Introduction to Computer Systems

Unit 1a
Numbers and Memory

The Big Picture

Build machine model of execution

for Java and C programs
by examining language features
and deciding how they are implemented by the machine

What is required
design an ISA into which programs can be compiled
implement the ISA in the hardware simulator

Our approach
examine code snippets that exemplify each language feature in turn
look at Java and C, pausing to dig deeper when C is different from Java
design and implement ISA as needed

The simulator is an important tool
machine execution is hard to visualize without it
this visualization is really our WHOLE POINT here

Readings

Companion
Ch1,2.1-2.2.

Textbook
Historical Perspective. Access to Information and Data Alignmnet
2nd Ed: 3.1-3.4, 3.9.3
1st Ed: 3.1-3.4, 3.10

Numbers in Memory

Initial thoughts

Hexadecimal notation
“0x” followed by number (e.g., 0x2a3 = 2x16% + 10x16" + 3x16°)
a convenient way to describe numbers when binary format is important
each hex digit (hexit) is stored by 4 bits: (0|1)x8 + (0|1)x4 + (0|1)x2 + (0|1)x1
some examples ...
Integers of different sizes
byte is 8 bits, 2 hexits
short is 2 bytes, 16 bits, 4 hexits
int or word is 4 bytes, 32 bits, 8 hexits
long long is 8 byes, 64 bits, 16 hexits

Memory is byte addressed
every byte of memory has a unique address, number from 0 to N
reading or writing an integer requires specifying a range of byte addresses

Making Integers from Bytes

Memory
Our first architectural decisions
assembling memory bytes into integer registers | i |
Consider 4-byte memory word and 32-bit register | i+ 1
It has memory addresses |, i+1, i+2, and i+3 | | + 2 |
we’ll just say its “at address i and is 4 bytes long” | i+ 3 |

e.g., the word at address 4 is in bytes 4, 5, 6 and 7.
Big or Little Endian
we could start with the BIG END of the number (everyone but Intel)
| i ||i+1 ||i+2 ||i+3 |
23110 224 2819216 2151028 271020 Register biks
or we could start with the LITTLE END (Intel)

|i+3 ||i+2 ||i+1 || i |

03110 224 2210216 215128 271020 Register bits

» Aligned or Unaligned Addresses

* we could allow any number to address a multi-byte integer

E E * disallowed on most
E E architectures

* allowed ol Inkel,
but slower

* or we could require that addresses be aligned to integer-size boundary

address modulo chuck-size is atwavs Zero

* Power-of-Two Aligned Addresses Simplify Hardware

- smaller things always fit complete inside of bigger things
e word conkains exactly

e
= — . two c:ompte.&e shorks

- byte address to integer address is division by power to two, which is just shifting bits

j/==j»k (j shifted i bits to right)

Interlude
A Quick C Primer

A few initial things about C

source files
.C is source file
.h is header file

Including headers in source
#include <stdio.h>

pointer types

intx b; // b is a POINTER to an INT
getting address of object

int a; // a 1is an INT

intx b = &a; // b is a pointer to a
de-referencing pointer

a = 10; // assign the value 10 to a

b = 10; // assign the value 10 to a
type casting is not typesafe

char al4]; // a 4 byte array

x((intx) &a[0]) = 1; // treat those four bytes as an INT

compile and run
at UNIX (e.g., Linux, MacQOS, or Cygwin) shell prompt
gcc -o foo foo.c
/foo

10

Back to Numbers ...

Determining Endianness of a Computer

#include <stdio.h>

int main () {
char al4];

x((intx)a) = 1;

printf("al0]=%d all]=%d al2]=%d al3]1=%d\n",al0],al1]l,al2],al3]);
s

12

Questions

Which of the following statement (s) are true

A

B
C]
D

6 == 1102 is aligned for addressing a short

6 == 1102 is aligned for addressing a long

20 == 101002 is aligned for addressing a long

20 == 101002 is aligned for addressing a long long (i.e., 8-byte int)

13

Which of the following statements are true
A] memory stores Big Endian integers

B] memory stores bytes interpreted by the CPU as Big Endian integers
[C] Neither
D

| don’t know

14

Which of these are true

A] The Java constants 16 and 0x10 are exactly the same integer
B] 16 and 0x10 are different integers
[C] Neither

D] | dont’ know

15

What is the Big-Endian integer value at address 4 below?

A

B
C]

E]
F]

D]

Ox1c04b673
@xcl1406b37
Ox73bo041c
@x376b40cl

none of these
| don’t know

Memory
0x0: Oxfe
Ox1: 0x32
Ox2: Ox87
Ox3: @x9a
Ox4 . Ox73
Ox5: Oxbob
0x6: Ox04
Ox7: Ox1c

16

What is the value of i after this Java statement executes?

int i = (byte) (0x8b) << 16;

A Ox8b

B] 0x0000008b
C] 0x008b0000d
D] Oxff8b0000O
E] None of these
F] | don’t know

17

What is the value of i after this Java statement executes?

1 = OxTf8b0000 & Ox00TT0000,
Oxffff0000
Oxff8b0000
0x008b0000

| don’t know

S Qo' >

18

In the Lab ...

write a C program to determine Endianness
prints “Little Endian” or “Big Endian”
get comfortable with Unix command line and tools (important)

compile and run this program on two architectures
IA32: 1in01.ugrad.cs.ubc.ca
Sparc: any of the other undergrad machines
you can tell what type of arch you are on
% uname -a
SimpleMachine simulator
load code into Eclipse and get it to build
write and test MainMemory.java
additional material available on the web page at lab time

19

The Main Memory Class

» The SM213 simulator has two main classes
* CPU implements the fetch-execute cycle
* MainMemory implements memory

» The first step in building our processor

* implement 6 main internal methods of MainMemory

CPU MainMemory
fetch ISAligned

execute length
| bytesTolnteger

IntegerToBytes
get
set

20

The Code You Will Implement

/ k%

* Determine whether an address 1s aligned to specified length.

* @param address memory address

* @param length byte length

* @return true iff address is aligned to length

*/

protected boolean 1sAccessAligned (int address, int length) {
return false;

}

21

@param byteAtAddrPlus® value of byte
@param byteAtAddrPlusl value of byte
@param byteAtAddrPlus2 value of byte
@param byteAtAddrPlus3 value of byte
@return Big Endian integer formed by

~
******i

*/

Convert an sequence of four bytes into a Big Endian integer.

with lowest memory address
at base address plus 1

at base address plus 2

at base address plus 3
these four bytes

public int bytesToInteger (UnsignedByte byteAtAddrPluso,
UnsignedByte byteAtAddrPlusl,
UnsignedByte byteAtAddrPlus2,
UnsignedByte byteAtAddrPlus3) {

return 0;

}

/ *%

* Convert a Big Endian integer into an
* @param 1 an Big Endian integer

* @return an array of UnsignedByte

*/

array of 4 bytes

public UnsignedByte[] integerToBytes (int i) {

return null;

}

22

%ok

* Fetch a sequence of bytes from memory.

* @param address address of the first byte to fetch

* @param length number of bytes to fetch

* @return an array of UnsignedByte

*/

protected UnsignedByte[] get (int address, int length) throws ... {
UnsignedByte[] ub = new UnsignedByte [lengthl];
ub[@] = new UnsignedByte (@); // with appropriate value
// repeat to ub[length-1]

return ub;
s
/ %k
* Store a sequence of bytes into memory.
* @param address address of the first memory byte
* @param value an array of UnsignedByte values

* @throws InvalidAddressException if any address is invalid
*/
protected void set (int address, UnsignedByte[] value) throws ... {
byte b[] = new byte [value.lengthl;
for (int i=0; i<value.length; i++)
bl[i] = (byte) valuelil].value();
// write b into memory ...

}

23

