Probabilistic Programming; Ways Forward

Frank Wood
Outline

• What is probabilistic programming?
• What are the goals of the field?
• What are some challenges?
• Where are we now?
• Ways forward…
What is probabilistic programming?
An Emerging Field

- ML: Algorithms & Applications
- STATS: Inference & Theory
- PL: Compilers, Semantics, Analysis
- Probabilistic Programming
Conceptualization

Parameters -> Program -> Output

Parameters -> Program -> Observations

\[p(\theta|x) \]

\[p(x|\theta)p(\theta) \]

CS Probabilistic Programming Statistics
Operative Definition

“Probabilistic programs are usual functional or imperative programs with two added constructs:

(1) the ability to draw values at random from distributions, and

(2) the ability to condition values of variables in a program via observations.”

Gordon et al, 2014
What are the goals of probabilistic programming?
Increased Productivity

```
(fn [x] (logb 1.04 (+ 1 x)))
```

Lines of Matlab/Java Code

Lines of Anglican Code

- HPYP, [Wood 2007]
- DDPMO, [Neiswanger et al 2014]
- PDIA, [Pfau 2010]
- Collapsed LDA
- DP Conjugate Mixture
Latent Dirichlet Allocation

Wood (University of Oxford)

is formally written as:

\[\text{independently from Mult}(\text{Conditional on the assignment variable } i) \]

Each of the mixture generative model for the number of documents, \(D \) to indicate the number of words in the vocabulary, and \(z \) to denote the number of words in the vocabulary, and \(z \), an assignment variable \(k \)

The model is parameterized by the vector valued parameters \(\{ \theta \} \)

\(\text{Discrete}(\text{Dir}(K)) \)

\(\text{Mult}(\theta \cdot | \cdot) \)

Under the uniform deletion model, the number of alive allocation variables at time \(t \) of alive allocation variables at time \(t \), respectively.

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to

3.3 Properties of the Models

Figure 1: Inference Engine(s)

Programming Language Representation / Abstraction Layer
What are some challenges?
Challenges

- Unbounded recursion
- Equality and continuous variables
Unbounded Recursion

\begin{verbatim}
(defn geometric
 "generates geometrically distributed values in \{0,1,2,...\}\)
 ([p] (geometric p 0))
 ([p n] (if (sample (flip p))
 n
 (geometric p (+ n 1))))
\end{verbatim}
(defm pick-a-stick [stick v l k]
 "picks a stick given a stick generator
 given a value v ~ uniform-continuous(0,1)
 should be called with l = 0.0, k=1"
 (let [u (+ l (stick k))]
 (if (> u v)
 k
 (pick-a-stick stick v u (+ k 1)))))

v (sample (uniform-continuous 0 1))
Semantics and Termination

(defn p []
 (if (sample (flip 0.5))
 1
 (if (sample (flip 0.5))
 (p)
 (infinite-loop))))

(def infinite-loop
 #(loop [] (recur)))

\[p(x = 1) = \sum_{n=1}^{\infty} \frac{1}{2}^{2n-1} = \frac{2}{3} ? \]
Equality and Continuous Variables

Why are your probabilistic programming systems anti-equality?
Equality

(defquery bayes-net []
 (let [is-cloudy (sample (flip 0.5))
 is-raining (cond (= is-cloudy true) (sample (flip 0.8)) (= is-cloudy false) (sample (flip 0.2)))
 sprinkler (cond (= is-cloudy true) (sample (flip 0.1)) (= is-cloudy false) (sample (flip 0.5)))
 wet-grass (cond (and (= sprinkler true) (= is-raining true)) (sample (flip 0.99)) (and (= sprinkler false) (= is-raining false)) (sample (flip 0.0)) (or (= sprinkler true) (= is-raining true)) (sample (flip 0.9)))]
 (observe (= wet-grass true))
 (predict :s (hash-map :is-cloudy is-cloudy :is-raining is-raining :sprinkler sprinkler)))
(defquery bayes-net []
 (let [is-cloudy (sample (flip 0.5))]
 is-raining (cond (= is-cloudy true)
 (sample (flip 0.8))
 (= is-cloudy false)
 (sample (flip 0.2)))
 sprinkler (cond (= is-cloudy true)
 (sample (flip 0.1))
 (= is-cloudy false)
 (sample (flip 0.5)))
 wet-grass (cond (and (= sprinkler true) (= is-raining true))
 (sample (flip 0.99))
 (and (= sprinkler false) (= is-raining false))
 (sample (flip 0.0))
 (or (= sprinkler true) (= is-raining true))
 (sample (flip 0.9)))]
 (observe (dirac wet-grass) true)
 (predict :s (hash-map :is-cloudy is-cloudy
 :is-raining is-raining
 :sprinkler sprinkler)))))

\[p(x|y = o) \propto \delta(y - o)p(x, y) \]
\[= p(x, y = o) \]
\[
p(x | y = o) \propto p(d(y, o))p(x, y)
\]
(defquery bayes-net [])
(let [is-cloudy (sample (flip 0.5))]
 is-raining (cond (= is-cloudy true)
 (sample (flip 0.8))
 (= is-cloudy false)
 (sample (flip 0.2)))
 sprinkler (cond (= is-cloudy true)
 (sample (flip 0.1))
 (= is-cloudy false)
 (sample (flip 0.5)))
 wet-grass (cond (and (= sprinkler true) (= is-raining true))
 (flip 0.99)
 (and (= sprinkler false) (= is-raining false))
 (flip 0.0)
 (or (= sprinkler true) (= is-raining true))
 (flip 0.9)))

(observe wet-grass true)

(predict :s (hash-map :is-cloudy is-cloudy
 :is-raining is-raining
 :sprinkler sprinkler)))

\[p(x|y = o) \propto p(o|x)p(x) \]
Continuous Variables

(defquery unknown-mean []
 (let [sigma (sqrt 2)
 mu (marsaglia-normal 1 5)]
 (observe (normal mu sigma) 9)
 (observe (normal mu sigma) 8)
 (predict :mu mu)))
Measure Theoretic Challenges

The “Indian GPA problem”

\[p(\text{nationality} = \text{"USA"} | \ gpa = 4.0) = ? \]

(defquery which-nationality [gpa]
 (let [nationality (sample categorical [["USA" 0.25] ["India" 0.75]])
 simulated_gpa (if (= nationality "USA")
 (american-gpa)
 (indian-gpa))]
 (observe (dirac simulated_gpa) gpa)
 (predict :nationality nationality)))
American GPA Distribution $[0,4]$

(defn american-gpa []
 (if (sample (flip 0.95))
 (* 4 (sample (beta 8 2)))
 (if (sample (flip 0.85))
 4.0
 0.0))))
Indian GPA Distribution \([0,10]\)

```
(defn indian-gpa []
  (if (sample (flip 0.99))
    (* 10 (sample (beta 5 5)))
    (if (sample (flip 0.1))
      0.0
      10.0)))
```
Mixed GPA Distribution

(defn student-gpa []
 (if (sample (flip 0.25))
 (american-gpa)
 (indian-gpa))))
The “Indian GPA problem” by Russell

\[p(\text{nationality} = "USA" | \text{gpa} = 4.0) = ? \]

```
(defquery which-nationality [gpa tolerance]
  (let [nationality (sample (categorical [["USA" 0.25] ["India" 0.75]])
        simulated_gpa (if (= nationality "USA")
                        (american-gpa)
                        (indian-gpa))]
    (observe (normal simulated_gpa tolerance) gpa)
    (predict :nationality nationality)))
```
Where are we now?
Discrete RV’s Only

1990

2000

2010

PL

AI

ML

STATS

Simula

Prolog
Ways forward...
Trace Probability

- **observe** data points y_n
- internal random choices x_n
- simulate from

 $f(x_n|x_{1:n-1})$

by running the program forward

- weight execution traces by

 $g(y_n|x_{1:n})$
Iteratively,

- simulate
- weight
- resample
SMC for Probabilistic Programming

Intuitively:
- run
- wait
- fork

Threads

observe delimiter

continuations
• Sequential Monte Carlo is now a building block for other inference techniques

• Particle MCMC
 - PIMH : “particle independent Metropolis-Hastings”
 - iCSMC : “iterated conditional SMC”

[Andrieu, Doucet, Holenstein 2010]
[W., van de Meent, Mansinghka 2014]
SMC Parallelism Bottleneck

SMC slowed down for clarity
Particle Cascade

Paige, W., Doucet, Teh; NIPS 2014
Particle Cascade
Particle Cascade
Particle Cascade
Theoretical Properties

The particle cascade provides an **unbiased estimator** of the **marginal likelihood**, whose variance decreases proportionally to the number of initial particles K_0:

$$\hat{p}(y_{0:n}) := \frac{1}{K_0} \sum_{k=1}^{K_n} W_n^k$$

Theorem: For any $K_0 \geq 1$ and $n \geq 0$, $\mathbb{E}[\hat{p}(y_{0:n})] = p(y_{0:n})$.

Theorem: For any $n \geq 0$, there exists a constant a_n such that

$$\mathbb{V}[\hat{p}(y_{0:n})] < \frac{a_n}{K_0}$$
Conclusion
Thank You

• Questions?

• Funding: DARPA, Amazon, Microsoft
Opportunities

• Parallelism

 “Asynchronous Anytime Sequential Monte Carlo” [Paige, W., Doucet, Teh NIPS 2014]

• Backwards passing

 “Particle Gibbs with Ancestor Sampling for Probabilistic Programs” [van de Meent, Yang, Mansinghka, W. AISTATS 2015]

• Search

 “Maximum a Posteriori Estimation by Search in Probabilistic Models” [Tolpin, W., SOCS, 2015]

• Adaptation

 “Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs” [Tolpin, van de Meent, Paige, W.; in submission]

• Novel proposals

 “Adaptive PMCMC” [Paige, W.; in submission]
Probabilistic-C

```c
#include "probabilistic.h"
#define K 3
#define N 17

/* Markov transition matrix */
static double T[K][K] = {
    { 0.1, 0.5, 0.4 },
    { 0.2, 0.2, 0.6 },
    { 0.15, 0.15, 0.7 }
};

/* Prior distribution on initial state */
static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 }

/* Generative program for a Markov model */
int main(int argc, char **argv) {

    int states[N];
    for (int n=0; n<N; n++) {
        states[n] = (n==0) ? discrete_rng(initial_state, K)
                          : discrete_rng(T[states[n-1]], K);
        predict("state[%d],%d\n", n, states[n]);
    }

    return 0;
}
```
Paige & W.; ICML 2014
How can you participate?
Ways to Participate

• Contribute applications
 • https://bitbucket.org/fwood/anglican-examples

• Contribute inference algorithms
 • https://bitbucket.org/dtolpin/embang
An Analogy

Automatic Differentiation
Supervised Learning

→

Probabilistic Programming
Unsupervised Learning
defquery sat-solver [N formula]
 "explores an N-dimensional universe for worlds that satisfy the formula"
 (let [state (repeatedly N (fn [] (sample (flip 0.5)))))
 (observe (dirac (formula state)) true)
 (predict :state state))

defdist dirac
 "Dirac distribution"
 [x] []
 (sample [this] x)
 (observe [this value] (if (= x value) 0.0 NegInf)))

defm satisfiable-3cnf-formula [state]
 (let [v (fn [i] (nth state i))]
 (and (or (v 0) (not (v 1))) (not (v 2)))
 (or (not (v 0)) (v 1) (v 2))
 (or (not (v 0)) (not (v 1)) (not (v 2))))
(defquery md5-inverse [L md5str]
 "conditional distribution of strings that map to the same MD5 hashed string"
 (let [mesg (sample (string-generative-model L))]
 (observe (dirac md5str) (md5 mesg))
 (predict :message mesg))))
Particle Cascade
Not Sum-Product: Bayesian HMM

Suppose the transition matrix is unknown: $T_k \sim \text{Dirichlet}(\alpha_k)$

```c
#define N 17

/* Markov transition matrix */
static double T[K][K] = {
    { 0.1, 0.5, 0.4 },
    { 0.2, 0.2, 0.6 },
    { 0.15, 0.15, 0.7 }
};

/* Observed data */
static double data[N] = {
    NAN, .9, .8, .7, 0, -.025,
    -5, -2, -.1, 0, 0.13, 0.45,
    6, 0.2, 0.3, -1, -1
};

/* Prior distribution on initial state */
static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 }

/* Per-state mean of Gaussian emission distribution */
static double state_mean[K] = { -1, 1, 0 }

/* Generative program for a HMM */
int main(int argc, char **argv) {
    int states[N];
    for (int n=0; n<N; n++) {
        states[n] = (n==0) ? discrete_rng(initial_state, K) :
            discrete_rng(T[states[n-1]], K);
    }
}
```
Range of Effectiveness

PL
HANSAI
IBAL
Figaro

AI
ML
webChurch
Probabilistic-C
Venture
Anglican

ML
Factorie
Church
Infer.NET

STATS
LibBi
STAN
JAGS

IBAL
Prolog
Blog
Prism
KMP

1990
2000
2010
Continuous Variables

(defm marsaglia-normal [mean var]
 (let [d (uniform-continuous -1.0 1.0)
 x (sample d)
 y (sample d)
 s (+ (* x x) (* y y))]
 (if (< s 1)
 (+ mean (* (sqrt var)
 (* x (sqrt (* -2 (/ (log s) s))))))
 (marsaglia-normal mean var)))))
Scalability: Particle Count

- Comparison across particle-based inference approaches: raw speed of drawing samples
Unbounded Recursion

Expressivity

Efficiency
Credits

- Code highlighting: http://hilite.me
Forward Inference (SMC)
Bayesian Nonparametrics

```emacs-lisp
(defm pick-a-stick [stick v l k]
    ; picks a stick given a stick generator
    ; given a value v ~ uniform-continuous(0,1)
    ; should be called with l = 0.0, k=1
(let [u (+ l (stick k))]
    (if (> u v)
        k
        (pick-a-stick stick v u (+ k 1))))

(defm remaining [b k]
    [if (<= k 0)
        1
        (* (- 1 (b k)) (remaining b (- k 1))))

(defm polya [stick]
    ; given a stick generating function
    ; polya returns a function that samples
    ; stick indexes from the stick lengths
(let [uc01 (uniform-continuous 0 1)]
    (fn []
        (let [v (sample uc01)]
            (pick-a-stick stick v 0.0 1))))

(defm dirichlet-process-breaking-rule [alpha k] (sample (beta 1.0 alpha)))

(defm stick [breaking-rule]
    ; given a breaking-rule function which
    ; returns a value between 1 and 0 given a
    ; stick index k returns a function that
    ; returns the stick length for index k
(let [b (mem breaking-rule)]
    (fn [k]
        (if (< 0 k)
            (* (b k) (remaining b (- k 1))
            0))))
```

The image contains a page from a document discussing Bayesian Nonparametrics in Emacs Lisp. The text includes code examples, with comments explaining the functions `pick-a-stick`, `remaining`, `polya`, `dirichlet-process-breaking-rule`, and `stick`. The code is designed to simulate stick-breaking processes, which are fundamental in Bayesian nonparametric models. The figure illustrates the stick-breaking process visually, showing how sticks of varying lengths are broken and distributed according to the given functions.
Syntax & Implementation Considerations

• Embedded vs. Standalone

• Imperative vs. functional

• Lisp vs. Python vs. C vs.