
CPSC 213
Introduction to Computer Systems

Unit 0

Introduction
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About the Course

‣ its all on the web page ...
• http://www.cs.ubc.ca/~feeley/cs213
• Lecture Notes Companion
• Piazza

‣marks
• in-class clicker questions (you will need a clicker)
• labs		
• quizzes
• midterm
• final

‣work together! but don’t cheat!
• never present anyone else’s work as your own

- it is your responsibility to provide proper attribution

• anything you hand in in this course should follow this rule anything
• but, don’t let this stop you from helping each other learn ...
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Overview of the course

‣Hardware context of a single executing program
• hardware context is CPU and Main Memory
• develop CPU architecture to implement C and Java
• differentiate compiler (static) and runtime (dynamic) computation
‣System context of multiple executing programs with IO

• extend context to add IO, concurrency and system software
• thread abstraction to hide IO asynchrony and to express concurrency
• synchronization to manage concurrency
• virtual memory to provide multi-program, single-system model 
• hardware protection to encapsulate operating system
• message-passing to communicate between processes and machines

GOAL: To develop a model of computation that is 
rooted in what really happens when programs execute.
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What you will get out of this ...

‣Become a better programmer by 
• deepening your understand of how programs execute
• learning to build concurrent and distributed programs
‣Learn to design real systems by 

• evaluating design trade-offs through examples 
• distinguish static and dynamic system components and techniques
‣ Impress your friends and family by

• telling them what a program really is
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What do you know now?
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What happens what a program runs

‣Here’s a program

‣What do you understand about the execution of  insert?

class SortedList {
  static SortedList aList;
  int    size;
  int    list[];
  
  void insert (int aValue) {
    int i = 0;
    while (list[i] <= aValue)
      i++;
    for (int j=size-1; j>=i; j--)
      list[j+1] = list[j];
    list[i] = aValue;
    size++;
  }
}
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‣Example
• list stores { 1, 3, 5, 7, 9 }
• SortedList.aList.insert(6) is called
‣Data structures

• draw a diagram of the data structures
• as they exist just before insert is called

a SortedList Object
size
list
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assuming list[] was 
initialized to store 10 
elements:

list = new Integer[10];

class SortedList {
  static SortedList aList;
  int    size;
  int    list[];
  
  void insert (int aValue) {
    int i = 0;
    while (list[i] <= aValue)
      i++;
    for (int j=size-1; j>=i; j--)
      list[j+1] = list[j];
    list[i] = aValue;
    size++;
  }
}
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‣Data structures
• lets dig a little deeper
• which of these existed before program started?

- these are the static features of the program

• which were created by execution of program?
- these are the dynamic features of the program

class SortedList {
  static SortedList aList;
  int    size;
  int    list[];
  
  void insert (int aValue) {
    int i = 0;
    while (list[i] <= aValue)
      i++;
    for (int j=size-1; j>=i; j--)
      list[j+1] = list[j];
    list[i] = aValue;
    size++;
  }
}

Static:
  * class and aList variable
    (sort of - clearer in C)

SortList Class
aList

Dynamic:
  * SortedList object
  * size and list variables
  * value of aList, size and list
  * list of 10 integers

1
3
5
7
9
0
0
0
0
0

a SortedList Object
size
list

5
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‣Execution of insert
• how would you describe this execution?
• carefully, step by step?

Sequence of Instructions 
  * program order
  * changed by control-flow structures

class SortedList {
  static SortedList aList;
  int    size;
  int    list[];
  
  void insert (int aValue) {
    int i = 0;
    while (list[i] <= aValue)
      i++;
    for (int j=size-1; j>=i; j--)
      list[j+1] = list[j];
    list[i] = aValue;
    size++;
  }
}

            save location of SortedList.aList.insert(6)
            aValue = 6
            i = 0
            goto end-while if list[i]>aValue (1>6)
            i = 0+1 (1)
            goto end-while if list[i]>aValue (3>6)
            i = 1+1 (2)
            goto end-while if list[i]>aValue (5>6)
            i = 2+1 (3)
            goto end-while if list[i]>aValue (7>6)
end-while:  j = size-1 (4)
            goto end-if if j<i (4<3)
            list[i+1] = list[i] (list[5]=9)
            j = 5-1 (3)
            goto end-if if j<i (3<3)
            list[i+1] = list[i] (list[4]=7)
            j = 4-1 (2)
            goto end-if if j<i (2<3)
end-if:     list[i] = aValue (list[3] = 6)
            size = size+1 (6)
            statement after SortedList.aList.insert(6)

Instruction Types?
  * read/write variable
  * arithmetic
  * conditional goto
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‣Data structures
• variables have a storage location and a value
• some variables are created before the program starts
• some variables are created by the program while it runs
• variable values can be set before program runs or by the execution
‣Execution of program statements

• execution is a sequence of steps
• sequence-order can be changed by certain program statements
• each step executes an instruction
• instructions access variables, do arithmetic, or change control flow

Execution: What you Already Knew
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An Overview of Computation
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Phases of Computation

‣ Human creation
• design program and describe it in high-level language

‣ Compilation
• convert high-level, human description into machine-executable text

‣ Execution
• a physical machine executes the text
• parameterized by input values that are unknown at compilation
• producing output values that are unknowable at compilation

‣ Two important initial definitions
• anything that can be determined before execution is called static
• anything that can only be determined during execution is called dynamic

Human 
Creation

Source 
Code

Compilation

Object 
Code

Execution

Dynamic 
State
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Examples of Static vs Dynamic State

‣Static state in Java

‣Dynamic state in Java
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A Simple Machine that can Compute

‣Memory
• stores programs and data
• everything in memory has a unique name: its memory location (address)
• two operations: read or write value at location X

‣CPU
• machine that executes programs to transform memory state
• loads program from memory on demand one step at a time
• each step may also read or write memory

‣Not in the Simple Machine
• I/O Devices such as mouse, keyboard, graphics, disk and network
• we will deal with these other things in the second half of the course

CPU Memory
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The Simple Machine Model
A Closer Look
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How do we start?

‣One thing we need to do is add integers
• you already know how to do this from 121 (hopefully :))
‣A 32-bit Adder

• implemented using logic gates implemented by transistors
• it adds bits one at a time, with carry-out, just like in grade 2.

+
INPUT register INPUT register

OUTPUT register
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Generalizing the Adder

‣What other things do we want to do with Integers

‣What do we do with the value in the output register
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Register File and ALU

‣Arithmetic and Logic Unit (ALU)
• generalizes ADDER to perform many operations on integers
• three inputs: two source operands (valA, valB) and a operation code (opCode)
• output value (valE) = operation-code (operand0, operand1)

‣Register File
• generalizes input and output registers of ADDER
• a single bank of registers that can be used for input or output
• registers named by numbers: two source (srcA, srcB) and one destination (dst)

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcB

srcA
dst valE

opCode
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‣Functional View
• input for one step: opCode, srcA, srcB, and dst
• a program is a sequence of these steps (and others)

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcA
dst valE

opCode

Register File 
and 
ALU

srcB
srcA

dst

opCode
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‣Current model is too restrictive
• to add two numbers the numbers must be in registers
• programs must specify values explicitly
‣Extend model to include immediates

• an immediate value is a constant specified by a program instruction
• extend model to allow some instructions to specify an immediate (valC)

Putting Initial Values into Registers

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcA
dst valE

opCode

valC
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‣Functional View
• we now have an additional input, the immediate value, valC

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcA
dst valE

opCode

valC

Register File 
and 
ALUsrcB

srcA
dst

opCode

valC
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‣Memory is
• an array of bytes, indexed by byte address

‣Memory access is
• restricted to a transfer between registers and memory
• the ALU is thus unchanged, it still takes operands from registers
• this is approach taken by Reduced Instruction Set Computers (RISC)

‣Extending model to include RISC-like memory access
• opcode selects from set of memory-access and ALU operations
• memory address and value are in registers

Memory Access

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:
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‣Central Processing Unit or Core (CPU) 
• a register file
• logic for ALU, memory access and control flow
• a clock to sequence instructions
• memory cache of some active parts of memory (e.g., instructions)
‣Memory

• is too big to fit on the CPU chip, so its stored off chip
• much slower than registers or cache (200 x slower than registers)

The Simple Machine

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

CPU/core

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

CPU/core
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‣A Program
• sequence of instructions stored in memory

‣An Instruction
• does one thing: math, memory-register transfer, or flow control
• specifies a value for each of the functional inputs

CPU
srcB
srcA

dst

opCode

valC

0: valC=?, dst=?, srcA=?, srcB=?, opCode=?
1: valC=?, dst=?, srcA=?, srcB=?, opCode=?
2: valC=?, dst=?, srcA=?, srcB=?, opCode=?
3: valC=?, dst=?, srcA=?, srcB=?, opCode=?

A Program

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

CPU/core
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Instruction Set Architecture (ISA)

‣ The ISA is the “interface” to a processor implementation
• defines the instructions the processor implements
• defines the format of each instruction

‣ Instruction format
• is a set of bits (a number)
• an opcode and set of operand values

‣ Types of instruction
• math
• memory access
• control transfer (gotos and conditional gotos)

‣ Design alternatives
• simplify compiler design (CISC such as Intel Architecture 32)
• simplify processor implementation (RISC

‣ Assembly language
• symbolic representation of machine code
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Example Instruction: ADD

‣Description
• opCode = 61
• two source operands in registers: srcA = rA, srcB = rB
• put destination in register: dst = rB
‣Assembly language

• general form: add rA, rB
• e.g., add r0, r1

‣ Instruction format
• 16 bit number, divided into 4-bit chunks: 61sd
• high-order 8 bits are opCode (61)
• next 4 bits are srcA (s)
• next 4 bits are srcB/dst (d)

0110 0001 ssss dddd

0110 0001 0000 0001

add rA, rB

add r0, r1
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Simulating a Processor Implementation

‣Java simulator
• edit/execute assembly-language
• see register file, memory, etc.

‣You will implement
• the fetch + execute logic
• for every instruction in SM213 ISA

‣SM213 ISA
• developed as we progress through key language features
• patterned after MIPS ISA, one of the 2 first RISC architectures

Fetch Instruction from Memory Execute it Tick Clock
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