
Staying Aware of Relevant Feeds in Context

Thomas Fritz
Department of Computer Science

University of British Columbia
fritz@cs.ubc.ca

ABSTRACT
To stay aware of relevant information and avoid productivity
loss, a developer has to continuously read through new in-
coming information. Our approach supports the integration
of dynamic and static information in a development envi-
ronment that allows the developer to continuously monitor
the relevant information in context of his work.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Human Factors, Design

Keywords
Feeds, Human-centric software engineering

1. PROBLEM AND MOTIVATION
When building a software system, a developer has to stay

aware of a lot of information, such as changes to the project’s
code, the work of his coworkers, new bugs or changes to the
API of used libraries. Missing relevant information may re-
sult in extra work and time that has to be spent. For ex-
ample, Damian and colleagues report on a case, in which
a developer missed an important email due to the informa-
tion overload he experienced, resulting in a broken build and
productivity loss for the whole team [2].

A common solution to stay aware of relevant information
is by subscribing to feeds. As a developer’s feed subscrip-
tions accumulate over time, he gets flooded with informa-
tion, a lot of which is not relevant to his work. To find out
if a feed is relevant to a developer’s work, the developer has
to read through the feed and find the relation to his work,
often by following keywords or links in the feed.

Some existing approaches ease this problem for certain
kinds of feeds. Palantir [8, 7], for example, makes developers

c©ACM, 2010. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in ICSE’10
http://doi.acm.org/10.1145/nnnnnn.nnnnnn.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
.

aware if any of the source code in a developer’s workspace
is currently changed by someone else. These approaches
provide some fixed context for the new information; in the
case of Palantir, the context is the source code loaded in the
developer’s workspace. However, they provide little to no
flexibility for the developer to choose the context.

In previous work [4], we have shown how one can com-
pose different kinds of information, such as source code,
bugs, teams and change sets, to answer a developer’s ques-
tion. In this work, we extend the underlying model of our
previous research with the concept of feeds to find relevant
information a developer should stay aware of. Figure 1(a)
shows a typical non-contextual list-based feed reader. A de-
veloper must scroll and read each feed item to understand
what might be relevant. Our approach allows a developer
to compose the feeds with other information from a devel-
oper’s workspace, providing a context for interpreting the
feeds and supporting various means of ranking and filter-
ing the feeds. Figure 1(b) displays our Fragment Explorer
view in which a developer has composed the source code of
his workspace with feeds, in this case web feeds and feeds
on change set events. The kinds of information being com-
posed, i.e., source code, web feeds and change set feeds, and
the order of composition is represented by the icons in the
top right corner of the view. The developer can also choose
the time frame for what he considers relevant information by
using the slider in the awareness picker on the bottom of the
view. Now, as soon as, for example, a new change set event
comes in from a change set feed, it is automatically put in
context of the source code of the developer’s workspace and
in case the change set affects the source code, it is presented
in the view. An example of this is shown in Figure 1(b) in
which Mike delivered a change set that affects class CountS-
electionAction.

2. BACKGROUND AND RELATED WORK
“Awareness is an understanding of the activities of oth-

ers, which provides a context for your own activity.” [3].
As described in Section 1, several approaches (e.g., Palantir
[8, 7] and an awareness environment built at IBM [1]) pro-
vide awareness for limited kinds of information in limited
contexts.

Other approaches have tried to recommend information
that is relevant to the current piece of information a devel-
oper is working with. For instance, Hipikat [9] establishes
links between artifacts based on a fixed schema and then
uses these links to infer which artifacts might be relevant
based on a developer’s query. Deep Intellisense [6] presents



(a) All Feeds

(b) Relevant Feeds in Context

Figure 1: Finding Relevant Feeds

information related to the source code currently selected,
such as the bugs it is involved in. Neither of these two ap-
proaches focuses on providing awareness to a developer, and
both are based on a fixed schema.

In other previous work [5], we have introduced a degree-
of-knowledge model to capture a developer’s familiarity with
source code and applied the model to find bugs that could be
relevant to a developer. Our previous work does not attempt
to provide awareness to a developer.

3. APPROACH AND EVALUATION
Our approach is based on an information fragment model

that supports the composition of different kinds of informa-
tion and its presentation. Previously, information fragments
were defined as a static set of items of information, such as
bugs or classes and methods, to answer a specific question.
Feeds are a dynamic concept and can not be captured by
our original static information fragments. As a feed is a
stream of information, it constantly changes with new in-
coming information items. Furthermore, a feed has a cer-
tain lifetime aspect—information items that are too old are
not relevant anymore and discarded. To incorporate feeds
into our model, we expand it with the notion of a dynamic
information fragment, which is continuously evaluated.

In practice, a developer forms a dynamic information frag-
ment by selecting feeds of interest, such as feeds on change
sets or web feeds. He can then compose these informa-
tion fragments with other information fragments, such as
a fragment comprising the source code of certain packages.
Figure 1(b) shows the result of such a composition. Pre-
viously, the composition was done once and then displayed
in our view. With a dynamic information fragment, the
composition is done continuously so that every time a feed
changes, the view is updated accordingly. To reflect the life-

time aspect of feeds, the view also contains a slider, called
the awareness picker, to pick the relative start time. In our
example in Figure 1(b), the start time is one day ago. Every
item older than that will be discarded. For now, the aware-
ness picker applies to all dynamic fragments in the view, but
it might be necessary to specify it separately. Finally, our
new approach also provides the option to stack information
fragments as can be seen with the two feeds fragments in
Figure 1(b). By stacking fragments, they are presented on
the same hierarchical level in the tree viewer.

To evaluate our approach and its flexibility, we apply our
approach to three different scenarios. First, we show that
our approach can be used to stay aware of relevant changes
to the source code by applying it to feeds on source code
changes similar to most existent approaches. Second, we
apply our approach to web feeds on changes to APIs and
evaluate the false positive and false negative rate. Finally,
we use our approach to find feeds that talk about bugs rel-
evant to a developer’s work. In the last scenario, we deter-
mine relevancy in terms of bugs that were later on changed
again by the developer and discuss the false positive and
false negative rate.

4. RESULTS AND CONTRIBUTIONS
The result of our work is a fluid integration of dynamic

and static development information in a developer’s inte-
grated development environment. This improves how differ-
ent kinds of information can be integrated. In particular,
it allows a developer to stay aware of relevant information
from feeds not limited to a particular kind of information
and have them presented in his work context.

5. REFERENCES
[1] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson.

Jazzing up eclipse with collaborative tools. In eTX’03.

[2] D. Damian, L. Izquierdo, J. Singer, and I. Kwan.
Awareness in the wild: Why communication
breakdowns occur. In ICGSE’07.

[3] P. Dourish and V. Bellotti. Awareness and coordination
in shared workspaces. In CSCW’92.

[4] T. Fritz and G. C. Murphy. Using information
fragments to answer the questions developers ask. In
ICSE’10. to appear.

[5] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A
degree-of-knowledge model to capture source code
familiarity. In ICSE’10. to appear.

[6] R. Holmes and A. Begel. Deep intellisense: a tool for
rehydrating evaporated information. In MSR’08.

[7] A. Sarma, G. Bortis, and A. van der Hoek. Towards
supporting awareness of indirect conflicts across
software configuration management workspaces. In
ASE’07.

[8] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
raising awareness among configuration management
workspaces. In ICSE’03.

[9] D. Čubranić, G. C. Murphy, J. Singer, and K. S.
Booth. Hipikat: A project memory for software
development. IEEE TSE.


