
CPSC 213
Introduction to Computer Systems

Unit 0

Introduction

1

About the Course

‣ its all on the web page ...
• http://www.cs.ubc.ca/~feeley/cs213
• Lecture Notes Companion
• Piazza

‣marks
• in-class clicker questions (you will need a clicker)
• labs		
• quizzes
• midterm
• final

‣work together! but don’t cheat!
• never present anyone else’s work as your own

- it is your responsibility to provide proper attribution

• anything you hand in in this course should follow this rule anything
• but, don’t let this stop you from helping each other learn ...

2

Overview of the course

‣Hardware context of a single executing program
• hardware context is CPU and Main Memory
• develop CPU architecture to implement C and Java
• differentiate compiler (static) and runtime (dynamic) computation
‣System context of multiple executing programs with IO

• extend context to add IO, concurrency and system software
• thread abstraction to hide IO asynchrony and to express concurrency
• synchronization to manage concurrency
• virtual memory to provide multi-program, single-system model
• hardware protection to encapsulate operating system
• message-passing to communicate between processes and machines

GOAL: To develop a model of computation that is
rooted in what really happens when programs execute.

3

What you will get out of this ...

‣Become a better programmer by
• deepening your understand of how programs execute
• learning to build concurrent and distributed programs
‣Learn to design real systems by

• evaluating design trade-offs through examples
• distinguish static and dynamic system components and techniques
‣ Impress your friends and family by

• telling them what a program really is

4

What do you know now?

5

What happens what a program runs

‣Here’s a program

‣What do you understand about the execution of insert?

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

6

‣Example
• list stores { 1, 3, 5, 7, 9 }
• SortedList.aList.insert(6) is called
‣Data structures

• draw a diagram of the data structures
• as they exist just before insert is called

a SortedList Object
size
list

5

SortList Class
aList

1
3
5
7
9
0
0
0
0
0

assuming list[] was
initialized to store 10
elements:

list = new Integer[10];

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

7

‣Data structures
• lets dig a little deeper
• which of these existed before program started?

- these are the static features of the program

• which were created by execution of program?
- these are the dynamic features of the program

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

Static:
 * class and aList variable
 (sort of - clearer in C)

SortList Class
aList

Dynamic:
 * SortedList object
 * size and list variables
 * value of aList, size and list
 * list of 10 integers

1
3
5
7
9
0
0
0
0
0

a SortedList Object
size
list

5

8

‣Execution of insert
• how would you describe this execution?
• carefully, step by step?

Sequence of Instructions
 * program order
 * changed by control-flow structures

class SortedList {
 static SortedList aList;
 int size;
 int list[];

 void insert (int aValue) {
 int i = 0;
 while (list[i] <= aValue)
 i++;
 for (int j=size-1; j>=i; j--)
 list[j+1] = list[j];
 list[i] = aValue;
 size++;
 }
}

 save location of SortedList.aList.insert(6)
 aValue = 6
 i = 0
 goto end-while if list[i]>aValue (1>6)
 i = 0+1 (1)
 goto end-while if list[i]>aValue (3>6)
 i = 1+1 (2)
 goto end-while if list[i]>aValue (5>6)
 i = 2+1 (3)
 goto end-while if list[i]>aValue (7>6)
end-while: j = size-1 (4)
 goto end-if if j<i (4<3)
 list[i+1] = list[i] (list[5]=9)
 j = 5-1 (3)
 goto end-if if j<i (3<3)
 list[i+1] = list[i] (list[4]=7)
 j = 4-1 (2)
 goto end-if if j<i (2<3)
end-if: list[i] = aValue (list[3] = 6)
 size = size+1 (6)
 statement after SortedList.aList.insert(6)

Instruction Types?
 * read/write variable
 * arithmetic
 * conditional goto

9

‣Data structures
• variables have a storage location and a value
• some variables are created before the program starts
• some variables are created by the program while it runs
• variable values can be set before program runs or by the execution
‣Execution of program statements

• execution is a sequence of steps
• sequence-order can be changed by certain program statements
• each step executes an instruction
• instructions access variables, do arithmetic, or change control flow

Execution: What you Already Knew

10

An Overview of Computation

11

Phases of Computation

‣ Human creation
• design program and describe it in high-level language

‣ Compilation
• convert high-level, human description into machine-executable text

‣ Execution
• a physical machine executes the text
• parameterized by input values that are unknown at compilation
• producing output values that are unknowable at compilation

‣ Two important initial definitions
• anything that can be determined before execution is called static
• anything that can only be determined during execution is called dynamic

Human
Creation

Source
Code

Compilation

Object
Code

Execution

Dynamic
State

12

Examples of Static vs Dynamic State

‣Static state in Java

‣Dynamic state in Java

13

A Simple Machine that can Compute

‣Memory
• stores programs and data
• everything in memory has a unique name: its memory location (address)
• two operations: read or write value at location X

‣CPU
• machine that executes programs to transform memory state
• loads program from memory on demand one step at a time
• each step may also read or write memory

‣Not in the Simple Machine
• I/O Devices such as mouse, keyboard, graphics, disk and network
• we will deal with these other things in the second half of the course

CPU Memory

14

The Simple Machine Model
A Closer Look

15

How do we start?

‣One thing we need to do is add integers
• you already know how to do this from 121 (hopefully :))
‣A 32-bit Adder

• implemented using logic gates implemented by transistors
• it adds bits one at a time, with carry-out, just like in grade 2.

+
INPUT register INPUT register

OUTPUT register

16

Generalizing the Adder

‣What other things do we want to do with Integers

‣What do we do with the value in the output register

17

Register File and ALU

‣Arithmetic and Logic Unit (ALU)
• generalizes ADDER to perform many operations on integers
• three inputs: two source operands (valA, valB) and a operation code (opCode)
• output value (valE) = operation-code (operand0, operand1)

‣Register File
• generalizes input and output registers of ADDER
• a single bank of registers that can be used for input or output
• registers named by numbers: two source (srcA, srcB) and one destination (dst)

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcB

srcA
dst valE

opCode

18

‣Functional View
• input for one step: opCode, srcA, srcB, and dst
• a program is a sequence of these steps (and others)

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcA
dst valE

opCode

Register File
and
ALU

srcB
srcA

dst

opCode

19

‣Current model is too restrictive
• to add two numbers the numbers must be in registers
• programs must specify values explicitly
‣Extend model to include immediates

• an immediate value is a constant specified by a program instruction
• extend model to allow some instructions to specify an immediate (valC)

Putting Initial Values into Registers

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcA
dst valE

opCode

valC

20

‣Functional View
• we now have an additional input, the immediate value, valC

valA

valB

Register File
0:
1:
2:
3:
4:
5:
6:
7:

ALU

srcB

srcA
dst valE

opCode

valC

Register File
and
ALUsrcB

srcA
dst

opCode

valC

21

‣Memory is
• an array of bytes, indexed by byte address

‣Memory access is
• restricted to a transfer between registers and memory
• the ALU is thus unchanged, it still takes operands from registers
• this is approach taken by Reduced Instruction Set Computers (RISC)

‣Extending model to include RISC-like memory access
• opcode selects from set of memory-access and ALU operations
• memory address and value are in registers

Memory Access

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

22

‣Central Processing Unit or Core (CPU)
• a register file
• logic for ALU, memory access and control flow
• a clock to sequence instructions
• memory cache of some active parts of memory (e.g., instructions)
‣Memory

• is too big to fit on the CPU chip, so its stored off chip
• much slower than registers or cache (200 x slower than registers)

The Simple Machine

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

CPU/core

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

CPU/core

23

‣A Program
• sequence of instructions stored in memory

‣An Instruction
• does one thing: math, memory-register transfer, or flow control
• specifies a value for each of the functional inputs

CPU
srcB
srcA

dst

opCode

valC

0: valC=?, dst=?, srcA=?, srcB=?, opCode=?
1: valC=?, dst=?, srcA=?, srcB=?, opCode=?
2: valC=?, dst=?, srcA=?, srcB=?, opCode=?
3: valC=?, dst=?, srcA=?, srcB=?, opCode=?

A Program

ALU

Memory

0:
1:
2:
3:
4:
5:
6:
7:

CPU/core

24

Instruction Set Architecture (ISA)

‣ The ISA is the “interface” to a processor implementation
• defines the instructions the processor implements
• defines the format of each instruction

‣ Instruction format
• is a set of bits (a number)
• an opcode and set of operand values

‣ Types of instruction
• math
• memory access
• control transfer (gotos and conditional gotos)

‣ Design alternatives
• simplify compiler design (CISC such as Intel Architecture 32)
• simplify processor implementation (RISC

‣ Assembly language
• symbolic representation of machine code

25

Example Instruction: ADD

‣Description
• opCode = 61
• two source operands in registers: srcA = rA, srcB = rB
• put destination in register: dst = rB
‣Assembly language

• general form: add rA, rB
• e.g., add r0, r1

‣ Instruction format
• 16 bit number, divided into 4-bit chunks: 61sd
• high-order 8 bits are opCode (61)
• next 4 bits are srcA (s)
• next 4 bits are srcB/dst (d)

0110 0001 ssss dddd

0110 0001 0000 0001

add rA, rB

add r0, r1

26

Simulating a Processor Implementation

‣Java simulator
• edit/execute assembly-language
• see register file, memory, etc.

‣You will implement
• the fetch + execute logic
• for every instruction in SM213 ISA

‣SM213 ISA
• developed as we progress through key language features
• patterned after MIPS ISA, one of the 2 first RISC architectures

Fetch Instruction from Memory Execute it Tick Clock

27

