

� Labs

20/06/10 11

Summer Term

� Intense six-week course

� When one assignment is due, the next is
immediately released

� Two exams

� Labs twice a week

� We strongly suggest you do not try to
take two summer courses simultaneously

20/06/10 12

Typical Class Structure

� 9:00-9:10 any business, misc.

� 9:10-9:45 lecture

� 9:45-10:15 in-class exercise

� 10:15-10:30 tea break

� 10:30-11:00 lecture

� 11:00-11:30 in-class exercise

20/06/10 13

Textbook
� Big Java, Cay Horstmann

� 3rd E

� 2nd E okay

20/06/10 14

Intro. to Software Development

� Thinking back to CPSC 111...

20/06/10 18

Object reference

� A variable like jane does not contain the
object

� Rather, it refers to the object's memory
location

� You can have two object variables refer to
the same object, e.g.

Customer jane2 = jane;

20/06/10 19

Object reference

jane

jane2
name = �Jane Black�

Customer

20/06/10 28

static
� Remember that a static instance field

does not belong to any particular object

� If a static instance field is declared in a
class definition, all objects of that class
share one copy of the instance field

� In contrast, when we remove static then
each object has its own copy

20/06/10 31

Tea break!

20/06/10 33

Design

What is design? What makes something a design

problem? It�s where you stand with a foot in two worlds ---

the world of technology and the world of people and

human purposes --- and you try to bring the two together.

- Mitchell Kapor, A Software Design Manifesto (1991)

Technology?

Human purpose??

A concrete

example�

20/06/10 34

Design

A software example�

20/06/10 36

Software design

Software program

Based on a description of

what the system should do

(requirements), we need to

identify and define:
� classes

� attributes of each class

� behaviour of each class

� relations between classes

During design, focus is on how the system will work, not

on implementation (precise) details

Design is guided by principles and heuristics, not definitive rules

20/06/10 37

Example: A music system for a
phone

� What a music system for a phone should be able to do�

� Let�s identify some classes�

20/06/10 38

Class design (aka low-level design)

� Our focus now is on how to design a single class. We�ll

assume that we know which class(es) we need; designing

classes and their relationships will be a topic later this term

� For each class we are designing, we need to define
� the data (attributes or fields) associated with the class� concept

� the behaviour (responsibilities, public services) associated with the class�

concept; this includes:

o public methods

o the class invariants

� We will ignore for now�

� private methods

� the data structures used to implement collections of data

20/06/10 39

Designing for one class:
Identifying attributes

� Objective: identify and name all data that a class needs to
support the behaviour of objects of that class

� Goal: each class should have high cohesion
� each class must represent a single concept

� all data and operations must be highly related to each other

� Initial heuristic: consult the requirements (problem
description), looking for adjectives and possessive phrases
related to objects of the class of interest to discover what
information the objects of the class will need

� Review: eliminate any false attributes
� attributes whose value depends on the context

o e.g., Consider a Person class. Such a class is unlikely to have an
employee_id attribute because a person may have zero, one, or more
jobs

� attributes that are unrelated to the rest

o either these attributes do not belong or the class should be split

20/06/10 40

Designing for one class:
Designing each attribute

� For each attribute, must distinguish:

� Kind of attribute

o instance attribute : value of attribute depends on the

object

o class attribute: one value per class

� Visibility

o private, protected, package, public

� Kind of value (type)

o primitive values (int, double)

o references to objects

� Whether it is a constant attribute

o in Java will be declared as final static

20/06/10 41

Designing for one class:
Identifying class behaviour

� Objective: identify and name all operations a class needs

to provide/support

� Initial heuristic: Consult the requirements (problem

description), look for verbs related to objects of the class

of interest to discover the likely responsibilities of the class

� Review: check for problem specific methods needed to

� maintain the state (attributes) of the object

� perform calculations the class is responsible for

� monitor what objects of the class are responsible for detecting and

responding to

� respond to queries that return information without modifying an object of

the class

� It is often helpful to identify and go over some user

scenarios to ensure as complete behaviour as possible is

designed

20/06/10 42

Designing for one class:
Designing each method

� For each method, need to distinguish:

� Kind

o instance methods are associated with an object

o class methods are applied to a class and are independent of any

object

� declared as static and can only access static attributes (not

instance attributes)

� Visibility

o private, protected, package, public

� Signature (= method name + parameter types)

o (a class cannot have two methods with the same signature)

� Notes�
� final methods cannot be overridden in any subclass

� overloaded method = method name with more than one signature

20/06/10 43

Designing for one class:
Additional class design guidelines

� Ensure each class has

� a �good�---useful for clients---set of constructors

� appropriate accessors for certain attributes (getter methods)

� appropriate mutators for some attributes (setter methods)

� a destructor if necessary (in Java this is done by defining the finalize()

method in the class; use very sparingly, if at all)

� equality method � equals()

� string representation method (good for debugging) � toString()

� May need to define methods for

� cloning : for creating copies � clone() or copy constructor

� hash code: returns an integer code that �represents� the object -

hashCode()

� We�ll talk more about cloning, hashCode, etc. later in term. See

�Effective Java� book by Joshua Bloch if interested in class design.
20/06/10 44

Designing for one class:
Additional class design guidelines�
Minimize side effects
� A side effect of a method is any modification that is

observable outside the method

� Some side effects are necessary; some are acceptable;

others are wrong

� Some guidelines:

� Accessor methods should not have any side effects

� Mutator methods should change only the implicit argument

� Avoid designing methods that change their explicit arguments, if it is

possible

� Avoid designing methods that change another object

i.e. in class Account:

o bad design: method printBalance that prints balance on System.out

o good design: method getBalance that returns balance

bad:couples

Account w/ System

and PrintStream

20/06/10 45

Bank account example

� Problem Description

� The bank wants a software system to maintain customer accounts. Each account

belongs to a single customer and is identified by a unique id assigned by the bank.

The owner and the id of an account can never change. A customer is identified by

their name and can open an account, deposit and withdraw money into it and

check the account balance, which must never be negative.

. . .

� Suppose we design a class Account to represents a single account.

What would be the attributes (data components) for the Account class?

� Would be correct to add the customer address and phone number as

components to Account class? 20/06/10 46

Bank account example

� What should be the operations?

20/06/10 47

Representing class design: UML

� When designing software, we need to focus on how the

design works, not all of the details of expressing the

design in a programming language

� Software developers sometimes use UML (Unified

Modelling Language) to express a design

� UML�s graphical modelling notation lets developers focus

on

� classes and their important attributes and methods

� relationships between classes

And to see that information in a condensed form

� UML has many different diagram types, we�ll consider only

class diagrams in this course 20/06/10 48

Representing a class in UML
class diagram
� Use a rectangle with 3 compartments showing

� the class name

� the class data components (or attributes or data fields)

� the class methods

� Example:

Account

- owner: Customer

- balance: double

+ Account(s : Item) : void

+ setOwner(c : Customer) :

void

�

20/06/10 49

Representing class relationships

� Relationships are shown by arrows

� We�ll consider just two types of relationship (for
now):

� Association : one class contains one or more
references to another class

� Inheritance : one class extends another class

Association Example Inheritance Example

Account Customer

Account

SavingsAccount 20/06/10 50

Is this enough?

� We have seen how to

� identify attributes for a class

� identify methods (the behavior) of a class

� We need a way to specify the behavior of each method

� specification must be independent of programming language

� must balance between

o the important aspects that need to be captured by any implementation

o give an implementor the freedom to decide on the rest

� Next class we�ll discuss class contracts help specify

method behaviour

20/06/10 51

In-Class Exercise II

� Given the following project description,
identify the classes, attributes and
methods

