CPSC 213

Introduction to Computer Systems

Unit 2d
Virtual Memory

Reading

» Companion
*5
» Text
*2ed: 9.1-9.2, 9.3.2-9.3.4
* 1ed: 10.1-10.2, 10.3.2-10.3.4

Multiple Concurrent Program Executions

» So far we have
* a single program
* multiple threads
» Allowing threads from different program executions
*we often have more than one thing we want to do at once(ish)
» threads spend a lot of time blocked, allowing other threads to run
* but, often there aren't enough threads in ocne program to fill all the gaps
» What is a program execution
* an instance of a program running with its own state stored in memory
* compiler-assigned addresses for all static memory state (globals, code etc.)
* security and failure semantics suggest memory isolation for each execution
» But, we have a problem
 there is only one memory shared by all programs ...

Virtual Memory

» Virtual Address Space
* an abstraction of the physical address space of main (i.e., physical) memory
* programs access memory using virtual addresses
* hardware translates virtual address to physical memory addresses
» Process
* a program execution with a private virtual address space
» associated with authenticated user for access control & resource accounting
* running a program with 1 or more threads
» MMU
* memory management unit
» the hardware that translates virtual address to physical address
* performs this translation on every memory access by program

Implementing the MMU

» Lets think of this in the simulator ...
s introduce a class to simulate the MMU hardware

class MMU extends MainMenmory {
oyte [] physicalMenrory;
AddressSpace currentAddressSpace;

void setAddressSpace (AddressSpace= as);

byte readByte (int va) {
int pa = currentAddressSpace.translate (va);
return physicalMenory.read (pa);

}

* currentAddressSpace is a hardware register
» the address space performs virtual-to-physical address translation

Implementing Address Translation

class MMU extends MainMemory {
oyte [] physicalMenory;
AddressSpace currentAddressSpace;

void setAddressSpace (AddressSpacex as);

yoig
imt g = currentAddressSgace.translate lva):l
return physicaMenory.read (pa);
}

» Goal
e translate any virtual address to a unigue physical address (or none)
« fast and efficient hardware implementation

» Lets look at a couple of alternatives ...

Base and Bounds

» An address space is

* a single, variable-size, non-expandable chunk of physical memory
* named by its base physical address and its length 2

» As a class in the simulator o

class MdressSpace {
int baseVA, basePA, bounds;

int translate (int va) {

int of fset = va - baseVA; °
1f {offset < @ || offset = bounds)
throw new IllegalAsdressException ()] M

return basePA + offset;

» Problems N

But, Address Space Use May Be Sparse

» Issue
 the address space of a program execution is divided inte ragions
« for example: code, globals, heap, shared-lbraries and stack H

« there are large gaps of unused address space between these regons
» Problem

* a single base-and-bounds mapping from virtual to physical addresses
* means that gaps in virtugl address space will waste physica memory

+ this is the Internal Fragmentation problem

| [] wasted
Physical
R oy

» Solution e

Segmentation

» An address space is
* a set of sagments
» A segment is

* a single, variable-sze, non-expandable chunk of physical memory

* named by its base vrtual address, physical address and length

» Implementation in Simulator

¢lass AddressSpace (

Segment segrent(];

int translate (int val { l

for {int 1=9; i<segrents.length; i++) {
int offset = va - segment{i].baseVA;
if (offset >= @ &6 offset < segment{i].bounds) {

pa = segment (1] .basePA + offset;

" return pa; I l

; I |

throw mew T11egalAddressException (va);
3

» Problem

But, Memory Use is Not Know Statically

» Issue

* sagments ane not expandable; therr size s static

* some sagments such as stack and heap change size dynamically
* Problem

* segment size is chosen when segment |s created
* too large and Internal fragmentation wasies memory
* too small and stack or heap restricted

?:’;:::i ’ ‘ o’ Broken
Memory Program
» Solution
* allow segments to expand?

10

But, There May Be No Room to Expand

» Issue
* segments are contiguous chunks of physical memory
* a segment can only expand to fill space between it and the next segment
» Problem
 there is no guarantee there will be room to expand a segment
* the available memory space is not where we want it {i.e., adjacent to segment)
* this is the External Fragmentation problem

Mcu,be

Some :“E'
Ow

R(::m We're

» Solution

But, Moving Segments is Expensive

» Issue

« if there is space in memory to store expanding segment, but not where it is

* could move expanding segment or other segments to make room

» external fragmentation is resolved by moving things to consolidate free space
» Problem

* moving is possible, but expensive

* to move a segment, all of its data must be copied

* segments are large and memory copying is expensive

Ma 3bt Move
Some Other
Roorm to Segments
c xpnd. o Make |/
Roora

11

12

Expand Segments by Adding Segments

» What we know
* segments should be non-expandable
* size can not be effectively determined statically
» Idea
* instead of expanding a segment
* make a new one that is adjacent virtually, but not physically

Allocate virbual addresses m .. n-2
o New
Segment
virtual addresses w .. p-i

» Problem
*oh no! another problem! what is it? why does it occur?

Eliminating External Fragmentation

» The problem with what we are doing is
* allccating variable size segments leads to external fragmentation of memory
* this is an inherant problem with varable-size allccation

» What about fixed sized allocation
« could we make every sagment the same size?
* this elminates external fragmentation
* but, If we make sagments too big, we'll get internal fragmentation
* 50, they nead to be fairly small and sc we'll have lots of them

» Problem

13

14

Translation with Many Segments

» What is wrong with this approach if there are many segments?

class AMddressSpace {
Seqrent segment[];

int translate (int va) {
for (int i=3; i<segments.length; i++} {
int offset = va - segmentiil.baseVA;
if loffset > @ &5 offset < segment([i].bounds) {
pa = segnent [i].basePA - offser;
return pa;

throw new IllegalAddressException (va);

* Now what?
* is there ancther way to locate the segment, when segments are fixed size?

Paging

» Key Idea
* Address Space is divided into set of fixed-size segments called pages
* number pages in virtual address order
* page number = virtual address / page size
» Page Table
* indexad by virtual page number (vpn)

* stores base physical address (actually address / page size (pfn) to save space)

» stores valid flag, because some sagment numbers may be unusad

|=

}IIII |

15

16

\ | A\

» New terminology
* page a small, fixed-sized (4-K8) segment
* page table virtual-to-physical translation table P
*pte page table entry
*vpn virtual page number —
*pfn physical page frame number

* offset byte offset of address from beginning of page
» Translation using a Page Table

class PageTableEntry (class AcdressSpace {
doolean isValic; PageTadlekntry pte(];
int prn;

int translate {int va) {

int vpn = va / PAGE_SIZE:
int offset = va % PAGE_SIZE;

if (pte[vpn].isvalic)

return ptelvpnl.pfn « PAGE_SIZE + offset;

else

throw new IllegalAddressException (va);

)

» The bit-shifty version
* assume that page size is 4-KB = 4086 = 272
* assume addresses are 32 bits
e then, vpn and pfn are 20 bits and offset is 12 bits
* pte is pfn plus valid bit, so 21 bits or 50, say 4 bytes
* page table has 27 pte’s and so is 4-MB in size

» The simulator code
class PageTableEntry { class AcdressSpace {
voolean SsValid; PageTabdlekntry pte(];
int pfn;
} int translate {int va) {

int vpn = va »»> 12;
int offset = va & @xf1f;
if (prelvpnl.isValig)

return ptelvpn].pfn << 12 | offset;

else

throw new TllegalAddressException (va);

3

17

18

Question

» Consider this page table

axaeedaane
AxHeQddBE?
0x00000321
Gx0RQRA26L
AxHERRVVS
axBeeedaqe
axdeedaane

» Is Ox43a0 a valid virtual address and if so what is the
corresponding physical address?
« (A) Not valid
*(B) 0x43a0
*(C) Ox5a3a0
* (D) 0x73a0
* (E) 0x3a0

Translation and Exceptions

» Virtual-to-Physical translation
® Qoccurs on every memory reference

* handled by hardware (sometimes with some software)
* aided by a cache of recent translations

* but, in general requires reading page table entry from memory
» Page fault
*is an exception raised by the CPU
*when a virtual address is invalid
* an exception is just like an interrupt, but generated by CPU not 10 device
* page fault handler runs each time a page fault cccurs
» Handling a page fault
* axtending the heap or stack, handler can just deliver a new zero-filled page
*what about the code, global variables, or existing parts of heap or stack?

19

20

Demand Paging e

a.out

D e

e e

1l

» Key Idea [Lswap || '
* some applicaticn data is not in memory

[swap A==

* transfer from digk to meamory, only when neaeded
* Page Table
* cnly stores entries for pages that are in memory
* pages that are only on disk are marked invali:
* access to non-resident page- causes a page-fault imerupt
* Memory Map
* a second data struciure manages by the OS
* civides virtual address space into regions, each mapped o a file
* page-fault interrupt handler checks to see if faulted page is mapped
* if 50, gats page from disk, update Page Table and restan: ‘aulted instruction
» Page Replacement
* pages can Now Be removed from memaory, transparent 10 grogram
* a replacement algorithm choose which pages should be resident and swaps out others

Context Switch

» A context switch is

* switching between threads from different processes

» each process has a private address space and thus its own page table
*» Implementing a context switch

* change PTBR to point to new process’s page table

* switch threads (save regs, switch stacks, restore regs)
» Context Switch vs Thread Switch

* changing page tables can be considerably slower than just changing threads
* mainly because caching technigues used to make translation fast

21

22

Inter-Process Communication

» With one process the threads
* communicate through shared memory

» Different processes do not share memory
* they can not communicate in the same way

» IPC

* basic mechanism is send and receive unformatted messages
*a message is an array of bytes
* sender and receiver have named endpoints (e.g., socket or port)
* operating system provides the glue

- the OS can access every Drocesses mamory

- it copes from sender message and into receiver's memory
* what is send/receive not ike?
o what is send/receive like?

Summary

» Process

* a program execution

* a private vriual address space and a set of threads

* private address space required for stat.c address a''ocation and Isolation
» Virtual Address Space

* a mapp g from virtual addresses ¢ physical memory addresses

* programs use virtua' addresses

* the MMU translates tham 1o physical address used by the memory hardware

» Paging
*a way 10 mplemen: address space translaton
* divide virtual address space nto smal, fixed szed virtual page frames
* page table sicres base physcal address of every virtual page frame
* page table Is Indexed by viriual page frame number
* some viriual page frames have ro physical page mapping
* some of these get data on demand from disk

23

24

Address Space Translation Tradeoffs

» Single, variable-size, non-expandable segment
* internal fragmentation of segment due to sparse address use
» Multiple, variable-size, non-expandable segments
* internal fragmentation of segments when size isn't know statically
* axternal fragmentation of memory because segments are variable size
* moving segments would resolve fragmentation, but moving is costly
» Expandable segments
* expansion must by physically contiguous, but there may not be rcom
* external fragmentation of memory requires moving segments toc make room
» Multiple, fixed-size, non-expandable segments
» called pages
* need to be small to avoid internal fragmentation, so there are many of them
* since there are many, need indexed lockup instead of search

25

